
16

Composing Multi-Ported Memories on FPGAs

CHARLES ERIC LAFOREST, ZIMO LI, TRISTAN O’ROURKE, MING G. LIU,
and J. GREGORY STEFFAN, University of Toronto

Multi-ported memories are challenging to implement on FPGAs since the block RAMs included in the fabric
typically have only two ports. Hence we must construct memories requiring more than two ports, either out
of logic elements or by combining multiple block RAMs. We present a thorough exploration and evaluation
of the design space of FPGA-based soft multi-ported memories for conventional solutions, and also for
the recently proposed Live Value Table (LVT) [LaForest and Steffan 2010] and XOR [LaForest et al. 2012]
approaches to unidirectional port memories, reporting results for both Altera and Xilinx FPGAs. Additionally,
we thoroughly evaluate and compare with a recent LVT-based approach to bidirectional port memories
[Choi et al. 2012].

Categories and Subject Descriptors: B.3.2 [Memory Structures]: Design Style—Shared memory

General Terms: Design, Performance, Measurement

Additional Key Words and Phrases: FPGA, LVT, memory, multi-port, parallel, XOR

ACM Reference Format:
Charles Eric LaForest, Zimo Li, Tristan O’Rourke, Ming G. Liu, and J. Gregory Steffan. 2014. Composing
multi-ported memories on FPGAs. ACM Trans. Reconfig. Technol. Syst. 7, 3, Article 16 (August 2014), 23
pages.
DOI: http://dx.doi.org/10.1145/2629629

1. INTRODUCTION

Designers increasingly use FPGAs to implement complex systems-on-chip that require
frequent communication, sharing, queuing, and synchronization among distributed
functional units and compute nodes. These high-contention storage mechanisms often
contain multi-ported memories that allow multiple simultaneous reads and writes. For
example, the register file of an FPGA-based, scalar, in-order MIPS-like soft processor
requires one write port and two read ports, while processors that issue multiple instruc-
tions require even more ports. However, constructing a multi-ported memory solely out
of FPGA logic elements results in an inefficient solution [LaForest and Steffan 2010].
Furthermore, FPGA substrates typically provide Block RAMs (BRAMs) with only two
ports, hence memories with more than two ports must be “soft”, that is, constructed
using logic elements and/or hard BRAMs. The ability to construct efficient soft multi-
ported memories remains important as it frees FPGA vendors from having to include
in their device fabrics costlier hard BRAMs with more than two ports.

The authors thank Altera, NSERC, and the Walter C. Sumner Memorial Fellowship for financial support.
Authors’ addresses: C. E. LaForest (corresponding author), Z. Li, T. O’Rourke, M. G. Liu, and J. G. Steffan,
Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, 27 King’s
College Cir, Toronto, ON M5S, Canada; email: laforest@eecg.utoronto.ca.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee.
2014 Copyright held by the Owner/Author. Publication rights licensed to ACM. 1936-7406/2014/08-ART16
$15.00
DOI: http://dx.doi.org/10.1145/2629629

ACM Transactions on Reconfigurable Technology and Systems, Vol. 7, No. 3, Article 16, Publication date: August 2014.

16:2 C. E. LaForest et al.

Fig. 1. A multi-ported memory implemented using FPGA logic blocks, having D single-word storage loca-
tions (S), m write (W) ports, n read (R) ports (denoted as mW/nR), and n temporary registers r. We show
only read and write data lines (i.e., not address lines).

1.1. Conventional Approaches

We can implement a multi-ported memory using only the basic logic elements of an
FPGA as illustrated in Figure 1, which shows a D-location memory with m write ports
and n read ports. For now we consider only memories with unidirectional ports; we
consider memories with bidirectional ports later in Section 7. As shown, we require
D m-to-one multiplexers to steer writes to the appropriate memory locations, and n
D-to-one multiplexers to allow each read to access any memory location. Note also the
registered read outputs necessary (r) to implement a synchronous memory that holds
the outputs stable between clock edges. This circuit scales very poorly with memory
depth: the area and the decoding/multiplexing increase rapidly, severely limiting the
maximum operating frequency.

We normally implement memories on FPGAs more efficiently using the provided
block RAMs, which can be quite denser than logic registers (e.g., 9-, 18-, or 36Kbits)
while supporting high operating frequencies (e.g., 550 MHz [Altera 2012; Xilinx 2012]).
However, FPGA block RAMs currently provide only two ports for reading and/or writ-
ing. Note that Altera’s defunct Mercury line of Programmable Logic Devices (PLDs)
[Altera 2003] previously provided quad-port RAMs to support gigabit telecommuni-
cations applications—however, this feature does not exist in any other Altera device,
likely due to the high hardware cost.

System designers therefore used one or a combination of three conventional tech-
niques, as shown in Figure 2, to increase the effective number of ports of FPGA block
RAMs. The first, replication, increases the number of read ports by maintaining a
replica of the memory for each additional read port. However, this technique alone can-
not support more than one write port since the single common external write port must
be routed to each block RAM, using up its second port, to keep it up-to-date. The second
technique, banking, divides memory locations among multiple block RAMs (banks),
allowing each additional bank to provide an additional read and write port. However,
with this approach each read or write port can only access its corresponding memory
fraction—hence a pure banked design does not truly support sharing across ports.

The third technique, that we call multipumping, includes any memory design inter-
nally clocked at a multiple of the external clock to provide the illusion of a multiple of the
actual number of ports and allowing a designer to trade speed for area reduction. For
example, running a 1W/1R (one write and one read) memory internally at twice the ex-
ternal clock frequency can give the illusion of a 2W/2R memory. A multipumped design
must also include multiplexers and registers to temporarily hold the addresses and data
of pending reads and writes, and must carefully define the ordering of reads and writes.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 7, No. 3, Article 16, Publication date: August 2014.

Composing Multi-Ported Memories on FPGAs 16:3

Fig. 2. Three conventional techniques for providing more ports given a 1W/1R memory (we do not depict
read and write address values, only data values): (a) Replication maintains an extra copy of the memory to
support each additional read port, but supports only a single common write port; (b) banking divides data
across multiple memories, but each read or write port can only access one specific memory (fracturing access
to data); (c) multipumping multiplies the number of read/write ports of a memory by adding internal data
and address multiplexers and temporary registers (r) and internally clocking the memory at a multiple of
the external clock (that quickly degrades the maximum external operating frequency).

While reasonably straightforward, a multipumped design has the drawback that each
increase in the number of ports dramatically reduces the maximum external operat-
ing frequency of the memory. LaForest et al. [2012] present a detailed analysis of the
impact of multipumping on multi-ported memory designs that we do not repeat here.

1.2. The Live Value Table (LVT) Approach

The Live Value Table (LVT) approach [LaForest and Steffan 2010] augments a banked
approach with a table that uses output multiplexers to steer reads to the most recently
updated bank for each memory address. The LVT approach improves significantly on
the area and speed of comparable designs built using only logic elements, and often
results in the fastest design. The LVT approach can also support the implementation
of multi-ported memories having bidirectional ports [Choi et al. 2012].

1.3. The XOR-Based Approach

The XOR operation (⊕) has interesting and useful properties, particularly that A⊕ B⊕
B = A. Network coding schemes [Katti et al. 2006] commonly use XOR to transmit
coded/mixed values together rather than individually, to later decode/unmix them at
the receiver. RAID systems [Patterson et al. 1988] also use XOR to implement parity
and provide data recovery capability should one hard-drive of an array of drives fail.

Similar to the LVT approach, the XOR approach to multi-ported memories [LaForest
et al. 2012] internally uses banking and replication. However, the XOR design avoids
the need for a Live Value Table to direct reads and thus also avoids the corresponding
output multiplexing, instead allowing the logic of each read port to consist solely of
an XOR of values read from all banks of BRAMs. We demonstrate that XOR designs
consume less logic but require more BRAMs than corresponding LVT designs, and that
some configurations of XOR designs can run faster and consume less total area than
the equivalent LVT designs.

1.4. Contributions

In this work, we extend and refine the results of prior publications [LaForest and
Steffan 2010; LaForest et al. 2012].

(1) We present the Live Value Table (LVT) design for implementing multi-ported
memories.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 7, No. 3, Article 16, Publication date: August 2014.

16:4 C. E. LaForest et al.

(2) We present an alternative XOR-based design for implementing multi-ported
memories.

(3) We thoroughly compare the speed and resource usage of pure LE, LVT, and XOR
approaches.

In addition to the aforesaid revisions, in this article we also make the following new
contributions.

(4) We expand the explored space of memories to include both smaller and greater
depths and with a larger number of ports.

(5) We repeat our evaluations on Xilinx Virtex-6 devices, using the ISE 14.1 CAD tools
(in Section 6), evaluating multi-ported memories for the first time across both major
FPGA vendors.

(6) For the LVT-based design with bidirectional ports recently proposed by Choi et al.
[2012], we thoroughly explore the parameter space and compare with the pure LE
alternative (in Section 7).

(7) We compare the speed and area of unidirectional and bidirectional memories under
different port configurations on Altera devices (in Section 8).

(8) We present a single, simple, and accurate predictive area model for all memory
designs on Altera devices (in Section 9).

2. THE LIVE VALUE TABLE DESIGN

The Live Value Table (LVT) multi-ported memory design allows for a BRAM-based
implementation of a memory with more than one write port instead of having to build
such a memory solely from logic elements. Basically, an LVT design augments a banked
memory with the ability to connect each read port to the most recently written bank
for a given memory location. In this section, we briefly summarize the construction and
operation of the LVT design; see LaForest and Steffan [2010] for a full treatment.

As a simple example, Figure 3(a) shows a two-write-two-read (2W/2R) LVT-based
memory. Each write port requires its own bank of BRAMs, with each bank containing
two BRAMs to supply the two read ports. Each read port contains a multiplexer driven
by the LVT, which selects the most recently written (a.k.a. live) bank for the given
read address. The LVT consists of a 2W/2R memory composed of logic elements (e.g.,
Altera’s ALMs) of the same depth as the BRAM banks, but only as wide as the log2 of
the number of write ports (typically, 1–3 bits)—and hence requires much less area and
runs faster than an entire word-wide 2W/2R memory built out of logic elements. Since
the LVT is itself a multi-ported memory requiring the same number of read and write
ports as the external memory ports, we implement it using logic elements.

Figure 3(b) shows a generalized mW/nR LVT design. Again, each write port has a
bank of BRAMs, with each bank internally replicated into a 1W/nR memory for an
overall memory with n external read ports. The replication of BRAMs within a bank
creates a memory with a single write port, common to every BRAM inside, plus a read
port from each internal BRAM feeding into one of each of the output multiplexers. In
total, an LVT design requires m· n BRAMs plus the logic required to implement the
LVT and the multiplexers.

We add forwarding logic around the BRAMs of the LVT design, similar to that
shown later in Figure 4(b) for the XOR design, to increase clock frequency at a
modest area cost. Forwarding logic bypasses a BRAM such that, if a write and a read
operation access the same location during the same cycle, the read will return the new
write value instead of the old stored value. To remain compatible with the expected
behavior of a one-cycle read-after-write latency, we register the write addresses and
data to delay them by one cycle. Using forwarding increases the maximum operating

ACM Transactions on Reconfigurable Technology and Systems, Vol. 7, No. 3, Article 16, Publication date: August 2014.

Composing Multi-Ported Memories on FPGAs 16:5

Fig. 3. Live Value Table (LVT) designs: (a) A specific 2W/2R design; (b) a generalized mW/nR design.

frequency of the BRAMs from 375 MHz to 550 MHz, as per the Stratix IV FPGA
BRAM specifications [Altera 2012].1

For LVT-based memories, we have found that the LVT table and the output mul-
tiplexers together: (i) constitute the critical path, and (ii) can require a significant
number of logic elements to implement as the memory deepens. In the next section, we
pursue an alternative design that avoids both of these disadvantages.

3. AN XOR-BASED DESIGN

In this section, we overcome the drawbacks of the LVT design by eliminating the narrow
but multi-ported LVT and the output multiplexers it controls. As we mentioned in the
Introduction, our design aims for each read port to require only the computation of the
XOR of values read from BRAMs. We start with a review of some of the properties of XOR
and gradually build up a general XOR-based multi-ported memory design.

3.1. XOR Properties and Basic Use

The bitwise XOR operation (⊕) is commutative, associative, and has the following
properties:

—A⊕ 0 = A;
—B⊕ B = 0;
—A⊕ B⊕ B = A.

The third property, which follows from the first two, implies that we can XOR two values
A and B together and later recover A by XORing the result with B. We can exploit

1Normally, a BRAM internally performs a read on the clock rising edge and a write on the falling edge.
Allowing both to occur on the same edge raises the operating frequency, but corrupts the read data, hence
the need for forwarding logic to discard the bogus data coming from the BRAM read lines when the read and
write addresses coincide.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 7, No. 3, Article 16, Publication date: August 2014.

16:6 C. E. LaForest et al.

Fig. 4. XOR-based multi-ported memory design: (a) 2W/1R memory implemented using XOR, with example
data values. Note that we only show data wires. W0 stores the value A XOR’ed with the old contents (OLD1)
of the other bank. Similarly, W1 stores the value B XOR’ed with the old contents (OLD2) of the other bank.
Reading the location containing A computes (A⊕ OLD1) ⊕ OLD1 that returns A; (b) details of the address
wires, registers, and forwarding circuitry used in the XOR design, not shown in other figures for simplicity;
(c) 2W/2R memory implemented using XOR. Compared to the 2W/1R memory in; (a), an additional column of
BRAMs (in the center) supplies data to the additional read port; (d) generalized mW/nR memory implemented
using XOR. Each write port requires a bank (row) of BRAMs, while each read port requires a column of BRAMs.
Additionally, the write ports also require extra columns in their banks (one for each of one less than the total
number of write ports) to provide the old data for the other write ports to XOR with their new data. These
extra columns receive the write addresses (as read addresses) without going through the initial registers
shown in (d).

this property to allow the XOR of two instances of a memory location to return the
most recent version. For example, suppose M[location1] contains some OLD value,
and then we save a new value A in a corresponding M[location2] by XORing it with
the OLD value, that is, by storing A⊕ OLD in M[location2]. Explicitly, M[location2] =
A⊕M[location1] = A⊕OLD. We can then recover A (i.e., read the most recently written
value) by simply returning the XOR of the two locations, without having to select between
them. Explicitly, output = M[location2] ⊕ M[location1] = (A⊕ OLD) ⊕ OLD = A. This
scheme allows two write ports to write to two separate BRAMS (or banks of BRAMs)
simultaneously (like the LVT design), while read ports need only XOR the contents of a
BRAM location across all banks to return the most recent value (unlike the LVT design
that requires output multiplexing).

3.2. Simple XOR Designs

To begin a detailed example, we use the basic properties of XOR to construct a simple
2W/1R memory out of dual-ported BRAMs, as illustrated in Figure 4(a). Note that the
figure shows only data wires and their values. Each write port (W0, W1) has its own

ACM Transactions on Reconfigurable Technology and Systems, Vol. 7, No. 3, Article 16, Publication date: August 2014.

Composing Multi-Ported Memories on FPGAs 16:7

bank of two BRAMs, set in a row. Each write port copies its data to both BRAMs so that
corresponding locations in every BRAM in a bank always hold the same value. When
the write port W0 stores the value A to the upper locations (in grey), it first XORs A with
the old value (OLD1) from the same location in W1’s bank. Similarly, when the write
port W1 stores the value B to the lower locations (also in grey), it first XORs B with the
old value (OLD2) from the same location in W0’s bank .

We implement the read port circuitry without multiplexing, solely the XOR of BRAM
outputs. Reading the upper location computes the XOR of both versions from both the
upper and lower banks, resulting in isolating the value most recently stored to that
location by computing (A⊕ OLD1) ⊕ OLD1, which returns A.

However, the XOR design requires that a read precedes each write: We must store the
XOR of the new write value with the old value read from the same location in the other
bank. This constraint both increases the number of BRAMs to provide the needed read
ports and forces writes to take two cycles to complete, since a read from the other bank
must complete first. However, we can keep the XOR design black-box compatible with
previous designs and give the illusion that writes effectively take only one cycle with
two additions to the design, as illustrated in Figure 4(b): First, we register the write port
address and data to the write ports’ BRAMs to delay them by one cycle, during which
we use the write address to perform the associated preceding internal read. Second,
we instantiate forwarding circuitry that allows the write data to flow directly to the
read data port in the event that we read a location in the cycle immediately following a
previous write to the same location. For simplicity, we do not show these extra registers
and forwarding logic other than in Figure 4(b). Quartus implements forwarding logic
automatically when given the appropriate behavioral Verilog description of a BRAM.

We can add another read port to extend this 2W/1R memory to 2W/2R, as shown in
Figure 4(c). The 2W/2R memory functions in the same manner as the 2W/1R design,
except that another column of BRAMs (in the center) provides data for the additional
read port, without needing changes to the write port logic.

To summarize the XOR design, each time we write to a given location in a particular
memory bank, we XOR the new data with the old contents from the same location in all
the other banks. To read a location we calculate the XOR of the values in that location
across all banks, hence recovering the latest value written.

3.3. A Generalized XOR Design

In Figure 4(d), we present a generalized mW/nR XOR design. Each write port has its
own bank (row) of BRAMs. To write a value to a location in a given write port bank,
we XOR the new value with all of the old values from that same location in all the other
banks, and then store the result of that XOR in all the BRAMs of the write port bank.
Therefore, the XOR design also requires an extra column of BRAMs, of number one less
than the number of write ports, to provide sufficient internal read ports to support
writing without delay. Furthermore, each external read port requires its own column
of BRAMs. Overall, an XOR design requires m∗ (m− 1 + n) BRAMs to provide m writes
and n reads.

4. EXPERIMENTAL FRAMEWORK (ALTERA)

In this section, we provide details about block RAMs, the memory designs that we study,
our CAD flow, and our method for measuring speed and area. We focus on Altera devices
and their CAD flow, but later in Section 6 we consider the same for Xilinx devices.

4.1. BRAM Memory

Modern FPGAs usually implement BRAMs directly as ASICs. These BRAMs typically
have two ports that can each function either as a read or a write port. BRAMs use less

ACM Transactions on Reconfigurable Technology and Systems, Vol. 7, No. 3, Article 16, Publication date: August 2014.

16:8 C. E. LaForest et al.

area and run at a higher frequency than similar memories created from the FPGA’s
reconfigurable logic, but do so at the expense of having a fixed storage capacity and
number of ports.

The Stratix IV FPGAs mostly contain M9K block RAMs2 that hold 9 kilobits of
information at various word widths and depths. At a width of 32 bits, an M9K holds
256 words. When configured as a “simple dual-port” memory with one fixed read port
and one fixed write port, an M9K has a published maximum operating frequency of
550MHz that may decrease depending on the actual target device. When configured in
“true dual-port” mode where both ports can do either a read or a write each cycle, the
M9K maximum published operating frequency drops to 375MHz [Altera 2012].

4.2. CAD Flow

We implement all the designs in generic Verilog-2001 without any vendor-specific mod-
ules. We place our circuits inside a synthesis test harness designed to both: (i) register
all inputs and outputs to ensure an accurate timing analysis, and (ii) to reduce the
number of I/O pins to a minimum as the larger circuits will not otherwise fit on the
FPGA. The test harness also avoids any loss of circuitry caused by I/O synthesis op-
timizations; shift registers expand single-pin inputs, while registered AND reducers
compact word-wide signals to a single output pin. We use Altera’s Quartus 12.0 to tar-
get the Stratix IV EP4SE530H40C2 FPGA, a device of the highest available speed grade
and containing 1280M9K BRAMs.

We configured the synthesis process to favor speed over area and enabled all relevant
optimizations, including circuit transformations such as register retiming. The impact
on the area of register retiming varies depending on the logic found beyond the I/O
registers, so the absolute results presented here might not appear in a real system.
However, comparing our various designs inside a real system would yield proportionally
similar results. We tested all designs inside identical test harnesses.

We configured the place-and-route process to make a standard effort at fitting with
only two constraints: (i) to avoid FPGA I/O pin registers to prevent artificially long
paths that would affect the clock frequency, and (ii) to set the target clock frequency to
550MHz, the maximum clock frequency specified for M9K BRAMs. Similarly, for pure
LE design that does not use BRAMs we set the target to 800MHz, the rated limit of
the clock tree feeding the adaptive logic modules. Setting a higher target Fmax does
not improve results and may in fact worsen them (on average) if a slower, derived
clock exists and thus aims towards an unnecessarily high target frequency, causing
competition for fast paths. We define all clocks as externally generated and any of their
fractions (e.g., half-rate) used in multipumping designs as synchronous to the main
system clock (i.e., when generated by a PLL).

We report maximum operating frequency (Fmax) by averaging the results of ten
place-and-route runs, each starting with a different random seed for initial placement.
We select the worst-case Fmax report (slow corner/high temperature) for the default
range of die temperatures of 0 to 85◦C. Similarly, we also report an averaged area
usage.

4.3. Measuring Area

When comparing designs as a whole, we report area as the Total Equivalent Area
(TEA) that estimates the actual silicon area of a design point: we calculate the sum of
all the Adaptive Logic Modules (ALMs) used partially or completely, plus the area of

2Stratix IV FPGAs also contain larger M144K and smaller MLAB memories. There are too few M144Ks to
fully explore the design space, and past work demonstrated that using MLABs to construct multi-ported
memories scales very poorly [LaForest and Steffan 2010].

ACM Transactions on Reconfigurable Technology and Systems, Vol. 7, No. 3, Article 16, Publication date: August 2014.

Composing Multi-Ported Memories on FPGAs 16:9

the BRAMs counted as their equivalent area in ALMs. A Stratix IV ALM contains two
Adaptive LookUp Tables (ALUTs), each roughly equivalent to a 6-LUT, two-adder, and
carry-chain stages, and two flip-flops. Wong et al. [2011] provide the raw layout-area
data: one M9K BRAM has an area equivalent to 28.7 ALMs. Previously [LaForest and
Steffan 2010], we had to use a derived estimate of equivalent area.

4.4. Design Parameters Considered

For simplicity, we consider only the common case of 32-bit-wide memories. We do not
consider one-write-one-read (1W/1R) memories as they directly map to a single FPGA
BRAM. Similarly, replication trivially enables 1W/nR memories. The challenge lies
in creating concurrent multiple write ports. Overall, we consider two design classes:
unidirectional memories where some ports always read and some always write, and
bidirectional memories where all ports can either read or write.

Although the internal implementations vary, we ensure that all designs function
as black-box equivalent from an outside point of view. Specifically, all ports operate
simultaneously within a single external clock cycle, while any latencies between writ-
ing and subsequently reading data remain equal across designs. Any one design can
substitute for another within a system, with clock frequency and resource usage as the
only differences. We do not consider memories that may stall (e.g., take multiple cy-
cles to perform a read or write if there exists a resource conflict), although such designs
suggest compelling future work. Finally, we assume that multiple simultaneous writes
to the same address result in undefined behavior and that the enclosing system avoids
these conflicts.

We evaluate a representative sample from the range of multi-ported memory config-
urations having 2 to 8 write ports and 4 to 16 read ports: 2W/4R, 4W/8R, and 8W/16R.
We explore these configurations over memory depths of 2 to 8192 words, although some
designs with depths exceeding 2048 words begin to consume a major fraction of the
targeted device, making them potentially impractical for current-day applications.

5. COMPARING PURE LE, LVT, AND XOR DESIGNS (ALTERA)

In this section we compare the pure LE (Logic Elements), LVT, and XOR approaches to
implementing multi-ported memories. We begin by illustrating example resource usage
and layout of the three design approaches. Next, we compare in detail the speed and
resource usage of a broad range of memories of varying depths and numbers of ports.
Finally, we summarize the design space by highlighting the designs that minimize
delay, ALM usage, or BRAM usage. For now, we focus solely on Altera devices/CAD;
later in Section 6 we consider Xilinx devices/CAD.

To illustrate the resource diversity of the pure LE, LVT, and XOR approaches,
we present in Figure 5 the resource layout of a 1024-deep 2W/4R pure LE memory
alongside those of 8192-deep 2W/4R LVT and XOR memories, as rendered by Quartus.
The thin columns represent BRAMs or DSPs, while the dots and dot-clouds represent
ALMs. Darkened areas represent in-use resources. We chose these memory depths
because of the large resulting designs relative to the total capacity of the chip and
to emphasize the differences between the designs. All three designs have the same
memory width (32 bits) and consume resources in a centered, somewhat circular
pattern due to Quartus’s efforts to minimize delay and resource consumption. While
the pure LE design consumes no BRAMs, the XOR design consumes more BRAMs
than the LVT design (and hence has taller columns of in-use BRAMs). Conversely,
the LVT design consumes more ALMs than the XOR design, whereas the pure LE
design consumes the most by far. Since a multi-ported memory normally exists within
a larger design, one can see how the XOR memory would integrate better with an

ACM Transactions on Reconfigurable Technology and Systems, Vol. 7, No. 3, Article 16, Publication date: August 2014.

16:10 C. E. LaForest et al.

Fig. 5. Resource layout of (a) a 1024-deep 2W/4R pure LE memory and 8192-deep 2W/4R memories for
(b) LVT, and (c) XOR designs, as rendered by Quartus. The thin columns represent BRAMs or DSPs (darkened
indicates in-use), the dots and dot-clouds point out ALMs.

enclosing design that consumes many ALMs, while the LVT and pure LE designs
would integrate better with an enclosing design that demands many BRAMs.

In Figure 6, we compare pure LE, LVT, and XOR implementations of 2W/4R, 4W/8R,
and 8W/16R memories with depths varying from 2 entries up to 8192, as can fit on the
FPGA device—XOR and LVT memories with more ports exhaust the available BRAMs
more quickly, while pure LE memories rapidly consume all available ALMs. In the
leftmost figures, we plot the average unrestricted maximum operating frequency (Fmax)
versus the average area. (A minimum clock-pulse width requirement for the BRAMs
restricts the actual Fmax to 550 MHz on Stratix IV devices, despite having a lower
actual propagation delay.) We report the TEA in terms of ALMs, that accounts for both
the ALM and BRAM usage in a single measure as described in Section 4. Note the
logarithmic x-axis for TEA.

5.1. Fmax vs. Area

Using the results for the 2W/4R memories (Figure 6(a)) as an example, we observe that
the pure LE designs show a clear Fmax advantage for depths of up to 32 entries, losing
ground to LVT at 64 entries, and slowing down below LVT and XOR at 128 entries
and beyond. The TEA of LE designs grows rapidly: both LVT and XOR use less area,
in all cases, for depths greater than 16 entries. For depths up to 128 entries, the LVT
designs have better Fmax and TEA than XOR designs but then lose on both counts past
256 entries, having a somewhat lower Fmax and about twice the TEA of XOR designs
at greater depths due to multiplexing overhead and the increasing area of the live
value table itself. Overall, the pure LE approach benefits the smallest designs, the
LVT approach works best (or at least as well as XOR) for moderate design sizes, while
deeper designs save more area and gain more speed from the XOR approach.

5.2. BRAMs vs. ALMs

The rightmost figures of Figure 6 explode our TEA metric into the actual numbers
of BRAMs and ALMs consumed by the LVT and XOR designs—note both logarith-
mic axes. Using Figure 6(b) as an example, the two designs clearly exhibit resource
diversity, with XOR designs consuming far fewer ALMs but more BRAMs than the

ACM Transactions on Reconfigurable Technology and Systems, Vol. 7, No. 3, Article 16, Publication date: August 2014.

Composing Multi-Ported Memories on FPGAs 16:11

Fig. 6. Altera results: speed and area for LE, LVT, and XOR implementations of 2W/4R, 4W/8R, and
8W/16R memories of increasing depth (as will fit on the FPGA device). For each chart, we show the average
unrestricted Fmax versus average total equivalent area (on the left), as well as BRAM usage versus averaged
ALM usage (on the right). The dotted line shows the 550 MHz restricted Fmax for unidirectional designs
using BRAM running in simple dual-port mode.

corresponding LVT designs. Hence, the relative availability of ALMs or BRAMs in a
given encompassing design plays a large role in the selection of the best choice of
multi-ported memory implementation. However, the number of BRAMS used remains
constant for both designs over depths of 2 to 256 entries, reflecting the native capacity

ACM Transactions on Reconfigurable Technology and Systems, Vol. 7, No. 3, Article 16, Publication date: August 2014.

16:12 C. E. LaForest et al.

of each BRAM. The number of ALMs used by XOR memories grows very slowly as
memory depth increases, since ALMs implement the XOR operations that do not widen
as memory depth increases3, as well as forwarding logic that grows linearly with the
number of BRAMs rather than depth. In contrast, the number of ALMs used by LVT
memories grows quickly since ALMs implement the live value table (itself a pure LE
memory that scales poorly with depth) and the read port multiplexers, whose number
of inputs increases linearly with the number of BRAMs used. Finally, XOR designs
consume more BRAMs than the corresponding LVT designs due to the extra replicated
memories required to support the write port XOR operations. For example, at 8192
entries the XOR design consumes 25% more BRAMs than the LVT design.

5.3. Increasing Ports

Figures 6(c)–(f) plot the same results previously discussed, but for 4W/8R and 8W/16R
memories that show similar overall trends as the 2W/4R memories. For memories
having more than 256 entries, the XOR designs consume less TEA with the relative
savings increasing with the number of entries. For example, for 2W/4R 8192-entry
memories the XOR design is 51% of the area of the LVT design. This TEA difference
persists in 4W/8R and 8W/16R memories. As the number of ports increases, XOR
designs become comparatively slower than LVT designs at shallower depths, due to
the initial overhead of write port XOR operations.

The characteristics of pure LE designs become increasingly irregular as the number
of ports increases. For example, at 8W/16R ports, the Fmax of the 128-deep pure LE de-
sign unexpectedly increases due to the impact of multiplexer restructuring by the CAD
tools. Disabling that optimization for this case yields the alternate 128 NMR data point
(on the dotted line) that follows the expected curve. However, also at 8W/16R ports, the
TEA of the shallowest (2 to 32 entries) pure LE designs becomes considerably smaller
than the equivalent LVT and XOR designs. Contrary to designs that use block RAMs,
pure LE designs do not increase the amount of internal data replication as the number
of ports increases, but only add more input/output multiplexing and registering.

Finally, Figure 6(f) shows that, although the ALM and BRAM usage of the LVT and
XOR designs increases in proportion to the product of the number of read and write
ports (e.g., going from 2W/4R to 4W/8R quadruples the resources required for a memory
of the same depth), the relative proportions and trends remain unchanged.

5.4. Navigating the Design Space

A system designer would ask “Which memory design should I use given my con-
straints?” To summarize the design space, we list in Figure 7 the design that, for each
memory depth, minimizes delay (i.e., has the highest Fmax), the number of ALMs used,
or the number of BRAMs used, displayed for: (a) 2W/4R, (b) 4W/8R, and (c) 8W/16R
memories. We consider results within 5% of each other as effectively equal, due to
normal CAD variations, and label them as such by listing all equal designs.

Overall, pure LE designs have the highest speed for memories of less than 64 entries,
regardless of port count. LVT designs initially (e.g., at 2W/4R ports) fill a narrow depth
range for best speed between the pure LE and XOR designs, but this range grows as
the number of port increases. The trend reverses for area: as the port count increases,
pure LE memories gradually use relatively fewer ALMs (compared to LVT designs) for
shallow memories since they do not replicate memory. In all cases, the LVT designs
use the least number of BRAMs. The properties of XOR memories change little with

3We include, but do not analyze, the area contribution of the multiplexers automatically created by the CAD
tool to unite multiple BRAMs into a single deeper/wider memory bank.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 7, No. 3, Article 16, Publication date: August 2014.

Composing Multi-Ported Memories on FPGAs 16:13

Fig. 7. Altera design space navigation: for each memory depth, we list the design that minimizes delay (i.e.,
has the highest Fmax), the number of ALMs used, or the number of BRAMs used, for (a) 2W/4R; (b) 4W/8R;
(c) 8W/16R memories. We consider results within 5% as “equal” and then list multiple designs.

the number of ports; however, running out of BRAMs at shallower depths limits our
analysis.

6. COMPARING PURE LE, LVT, AND XOR DESIGNS (XILINX)

In this section, we repeat our evaluation of pure LE, LVT, and XOR designs in the Xilinx
environment. We target Virtex-6 FPGAs as the most similar to the Altera Stratix IV
devices measured in the previous section. We describe the Virtex-6 BRAMs, our CAD
flow, our method of measurement, and the results. However, we cannot chart the TEA
since we do not have any data about the area of the Virtex-6 BRAMs.

6.1. Virtex-6 Slices and BRAMs

We use Xilinx ISE 14.1 to target the Virtex-6 XC6VHX380T FPGA, a device of the highest
available speed grade and containing 768 36Kb BRAMs and 59,760 slices. The slice
is the Virtex-6 standard logic element, analogous to Altera’s ALM. A Virtex-6 slice
contains four 6-input lookup tables and eight registers, as well as multiplexers and
carry logic.

Virtex-6 BRAMs have a capacity of 36Kbits configurable to various word widths and
depths and can also function as two independent 18Kbit BRAMs. For example, at a
width of 32 bits (which we assume throughout), a BRAM holds 1024 words when config-
ured in simple dual-port mode (one fixed read port and one fixed write port). To ensure
that Xilinx implementations remain black-box equivalent to the Altera implementa-
tions, we must configure the BRAMs into read-first mode, where a read returns the
old value of a location even if there is a write to that same location in that same cycle,
and then ensure the CAD tools automatically generate forwarding logic between the
write and read ports. In read-first mode, BRAMs have a published maximum operating
frequency of 525 MHz for Virtex-6 devices of the highest speed grade [Xilinx 2012].

6.2. CAD Flow

We configured the synthesis process to favor speed over area. We measured all designs
within a test harness identical to that described in Section 4. We enabled all relevant
optimizations except for those allowing optimization across hierarchical boundaries
(e.g., register retiming), since this adjustment yielded better results. We report the
worst-case Fmax (slow corner/high temperature) for the default range of die tempera-
tures of 0 to 85◦C.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 7, No. 3, Article 16, Publication date: August 2014.

16:14 C. E. LaForest et al.

When measuring the Fmax of a design in ISE, we must choose the target frequency
carefully: too-high a target results in a significantly slower design than a target closer
to the actual achievable Fmax; furthermore, ISE will not surpass a significantly lower
target frequency. Hence, for each design, we perform a process similar to a bisection
search for the best achievable frequency: (i) the initial run uses a target frequency equal
to that of the limiting component (525MHz for BRAM-based designs, 800 MHz for pure
LE designs); (ii) the following run targets the average of the previous target frequency
and the Fmax of the previous run; (iii) we repeat this process until the resulting Fmax lies
within 10% of (or just surpasses) the target frequency. We then use this final frequency
target for the ten seed runs used to compute the reported average speed and area of
the design.

6.3. Results

Figure 8 shows, in tabular form, the CAD results for Xilinx FPGAs for all three im-
plementations of multi-ported memories (pure LE, LVT, and XOR) with varying num-
bers of ports (2W/4R, 4W/8R, 8W/16R) and memory depths (2 to 8129, as fits on the
device). For each design point we report Fmax (measured in MHz), the number of 36Kbit
BRAMs used, and the number of slices used. We had to omit some of the deeper memo-
ries (e.g., 2K and 4K 4W/8R LVT and 128-deep 4W/8R pure LE) that conceivably should
have fit, due to anomalously large place-and-route times that made their exploration
impractical.

Based on these CAD results, Figure 9 lists, for each port configuration and depth,
the design that minimizes delay (i.e., has the highest Fmax), the number of slices used,
or the number of BRAMs used. Similar to the Altera results and as expected, the LVT
design minimizes the number of BRAMs used for all port and depth configurations. The
XOR design shows a remarkably stable area (and therefore speed) as depth increases,
regardless of port count.

For 2W/4R memories, the minimum delay crosses over from pure LE to LVT at depth
32 and to XOR at depth 1024. All three designs have very close initial (depths 2 to 4)
slice counts, but the area of the pure LE design expands rapidly as depth increases. The
64-deep pure LE design shows anomalously high speed and low area, contrary to its
expected 250MHz speed and 6000-slices area, when approximated from the neighboring
32- and 128-deep results. This anomaly either originates from the CAD tools or from
an unexpected interaction between the pure LE design and the architecture of the
underlying FPGA device.

For 4W/8R memories, the minimum delay crossovers move down to half their depths
at 2W/4R: 16 for LE-to-LVT and 512 for LVT-to-XOR. However, contrary to the 2W/4R
case, the pure LE design initially (depths 4 to 8) has the lowest slice count instead
of LVT since the former does not replicate storage as the number of ports increases,
contrary to the LVT and XOR designs. However, the pure LE’s multiplexing overhead
rapidly undoes this advantage as depth increases. The multiplexing overhead of the
pure LE design also shows up again when we increase the ports to 8W/16R: although
the LVT-to-XOR delay crossover moves down as expected from depth 512 to 256, the
LE-to-LVT delay crossover returns to 32 due to the high initial slice count of the pure
LE design.

7. MEMORIES WITH BIDIRECTIONAL PORTS (ALTERA)

All of the memory designs considered so far implement unidirectional ports where we
configure each port at design time for either only reading or writing. In this section,
we describe and evaluate multi-ported memories with bidirectional ports where each
port can perform a read or a write dynamically selected at each cycle.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 7, No. 3, Article 16, Publication date: August 2014.

Composing Multi-Ported Memories on FPGAs 16:15

Fig. 8. CAD results on a Xilinx FPGA for multi-ported memories of varying implementation (pure LE, LVT,
and XOR) over varying numbers of ports (2W/4R, 4W/8R, 8W/16R) and memory depths. For each design
point we report the average Fmax (measured in MHz), the number of 36Kbit BRAMs used, and the average
number of slices used.

Similar to the unidirectional memories we presented in the previous sections, we
can build bidirectional memories using only logic elements (ALMs) and also compose
larger memories more effectively using BRAMs. The initial work by Choi et al. [2012]
presents a memory design having bidirectional ports based on an LVT approach. For
convenience, we provide a brief description of that design here.

Figure 10(a) shows a 3-ported bidirectional LVT-based memory. Basically, the design
has each possible pair of ports share a BRAM. Since there are three ports, there are
three possible port pairs and hence the design requires three BRAMs. We configure
each BRAM in true dual-port mode such that each port can dynamically switch from
reading to writing each cycle. Note that a minimum clock-pulse width requirement for
BRAMs running in true dual-port mode restricts the actual Fmax to 375MHz on Stratix
IV devices. For each port, a Live Value Table (LVT) composed of logic elements (ALMs)

ACM Transactions on Reconfigurable Technology and Systems, Vol. 7, No. 3, Article 16, Publication date: August 2014.

16:16 C. E. LaForest et al.

Fig. 9. Xilinx design space navigation: for each memory depth, we list the design that minimizes delay (i.e.,
has the highest Fmax), the number of slices used, or the number of BRAMs used, for (a) 2W/4R; (b) 4W/8R;
(c) 8W/16R memories. We consider results within 5% as equal and list multiple designs in such cases.

Fig. 10. LVT-based bidirectional multi-ported memory designs: (a) a 3-port design, and (b) a generalized
n-port design. Note that these diagrams show only the data lines, without address wires.

tracks which of its associated BRAMs holds the most recent value for a given location.
As before, we must implement the LVT as a multi-ported memory, in this case with
three read ports and three write ports.

Figure 10(b) shows a generalized bidirectional memory supporting n ports. The de-
sign requires n(n − 1)/2 BRAMs, enough such that one BRAM connects together one
of all possible port pairs, and also requires an LVT with n read and write ports, itself
driving n output multiplexers each having n − 1 inputs.

7.1. Results

In Figure 11, we compare the Fmax and TEA for both pure LE and LVT-based designs
having a range of depths and supporting two contrasting numbers of ports: (a) 4 ports
and (b) 14 ports. For 4-port memories, the pure LE designs have better Fmax and TEA
for depths of 2 and 4. Beyond 4-deep, the LVT-based designs have better Fmax and
TEA. For 14-port memories, pure LE designs have the lowest TEA for up to 16-deep
memories, beyond which the LVT-based designs prevail.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 7, No. 3, Article 16, Publication date: August 2014.

Composing Multi-Ported Memories on FPGAs 16:17

Fig. 11. Speed and area for LVT-based and pure LE implementations of bidirectional memories of increasing
depth for designs with (a) 4 ports; (b) 14 ports. The the dotted line indicates the 375MHz restricted Fmax for
BRAM running in true dual-port mode on Stratix IV devices.

Fig. 12. Speed and area results for LVT-based bidirectional memories with 3 to 16 ports and depths ranging
from 2 up to the maximum depth that fits the target device. We label each series as nports mK to indicate
the number (n) of ports and the maximum (m) depth in kilo-words (K) for that design. Note that a minimum
clock-pulse width requirement for BRAMs running in true dual-port mode on Stratix IV devices restricts the
actual Fmax to 375MHz.

In Figure 12, we plot the Fmax and TEA for LVT-based bidirectional memories with
3 to 16 ports and depths ranging from 2 up to the maximum depth that fits the target
Altera device (specified in Section 4.2). We label each series as nports mK to indicate the
number (n) of ports and the maximum (m) depth in kilo-words (K) for that design. For
example, the 3-port design can fit up to 4K entries, while the 16-port design can fit only
up to 1K entries. The resulting frequency/area result space shows a reasonably regular
and predictable trend, with Fmax decreasing and TEA increasing with memory depth
for each design. The incremental cost of adding each additional port diminishes with
the total number of ports. At the greatest depths, the Fmax of most designs converges
to around 150 MHz.

8. COMPARING UNIDIRECTIONAL AND BIDIRECTIONAL DESIGNS (ALTERA)

In this section, we compare the speed and area of unidirectional and bidirectional
designs on Altera devices. We compare the designs in two ways: (i) memories with
the same total number of ports, under the assumption that a unidirectional memory
implements a specialization of a bidirectional memory based on actual memory access

ACM Transactions on Reconfigurable Technology and Systems, Vol. 7, No. 3, Article 16, Publication date: August 2014.

16:18 C. E. LaForest et al.

patterns, and (ii) memories with the same minimum equivalent read/write capacity,
where a unidirectional nWnR memory can support the same read/write access patterns
as an n-port bidirectional memory in the worst case, as well as a greater number of
simultaneous reads and writes in the best case.

Figure 13 shows speed and area comparisons of: (i) bidirectional LVT memories
against unidirectional LVT and XOR memories with the same total number of ports
((a) 6 ports versus 2W4R; (c) 12 ports versus 4W8R; and (e) 24 ports versus 8W16R) and
(ii) between bidirectional and unidirectional LVT memories with the same minimum
equivalent read/write capacity ((b) 4 ports versus 4W4R; (d) 8 ports versus 8W8R;
(f) 12 ports versus 12W12R). The labels denote the depth of each memory design
point, and we excluded pure LE designs for clarity. We report the unrestricted Fmax
of all designs, but frequency is actually restricted by the minimum clock-pulse widths
accepted by different BRAMs configurations: 550MHz for simple dual-port BRAMs used
in unidirectional memories and 375MHz for true dual-port BRAMs used in bidirectional
memories.

8.1. Same Total Number of Ports

When looking at Figures 13(a), (c), and (e) for depths exceeding a single BRAM
(256 words), bidirectional designs run about 100 to 150MHz slower than unidirec-
tional LVT designs of the same depth. Unfortunately, the 375MHz clock-pulse width
restrictions on true dual-port BRAMs prevent high speeds at depths of 32 words or less,
which appear to exceed that of unidirectional XOR memories, from ever appearing in
actual use.

Regardless of any speed increase, replacing a bidirectional memory with an equiv-
alent unidirectional one reduces area to a much greater degree. For example, when
replacing a 4096-word 6-port bidirectional memory with a unidirectional 2W4R LVT
or XOR memory, the area reduces 4.9x and 8.8x, respectively. A designer could actu-
ally overprovision the number of unidirectional ports and still save area: compared to
the same 4096-word 6-port bidirectional memory, unidirectional 4W8R LVT and XOR
memories reduce area by 7.9% and 2.1x, respectively, while still exceeding the Fmax of
the original bidirectional memory.

8.2. Same Minimum Equivalent Read/Write Capacity

In this experiment we overprovision unidirectional memories to have n read and n
write ports, to compare with an n-port bidirectional one. In Figures 13(b), (d), and (f) we
observe that, for memories of depth 64 and shallower, the area of the BRAMs dominates
and thus bidirectional memories are smaller due to their lower BRAM count: n(n−1)/2
versus n2 for n ports. Since bidirectional memories are actually limited to a frequency
of 375MHz (due to their use of true dual-port BRAMs), the corresponding LVT designs
have a frequency advantage but a TEA disadvantage compared to bidirectional.

9. MODELING AREA USAGE (ALTERA)

In this section, we present a predictive model for the Total Equivalent Area (TEA) of
our multi-ported memories on the Altera platform. The same model, using different
coefficients, accurately predicts the TEA of unidirectional and bidirectional LVT
memories, as well as unidirectional XOR memories. We found the equation and its
coefficients by applying the pyeq2 curve-fitting library [Phillips 2012] to our actual
area data, resulting in the following equation:

TEA = a + b ∗ ports + c ∗ depth + d ∗ ports2 + e ∗ ports ∗ depth. (1)

We fitted the curve to the lowest total absolute error, equally weighing all points.
We use port count and memory depth as our independent variables, as the port count

ACM Transactions on Reconfigurable Technology and Systems, Vol. 7, No. 3, Article 16, Publication date: August 2014.

Composing Multi-Ported Memories on FPGAs 16:19

Fig. 13. Speed and area comparison of bidirectional LVT memories against unidirectional LVT and XOR
memories with the same total number of ports: (a) 6 ports versus 2W4R; (c) 12 ports versus 4W8R;
(e) 24 ports versus 8W16R, and between bidirectional and unidirectional LVT memories with the same
minimum equivalent read/write capacity: (b) 4 ports versus 4W4R; (d) 8 ports versus 8W8R; (f) 12 ports
versus 12W12R. The labels denote the depth of each memory. We report the unrestricted Fmax of all de-
signs, but the minimum clock-pulse widths accepted by different BRAM configurations (indicated by dotted
lines) restrict the actual operating frequencies: 550MHz for simple dual-port BRAMs used in unidirectional
memories and 375MHz for true dual-port BRAMs used in bidirectional memories.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 7, No. 3, Article 16, Publication date: August 2014.

16:20 C. E. LaForest et al.

Fig. 14. Total Equivalent Area (TEA) usage model for unidirectional and bidirectional multi-ported mem-
ory designs. Solid lines denote the original data from our experiments, while the dotted lines show the
corresponding output of the area model. Most predicted points lie within 10% of the original data.

affects area quadratically and multiplies the impact of depth. For bidirectional designs,
the port count refers to the total number of bidirectional ports, while for unidirectional
designs, the port count refers to the number of read ports. Thus the given coefficients
only apply to unidirectional memories with a 2:1 ratio of read ports to write ports.
We manually removed the quadratic-depth term since area does not have a quadratic
relationship to depth: A near-zero coefficient introduces insignificant error even at
large memory depths.

Figure 15 lists the resulting coefficients for each memory design as applied to Eq. (1),
while Figure 14 compares the predicted TEA to the original data. Solid lines denote
the original data from our experiments, while the dotted lines show the corresponding
output of the area model. Most predicted points lie within 10% of the original data. The
negative linear depth and port coefficients act as corrections to the dominating ports2

and ports ∗ depth terms. Since this area model views the CAD tool as a black box, we
expect this model to only remain valid for Quartus 12.0, but serves as evidence that
such a model should be buildable for a given version.

10. RELATED WORK

Most prior work on multi-ported memories for FPGAs focuses on register files for soft
processors. Simple replication provides the 1W/2R register file required to support a
three-operand ISA [Yiannacouras et al. 2006; Carli 2008; Altera 2011; Fort et al. 2006;

ACM Transactions on Reconfigurable Technology and Systems, Vol. 7, No. 3, Article 16, Publication date: August 2014.

Composing Multi-Ported Memories on FPGAs 16:21

Fig. 15. Coefficients of the TEA usage model ALM = a + b∗ ports + c ∗ depth+ d∗ ports2 + e ∗ ports ∗ depth,
fitted to the lowest total absolute error.

Moussali et al. 2007]. Jones et al. [2005] implement a VLIW soft processor with a
multi-ported register file, implemented entirely in logic elements, that constituted the
operating frequency critical path. Saghir and Naous [2007] and Saghir et al. [2006]
also implement a multi-ported register file for a VLIW soft processor, but use only
replication and banking of BRAMs; however, their compiler must schedule register ac-
cesses to avoid conflicting reads and writes. Manjikian [2003] aggressively multipumps
memories by performing reads and writes on consecutive rising and falling clock edges
within a processor cycle—unfortunately, this design forces a multiple-phase clock on
the entire system.

More recently, Anjam et al. [2010a] successfully use a LVT-based register file for their
reconfigurable VLIW soft processor and add one more internal addressing bit to enable
splitting a 4W/8R register file into two independent 2W/4R instances. Later work by
Anjam et al. [2010b] removes the need for the LVT by avoiding write bank conflicts
via compile-time register renaming, but this solution requires more registers than are
architecturally visible.

Hayenga and Lipasti [2011] recently proposed adding an XOR-coded bank between two
regular banks of an ASIC register file design, such that the XOR-coded bank augments
the number of reads and writes supported. This approach cannot translate directly to
an FPGA as each bank has 2W/4R ports. Our XOR approach differs in that all banks use
XOR coding. Naresh et al. [2011] also recently proposed using XOR coding to implement
a crossbar that performs packet arbitration within a network-on-chip router.

11. CONCLUSIONS

In this article we described and evaluated, on both Altera and Xilinx FPGAs, several
approaches to implementing unidirectional multi-ported memories, namely pure LE,
Live Value Table (LVT) [LaForest and Steffan 2010], and XOR [LaForest et al. 2012],
along with an LVT approach to bidirectional memories [Choi et al. 2012]. We found the
following.

—Pure LE designs use no BRAMs, while the XOR designs use far less logic but more
BRAMs than the LVT designs, demonstrating a resource diversity between the three
designs that makes them each desirable for different use-cases.

—For the shallowest designs, building memories using pure LEs (ALMs or slices) often
results in the highest Fmax or best area usage.

—The LVT approach always uses the least BRAMs.
—For moderate-depth designs the LVT approach is generally the fastest.
—For Xilinx FPGAs, the XOR design almost always uses the fewest slices, while for

Altera FPGAs the pure LE, LVT, and XOR designs each use the fewest ALMs for
shallow-, moderate-, and high-depth designs, respectively.

—Unidirectional LVT memories that are overprovisioned to have the same read/write
capability are faster but larger than corresponding bidirectional memories.

—It is possible to build an accurate predictive area model for unidirectional and bidi-
rectional LVT memories.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 7, No. 3, Article 16, Publication date: August 2014.

16:22 C. E. LaForest et al.

To summarize, the pure LE, LVT, and XOR approaches are valuable and useful in
different situations, depending on the constraints and resource utilization (BRAMs
versus logic) of the enclosing design. Designers can use the results of this work as a
guide when choosing an appropriate multi-ported memory implementation.

12. FURTHER WORK

Although we revisited and expanded our work on multi-ported memories, we still have
many directions not yet explored.

Bidirectional XOR Memories. Although Choi et al. [2012] extended unidirectional
LVT memories to bidirectional ports in a fairly straightforward manner, we have not
yet determined how to implement bidirectional XOR memories. Given the different
logic and BRAM usage of XOR and LVT memories, bidirectional XOR memories might
provide another useful range of design trade-offs.

Multipumped LVT and XOR Memory Banks. We had previously explored multi-
pumped unidirectional LVT memories [LaForest and Steffan 2010], but we have not
yet explored the idea of multipumping the BRAMs by themselves (pure multipumping)
to increase their apparent number of ports, then using these BRAMs to build LVT and
XOR multi-ported memories. Using pure multipumped BRAMs would reduce the num-
ber of memory banks inside LVT and XOR memories, trading off speed for a reduction
in area.

Different Ratios of Read/Write Ports. In all our work to-date, we focus on unidirec-
tional memories with twice as many read ports as write ports. These configurations
fit computational applications such as processor register files, where logic uses two
operands to produce one result. We should study memories with other read/write port
ratios, inspired by different applications.

Stalling Designs. We also focus, to-date, on memories that do not stall: all reads and
writes complete in a single cycle. Lifting this restriction to trade off on area and speed,
for example, by having reads that may have to wait for an available memory bank,
would also be interesting to investigate and would match some applications such as
blocking L1 memory caches.

ACKNOWLEDGMENTS

We thank Vaughn Betz, Jonathan Rose, and Ketan Padalia for help with tuning Quartus and our test harness,
and the anonymous reviewers for constructive feedback. We also thank Jongsok Choi, Jason Anderson, and
co-authors [Choi et al. 2012] for inventing and providing the bidirectional ports design.

REFERENCES

Altera. 2003. Mercury programmable logic device family data sheet. http://www.altera.com/ds/archives/
dsmercury.pdf.

Altera. 2011. Nios II processor reference handbook. http://www.altera.com/literature/hb/nios2/n2cpu
nii5v1.pdf.

Altera. 2012. DC and switching characteristics for stratix iv devices. http://www.altera.com/literature/
hb/stratix-iv/stx4siv54001.pdf.

Fakhar Anjam, Muhammad Nadeem, and Stephan Wong. 2010a. A VLIW softcore processor with dynamically
adjustable issue-slots. In Proceedings of the International Conference on Field-Programmable Technology
(FPT’10). 393–398.

Fakhar Anjam, Stephan Wong, and Faisal F. Nadeem. 2010b. A multiported register file with register
renaming for configurable softcore VLIW processors. In Proceedings of the International Conference on
Field-Programmable Technology (FPT’10). 403–408.

Roberto Carli. 2008. Flexible mips soft processor architecture. http://hdl.handle.net/1721.1/41874.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 7, No. 3, Article 16, Publication date: August 2014.

Composing Multi-Ported Memories on FPGAs 16:23

Jongsok Choi, Kevin Nam, Andrew Canis, Jason Anderson, Stephan Brown, and Tomasz Czajkowski. 2012.
Impact of cache architecture on speed and area of FPGA-based processor/parallel-accelerator systems. In
Proceedings of the IEEE International Symposium on Field-Programmable Custom Computing Machines
(FCCM’12). 17–24.

Blair Fort, Davor Capalija, Zvonko G. Vranesic, and Stephan D. Brown. 2006. A multithreaded soft proces-
sor for SOPC area reduction. In Proceedings of the IEEE Symposium on Field-Programmable Custom
Computing Machines (FCCM’06). 131–142.

Mitchell Hayenga and Mikko Lipasti. 2011. The NOX router. In Proceedings of the 44th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO’11). 36–46.

Alex K. Jones, Raymond Hoare, Dara Kusic, Joshua Fazekas, and John Foster. 2005. An FPGA-based VLIW
processor with custom hardware execution. In Proceedings of the International Symposium on Field-
Programmable Gate Arrays (FPGA’05). 107–117.

Sachin Katti, Hariharan Rahul, Wenjun Hu, Dina Katabi, Muriel Medard, and Jon Crowcroft. 2006. XORs in
the air: Practical wireless network coding. In Proceedings of the Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communications (SIGCOMM’06). 243–254.

Charles Eric Laforest, Ming Gang Liu, Emma Rapati, and J. Gregory Steffan. 2012. Multi-ported memories
for FPGAs via XOR. In Proceedings of the 20th Annual ACM/SIGDA International Symposium on Field
Programmable Gate Arrays (FPGA’12). 209–218.

Charles Eric Laforest and J. Gregory Steffan. 2010. Efficient multi-ported memories for FPGAs. In Proceed-
ings of the 18th Annual ACM/SIGDA International Symposium on Field Programmable Gate Arrays
(FPGA’10). 41–50.

Naraig Manjikian. 2003. Design issues for prototype implementation of a pipelined superscalar processor in
programmable logic. In Proceedings of the IEEE Pacific Rim Conference on Communications, Computers
and Signal Processing (PACRIM’03). 155–158.

Roger Moussali, Nabil Ghanem, and Mazen A. R. Saghir. 2007. Supporting multithreading in configurable
soft processor cores. In Proceedings of the International Conference on Compilers, Architecture, and
Synthesis for Embedded Systems (CASES’07). 155–159.

Vignyan Reddy Kothinti Naresh, David J. Palframan, and Mikko H. Lipasti. 2011. CRAM: Coded registers
for amplified multiporting. In Proceedings of the 44th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO’11). 196–205.

David A. Patterson, Garth Gibson, and Randy H. Katz. 1988. A case for redundant arrays of inexpensive
disks (raid). In Proceedings of the ACM SIGMOD International Conference on Management of Data
(SIGMOD’88). 109–116.

James R. Phillips. 2012. Py2eq curve-fitting library. http://code.google.com/p/pyeq2/.
Mazen Saghir and Rawan Naous. 2007. A configurable multi-ported register file architecture for soft proces-

sor cores. In Proceedings of the International Workshop on Applied Reconfigurable Computing (ARC’07).
Springer, 14–25.

Mazen A. R. Saghir, Mohamad El-Majzoub, and Patrick Akl. 2006. Datapath and ISA customization for soft
vliw processors. In Proceedings of the IEEE International Conference on Reconfigurable Computing and
FPGAs (ReConFig’06). 1–10.

Henry Wong, Vaughn Betz, and Jonathan Rose. 2011. Comparing FPGA vs. custom CMOS and the impact
on processor microarchitecture. In Proceedings of the 19th ACM/SIGDA International Symposium on
Field Programmable Gate Arrays (FPGA’11). 5–14.

Xilinx. 2012. Virtex-6 FPGA data sheet: DC and switching characteristics. http://www.xilinx.com/support/
documentation/data sheets/ds152.pdf.

Peter Yiannacouras, J. Gregory Steffan, and Jonathan Rose. 2006. Application-specific customization of soft
processor microarchitecture. In Proceedings of the ACM/SIGDA 14th International Symposium on Field
Programmable Gate Arrays (FPGA’06). 201–210.

Received August 2013; revised December 2013; accepted February 2014

ACM Transactions on Reconfigurable Technology and Systems, Vol. 7, No. 3, Article 16, Publication date: August 2014.

