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I. INTRODUCTION

Traditionally, imitation learning has focused on using iso-
lated demonstrations of a particular skill [3]. The demonstration
is usually provided in the form of kinesthetic teaching, which
requires the user to spend sufficient time to provide the right
training data. This constrained setup for imitation learning is
difficult to scale to real world scenarios, where robots have
to be able to execute a combination of different skills. To
learn these skills, the robots would require a large number
of robot-tailored demonstrations, since at least one isolated
demonstration has to be provided for every individual skill.

In order to improve the scalability of imitation learning, we
propose a framework that can learn to imitate skills from a set
of unstructured and unlabeled demonstrations of various tasks.

As a motivating example, consider a highly unstructured data
source, e.g. a video of a person cooking a meal. A complex
activity, such as cooking, involves a set of simpler skills such
as grasping, reaching, cutting, pouring, etc. In order to learn
from such data, three components are required: i) the ability to
map the image stream to state-action pairs that can be executed
by a robot, ii) the ability to segment the data into simple skills,
and iii) the ability to imitate each of the segmented skills. In
this work, we tackle the latter two components, leaving the
first one for future work.

In this paper, we present a novel imitation learning method
that learns a multi-modal stochastic policy, which is able
to imitate a number of automatically segmented tasks using
a set of unstructured and unlabeled demonstrations. Our
results indicate that the presented technique can separate the
demonstrations into sensible individual skills and imitate these
skills using a learned multi-modal policy.

II. MULTI-MODAL IMITATION LEARNING

The traditional imitation learning scenario considers a
problem of learning to imitate one skill from demonstrations.
The demonstrations represent samples from a single expert
policy πE1. In this work, we focus on an imitation learning
setup where we learn from unstructured and unlabelled demon-
strations of various tasks. The demonstrations come from a set
of expert policies πE1 , πE2 , . . . , πEk , where k can be unknown,
that optimize different reward functions/tasks. We refer to this
set of unstructured expert policies as a mixture of policies πE .
We aim to segment the demonstrations of these policies into
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separate tasks and learn a multi-modal policy that imitates all
of them.

To be able to learn multi-modal policy distributions, we
augment the policy input with a latent intention i distributed
by a categorical or uniform distribution p(i), similar to [1].
The goal of the intention variable is to select a specific mode
of the policy, which corresponds to one of the skills presented
in the demonstrations. The resulting policy can be expressed
as πi(a|s, i) = p(i|s, a)π

i(a|s)
p(i) .

We augment the trajectory τ to include the latent in-
tention as τi = (s0, a0, i0, ...sT , aT , iT ). The resulting re-
ward of the trajectory with the latent intention is R(τi) =∑T

t=0 γ
tR(st, at, it). R(a, s, i) is a reward function that

depends on the latent intention i as we have multiple
demonstrations that optimize different reward functions
for different tasks. The expected discounted reward is
equal to: Eπiθ [R(τi)] =

∫
R(τi)π

i
θ(τi)dτi where πθ(τi) =

p0(s0)
∏T−1
t=0 P (st+1|st, at)πiθ(at|st, it)p(it).

Here, we show an extension of the derivation presented in [2]
for a policy πi(a|s, i) augmented with the latent intention
variable i, which uses demonstrations from a set of expert
policies πE . We are aiming at maximum entropy policies
that can be determined from the latent intention variable i.
Accordingly, we transform the original max-entropy inverse
reinforcement learning (IRL) problem [5] to reflect this goal:
maxR

(
maxπi H(πi(a|s))−H(πi(a|s, i)) + EπiR(s, a, i)

)
− EπER(s, a, i). This objective reflects our goal: we aim to
obtain a multi-modal policy that has a high entropy without
any given intention, but it collapses to a particular task when
the intention is specified. Analogously to the solution for a
single expert policy presented in [2], this optimization objective
results in the optimization of the generative adversarial imitation
learning network with the state-action pairs (s, a) being
sampled from a set of expert policies πE :

max
θ

min
w

Ei∼p(i),(s,a)∼πiθ [log(Dw(s, a))] (1)

+ E(s,a)∼πE [1− log(Dw(s, a))]

+ λHH(πiθ(a|s))− λIH(πiθ(a|s, i)),

where λI , λH correspond to the weighting parameters on the
respective objectives. The resulting entropy H(πiθ(a|s, i)) term
can be expressed as

H(πiθ(a|s, i)) = Ei∼p(i),(s,a)∼πiθ (− log(πiθ(a|s, i)) (2)

= −Ei∼p(i),(s,a)∼πiθ log(p(i|s, a)) +H(πiθ(a|s))−H(i),



where H(i) is a constant that does not influence the op-
timization. This results in the same optimization objec-
tive as for the single expert policy [2] with an additional
term λIEi∼p(i),(s,a)∼πiθ log(p(i|s, a)) responsible for reward-
ing state-action pairs that make the latent intention inference
easier. We refer to this cost as the latent intention cost and
represent p(i|s, a) with a neural network.

III. EXPERIMENTS

Reacher The actuator is a 2-DoF arm attached at the center
of the scene. There are two targets placed at random positions
throughout the environment. The goal of the task is, given a
data set of reaching motions to random targets, to discover the
dependency of the target selection on the intention and learn
a policy that is capable of reaching different targets based on
the specified intention input.

Walker-2D The Walker-2D is a 6-DoF bipedal robot consist-
ing of two legs and feet attached to a common base. The goal
of this task is to learn a policy that can switch between three
different behaviors dependent on the discovered intentions:
running forward, running backward and jumping. We use
TRPO [4] to train single expert policies and create a combined
data set of all three behaviors that is used to train a multi-modal
policy using our imitation framework.

Humanoid Humanoid is a high-dimensional robot with 17
degrees of freedom. Similar to Walker-2D the goal of the task is
to be able to discover three different policies: running forward,
running backward and balancing, from the combined expert
demonstrations of all of them.

The performance of our method in all of these setups can
be seen in our supplementary video: http://sites.google.com/
view/nips17intentiongan.

We first evaluate the influence of the latent intention cost on
the Reacher task. For these experiments, we use a categorical
intention distribution with the number of categories equal to
the number of targets.

To demonstrate the development of different intentions, in
Fig. 1 (left) we present the Reacher rewards over training
iterations for different intention variables. When the latent
intention cost is included, (Fig. 1-1), the separation of different
skills for different intentions starts to emerge around the 1000-
th iteration and leads to a multi-modal policy that, given the
intention value, consistently reaches the target associated with
that intention. In the case of the standard imitation learning
GAN setup (Fig. 1-2), the network learns how to imitate
reaching only one of the targets for both intention values.

We also seek to further understand whether our model ex-
tends to segmenting and imitating policies that perform different
tasks. In particular, we evaluate whether our framework is able
to learn a multi-modal policy on the Walker-2D task. The results
are depicted in Fig. 2 (left). The additional latent intention cost
results in a policy that is able to autonomously segment and
mimic all three behaviors and achieve a similar performance to
the expert policies (Fig. 2-1). Different intention variable values
correspond to different expert policies: 0 - running forwards, 1
- jumping, and 2 - running backwards. The imitation learning

Fig. 1. Rewards of different Reacher policies for 2 targets for different
intention values over the training iterations with (1) and without (2) the latent
intention cost.

Fig. 2. Top: Rewards of Walker-2D policies for different intention values
over the training iterations with (1) and without (2) the latent intention cost.
Bottom: Rewards of Humanoid policies for different intention values over the
training iterations with (3) and without (4) the latent intention cost.

GAN method is shown as a baseline in Fig. 2-2. The results
show that the policy collapses to a single mode, where all
different intention variable values correspond to the jumping
behavior, ignoring the demonstrations of the other two skills.

To test if our multi-modal imitation learning framework
scales to high-dimensional tasks, we evaluate it in the Hu-
manoid environment. Fig. 2 (right) shows the rewards obtained
for different values of the intention variable. Similarly to
Walker-2D, the latent intention cost enables the neural network
to segment the tasks and learn a multi-modal imitation policy.
In this case, however, due to the high dimensionality of the
task, the resulting policy is able to mimic running forwards
and balancing policies almost as well as the experts, but it
achieves a suboptimal performance on the running backwards
task (Fig. 2-3). The imitation learning GAN baseline collapses
to a uni-modal policy that maps all the intention values to a
balancing behavior (Fig. 2-4).

IV. CONCLUSIONS

We present a novel imitation learning method that learns a
multi-modal stochastic policy, which is able to imitate a number
of automatically segmented tasks using a set of unstructured
and unlabeled demonstrations. The presented approach learns
the notion of intention and is able to perform different tasks
based on the policy intention input.

http://sites.google.com/view/nips17intentiongan
http://sites.google.com/view/nips17intentiongan
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