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Abstract—Reinforcement learning has seen significant progress
recently, solving complex tasks such as Atari games and Go.
When combined with deep learning, model-free methods are able
to learn directly from high-dimensional observations with a scalar
reward. However, learning only from this often sparse reinforce-
ment signal requires a sample complexity that is prohibitively
high for direct application to robotic problems. Alternatively,
imitation learning can significantly reduce the sample complexity
by imitating the actions of a teacher. However, imitation learning
can suffer from having suboptimal teachers and their supervision
is usually expensive. In practice, we are often willing to solicit
some (possibly suboptimal) supervision in exchange for shorter
training time. In this work, we propose a novel framework
for integrating reinforcement and supervision by introducing a
query action. Our framework extends the reinforcement learning
framework by allowing student agents to actively seek supervision
from a teacher in the form of primitive actions. Furthermore,
we add an explicit query cost when querying the teacher, which
allows for a trade-off between sample complexity and the cost of
teacher supervision. In addition, we propose a Q-learning solution
based on the options framework.

I. INTRODUCTION

Reinforcement learning (RL) and imitation learning (IL)
are intimately related as they both try to find some “good”
policy in a given interactive environment through learning,
but with different feedback signals available. In RL, a policy
is usually trained directly based upon reward feedback from
the environment, i.e., reinforcement. IL considers domains for
which the reward is unknown or otherwise difficult to specify,
and exploits a teacher’s actions in the same environment as
supervision to train the “student” policy. While the overt goal
is to imitate the given teacher’s actions, the ultimate goal is
to attain, if not surpass, the teacher’s performance.1 With this
perspective, we inquire what we can gain given access to both
the reward signal and a teacher’s supervision in the form of
primitive actions.

We propose a method based on the options framework [9]
that extends the student’s action set with a query action.
This enables the student to actively seek supervision as well
as estimate the value of querying the teacher in a given
scenario. In the next section, we will describe our method
in detail. Then, we will show describe some initial, proof-of-
concept experiments. Finally, we will discuss ongoing work
and directions for future work.

*These two authors contributed equally. The names were ordered randomly.
1In contrast, Judah et al. [5] treat imitation as the ultimate goal and instead

use simple manually constructed reward functions to aid IL.

II. METHOD

Problem Formulation
Following Sutton and Barto [8], we represent a Markov

decision process (MDP) as the tuple (S,A, P0, T, γ,R). Our
goal is to learn a “student” policy πs : S → A that attains
high reward in this MDP. Suppose that, during training, we
have access to a “teacher” policy πt : S → A. We can
then extend this MDP with an option [9] q = 〈S, πt, β〉
that queries the teacher, where S is the initiation set and
β : S → [0, 1] determines the termination probability at each
state. Additionally, we add a query cost c ≥ 0 to penalize
querying the teacher. Sutton et al. [9] show that the addition of
this option creates a semi-Markov decision process (SMDP)
and that the existence of an underlying MDP allows us to
learn about multiple options from the execution of one. During
training, this allows us to use the teacher’s demonstrations to
provide feedback to the student both on how it should act
and how to best utilize the teacher. This formulation can be
extended to include multiple teachers (each following different
policies) with different query costs. This is done by adding an
additional option for each teacher.

Intra-Option Q-Learning
If the query cost c > 0, then the SMDP and the original

MDP share the same set of optimal policies. Therefore, it is
sufficient to learn an optimal policy in the SMDP and use
that policy in the original MDP. To do this, we propose to use
intra-option Q-learning [9]. Intra-option Q-learning updates Q-
values using the one-step temporal difference update:

Q(st, o)← Q(st, o) + α[rt + γU(st+1, o)−Q(st, o)] (1)

where U(st, o) is the state-option value function:

U(s, o) = (1− βo(s))Q(s, o) + βo(s) max
o′∈O

Q(s, o′) (2)

This update is applied to all options (including primitive
actions) consistent with the action taken at time t. Therefore,
whenever the teacher is queried, this algorithm allows us
to update our estimates of both the query option and the
primitive actions taken by the teacher. In order to handle
high dimensional state spaces, we use function approximation
to model the student Q-function, i.e., the student Q-function
Q′(s, o; θ) is parametrized by some θ. At test time, we use
the same parameters θ and restrict the student policy to only
consider primitive actions:

πtest(s) = arg max
a∈A

Q′(s, a; θ) (3)



Fig. 1. Results on Pong comparing the fastest student to the fastest policy
without access to a teacher. The orange curve shows the episodic rewards
of the student when it is restricted to primitive actions. The turquoise curve
shows the training for a Q-Learning agent with the same hyper-parameters,
except it is not allowed to query a teacher. The dot on each curve represents
the point at which the environment was solved.

III. PRELIMINARY RESULTS

We evaluate our approach through a series of simulated
experiments with a previously trained agent serving as the
teacher. These experiments examine the efficiency of our
method in terms of both training speed and the amount of
teacher supervision needed, compared to the standard RL
methods without supervision. Currently, we have evaluated the
method on the cart-pole problem and the Atari game Pong [1],
both using the OpenAI Gym [2].

In order to study the training speed, we record the amount of
experience (measured by ticks) when the student first surpasses
a high performance threshold without help from the teacher.
In order to avoid high variance in this metric, we roll out
10 episodes and check the average performance against the
threshold. We consider the problem solved when the average
performance reaches 90% of the optimal reward. 2

In both environments, we observed that the student was
able to learn to achieve the optimal episodic rewards. In
the cart-pole problem, where we were able to perform more
experiments, most of the students stop querying and learn to
solve the problem on their own. Furthermore, the students
under a higher query cost are more likely to stop querying
sooner (see Fig. 2), which is what we expected.

In the cart-pole problem, we observe that the average
training speed of the student as measured by our metric is
about 16% faster than a similar model trained without a
teacher’s supervision. However, the large standard deviations
in both groups render the difference statistically insignificant.
In Pong, however, we find that the average training speed
of the student is 50% faster with teacher supervision. Even
though this result is based on a small sample size of 5, every
student was able to solve the environment faster than each
baseline policy. On average, the Pong students queried the
teacher 11000 times before solving the environment.

IV. DISCUSSION

There has been considerable recent work that leverages
teacher demonstrations as an initialization before training with

2We recognize the obvious limitation of this metric’s applicability in other
environments where the upper bound of attainable performance is unclear.

Fig. 2. Early results on Cart-pole problem. The number of total queries made
when the task is considered solved negatively correlates with the query cost.
Each dot corresponds to a different run with different query costs.

reinforcement, for example, AlphaGo’s policy was initialized
by supervised learning over recorded human Go plays [7].
Hester et al. [4] further studied an initialization technique
that relies only on an offline collection of recorded teacher
demonstrations. In our problem setting, we assume that an
online teacher can be queried by the student during training.
But unlike DAGGER [6], we do not query the online teacher’s
decisions on all of the states encountered by the student. In-
stead, we let the student decide when to query. This allows for
selective queries and possibly a smaller amount of supervision.
Our proposed problem framework is closely related to the
AskForHelp framework proposed by Clouse [3] which uses
a fixed query criterion on top of the Q-learning framework.

V. CONCLUSION AND FUTURE WORK

The initial results we obtained suggest that incorporating
supervision with reinforcement in our proposed framework
can help reduce training sample complexity. We also showed
that the “student” agent can learn a reasonable query policy
whose query frequency negatively correlates with query cost,
allowing practitioners to trade-off between sample complexity
and expert supervision.

Currently, we are continuing to experiment in more domains
and eventually hope to apply this technique to complex
robotics problems. We also aim to study in-depth the impact of
providing different amounts supervision in response to a query
action. So far, the impact of temporally extended sequences of
supervised actions is inconclusive and we suspect it depends
on the complexity of the task.

Besides improvements to our proposed method, we are
working to provide a more meaningful comparison with sev-
eral closely related methods (though not specifically designed
to solve our proposed SMDP), such as warm start from
imitating recorded teacher demonstrations [4] and using a fixed
query policy [3].
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