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I. INTRODUCTION

Recent advances in deep learning have enabled multiple suc-
cesses in learning manipulation policies from high dimensional
image data [2, 3]. Despite these successes, high dimensional
Learning from Demonstrations (LfD) raises an interesting
statistical challenge. In general, most LfD applications have
small or limited data sets due to the cost of collection. However,
high-dimensional state representation can require training deep
policies with potentially more parameters than the number of
available examples, which is concerning for generalization.

One approach to alleviate this challenge is to choose a
state representation that is sufficient to perform the task, but
is not unneccsarily large. By reducing the state space size,
we can reduce the parameters in the model and improve
generalization [8]. However, it is not clear in general, what
information is important for learning manipulation policies. For
example, if a robot wants to push objects should it consider
only object shape or also object texture? In this paper, we
explore various representations for the task of grasping in
clutter.

We specifically consider a form of grasping in clutter inspired
by the Amazon Picking Challenge [1]. A robot is shown a set
of of objects on a shelf and must clear a path to reach a goal
object. The robot’s perspective is from a moving eye-in-hand
viewpoint, shown in Fig. 1, which forces the robot to learn to
search for the object in high-dimensional image space. In our
setup, we experimentally find that reduce representations, such
as a binary image representation (shown in Fig 2B), can lead
to better generalization than standard RGB-D representations
taken from this viewpoint.

II. GRASPING IN CLUTTER SYSTEM

We used a Toyota HSR robot to perform the grasping
in clutter task. The objects, shown in Fig. 1, are common
household food items. The target object, a mustard bottle,
is placed behind the other objects and is occluded from the
robot’s viewpoint. Thus requiring the robot to search for the
goal object.

We collect demonstrations via tele-operation with an Xbox
controller. The robot’s motion is constrained to its mobile base,
which has three degrees of freedom translation and rotation,
orx, y and θ. During tele-operation the supervisor sends change
in position commands to these three degrees of freedom. During
a demonstration, RGB-D data is recorded from a primesense

Fig. 1: Experimental setup for grasping in clutter. A Toyata HSR robot uses its
arm to push obstacle objects out of the way to reach the goal object, which is
a mustard bottle.The robot’s policy for pushing object’s away is represented as
a neural network trained on images taken from the robot’s primesense camera.
The cropped viewpoint is of the image is shown in the orange box.

structured light sensor, which is mounted at its head. The
images are cropped to obtain the viewpoint shown in Fig. 2,
which is similar to an eye-in-hand view.

During data collection the four obstacle objects are rotated
in pose and relative position. We collected 60 demonstrations
from a human supervisor, where each demonstration ends once
the mustard bottle is clearly visible from the robot’s camera.
In total it took 1 hour and 10 minutes to collect the training
data.

Our learned policy class is a neural network architecture
consisting of a convolutional layer, a pooling layer and two
fully connected. The architecture is inspired by that used in
[2]. During training, we regress from the chosen state space
to the control vector, which is a change in position. Our loss
function is a squared euclidean loss. We trained the network
using Tensorflow on a Tesla K-40 GPU with a Momentum
optimization scheme.

III. STATE REPRESENTATIONS

We consider two techniques to reduce data needed for
learning: 1) changing the state space representation to reduce
the dimensionality and 2) providing synthetic data augmentation
to increase robustness to lighting changes.
Representations We consider six different representations for
the grasping in clutter task. The first representation is RGB
images, or full color, which has been shown to be sucessful
for manipulation tasks [4]. Another representation used for
grasping in clutter is a binary mask over the RGB image [2].
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Fig. 2: Different state representations applied to the images from the robot’s primesense camera: A) RGB color images. B) RGB images with a binary mask C)
Depth images and D) Grayscale images.

The proposed binary mask augments each channel of the image
by setting each pixel values to 255 or 0 based on whether that
pixel is above or below a specified threshold. We chose the
threshold of 180 based on manual tuning for high contrast. An
example image of the binary mask can be seen in Fig. 2B. We
also consider grayscale images, which also reduce the effective
state space of the RGB image.

In addition to color data, it has been common in the literature
to also include depth information [3], which can be obtained
from a structured light sensor. We consider both RGB-D states
spaces which are a 4 channel image and also a depth only
representation, which has been shown to be sufficient for
grasping [5]

Finally, instead of learning convolutional filters, we also
consider pre-trained convolutional layers from the VGG archi-
tecture trained for image classification on ImageNet [7]. Our
intuition is that natural images have common statistics and
features learned over a very diverse set may be sufficient for
the grasping in clutter task.
Data Augmentation Another technique that has been shown
to increase the robustness of the learned features is to add
artificial lighting changes to the training images. The intuition
is that by forcing the network to be robust to lighting changes
it may lead to a representation that have higher invariance to
small pixel perturbations.

We examine applying variations in lighting via modifying
intensity. During training of the network we apply these
variations to the training data, which increased the dataset
by 4x.

IV. EXPERIMENTS

We perform two experiments to test the generalization of
the state representations. The first is examining the error on a
held out test set and the second is validation on the physical
robot of the best state representation.
Representations In order to test generalization of the different
representations, we divided our 60 demonstration dataset into
48 demonstrations for the training set and 12 demonstrations
for test set, which corresponds to 20%. We then varied the
state space representation and trained each neural network for
a fixed 3000 iterations. We report the lowest squared euclidean
loss achieved during training in Table 1.

Our results suggest that the binary masks lead to better
generalization with 0.05 loss on test. However, VGG features

No D.A. D.A.
Train Test Train Test

VGG 0.002 0.06 0.05 0.06
RGB-D 0.03 0.06 0.04 0.07
Color 0.04 0.06 0.11 0.05
Gray 0.10 0.10 0.11 0.12
Depth 0.08 0.08 N.A. N.A.
Binary 0.03 0.05 0.07 0.07

TABLE I: Squared Euclidean error for different state representations on a
dataset of 60 demonstrations of grasping in clutter. VGG features with no Data
Augmentation (D.A.) achieve the lowest training error, while Binary masks
receive the lowest test error. Thus, suggesting binary masks can help increase
generalization.

are able to get much lower training error than the other state
representations. We found that data augmentation did not help
generalization. In general, the training error is higher with data
augmentation than without and subsequently the test error is
higher. A more expressive network may be needed to learn the
lighting invariance.
Physical Robot We next evaluated the network trained with
the binary masks on the physical robot. To determine success
of identifying the mustard, we use the Faster R-CNN, which is
trained to detect bottles on the Pascal VOC vision dataset [6].
During policy roll-out, we query the R-CNN at each timestep
to determine if the policy is successful. Once the mustard is
detected the robot leverages a motion planner to reach the
target object.

We evaluated the policy on 15 test configurations, which are
drawn from a similar initial state distribution as training. The
policy was successful 86% of time in retrieving the mustard.
The common failure modes appear to be due to the covariate
shift error, where the robot drifts from the demonstrations and
is unable to recover. In future work, we hope to explore how
injecting noise in the demonstrations can alleviate this problem.
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