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I. INTRODUCTION

Learning behavior from high-dimensional perceptual inputs
presents a challenge for all types of learning algorithms,
particularly when constrained by the amount of supervision
and experience that can realistically be collected on a real
robotic system. Typical visuomotor learning approaches start
from scratch for every new task, throwing away old experience
and disregarding supervision received for other tasks [4]. By
reusing experience and supervision across tasks, robots should
be able to amortize and significantly improve data efficiency,
requiring minimal supervision for new tasks. However, it is
not readily obvious how information should be shared across
tasks for faster learning]

In this work, we propose to combine meta-learning with
imitation, allowing the robot to reuse demonstration data
across tasks in order to learn a new, related task from a single
demonstration that specifies the task. Unlike prior one-shot
imitation learning methods [2], our approach learns a parame-
terized policy that can be adapted to different tasks rather than
a single policy with different input per task. As a result, our
model is more flexible while having fewer overall parameters.
Furthermore, unlike Duan et al. [2], we demonstrate one-
shot imitation from raw pixels. Other approaches to visual
imitation learning require large demonstration datasets [6} |1]
or experience to be collected by the robot [7} S]]

The primary contribution of this abstract is to demonstrate
an approach for one-shot imitation learning from raw pixels.
We evaluate our approach on a simulated planar reaching task
which entails reaching a target of a particular color, amid dis-
tractor objects of different colors. Our approach is able to learn
a policy that can adapt to new task variants using only one
video demonstration. Existing methods for one-shot imitation
learning have required tens of thousands of demonstrations
for meta-learning and only been applied to tasks with low-
dimensional state information [2]]. By employing a parameter-
efficient method for meta-learning, our approach both requires
many fewer demonstrations for meta-learning while also being
able to learn a new task from raw pixel inputs. With the ability
to learn from much smaller datasets, our method can feasibly
be applied to real robotic systems, which we plan to explore
in future work.

II. BACKGROUND: MODEL-AGNOSTIC META-LEARNING

Our goal is to learn a policy that can quickly adapt to new
tasks from a single demonstration of that task. To do so, we
will use meta-learning to train for quick adaptation across a

*Denotes equal contribution.

number of tasks, enabling generalization to new tasks. Because
we would like to learn visual policies without requiring
extreme amounts of demonstration data per task, we will use a
recently-proposed meta-learning algorithm that is parameter-
efficient: model-agnostic meta-learning (MAML) [3]. In this
section, we will provide an overview of MAML, which we
will combine with imitation learning in the next section.

MAML aims to learn the weights 6 of a model fy such
that standard gradient descent can make rapid progress on
new tasks 7 drawn from p(7), without overfitting to a
small number of examples. Because the method uses gradient
descent as the optimizer, it does not introduce any additional
parameters, making it more parameter-efficient than other
meta-learning methods. When adapting to a new task 7;, the
model’s parameters  become 6,. In MAML, the updated
parameter vector ¢} is computed using one or more gradient
descent updates on task 7;, i.e. 0, = 6 — aVoL7 (fg). For
simplicity of notation, we will consider one gradient update
for the rest of this section, but using multiple gradient updates
is a straightforward extension.

The model parameters are trained by optimizing for the
performance of fg, with respect to 6 across tasks sampled
from p(7), corresponding to the following problem:
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Note that the meta-optimization is performed over the model
parameters 6, whereas the objective is computed using the
updated model parameters ¢’. In effect, MAML aims to opti-
mize the model parameters such that one or a small number of
gradient steps on a new task will produce maximally effective
behavior on that task. The meta-optimization across tasks is
performed via stochastic gradient descent (SGD) with meta
step size (.

III. ONE-SHOT VISUAL IMITATION LEARNING

To use MAML with imitation learning, we collect a dataset
of demonstrations with at least two demonstrations per task.
In our experiments, a task will be defined as reaching a target
of a particular color, where the positions of the target and
distractors are randomized within a task. The input, x;, is
the agent’s observation at time ¢, e.g. an image, whereas the
output y; is the action taken at time ¢, e.g. torques applied to
the robot’s joints. We will denote a demonstration trajectory
as 7 := {X1,y1,...X7,yr}. We use a mean squared error loss
of the form:
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Fig. 1.
goal is to reach the red and green target on the left and right tasks respectively.

Two example tasks. As shown on the right of each image pair, the

We will primarily consider the one-shot case, where only a
single demonstration 7(/) is used for the gradient update.

During meta-training time, each meta-optimization step
entails the following: A batch of tasks is sampled and two
demonstrations are sampled per task. Using one of the demon-
strations, 6 is computed for each task 7; using Equation
Then, the other demonstration per task is used to compute the
gradient of the meta-objective by using Equation [I] with the
loss function [2] Finally, € is updated according to the gradient.

The result of meta-training is a policy that can be adapted
to new tasks using a single demonstration. Thus, at meta-test
time, a new task 7 is sampled, one demonstration for that task
is provided, and the model is updated to acquire a policy for
that task.

IV. EXPERIMENTS

Our goals with the experimental evaluation is to determine
(1) can we learn to learn a policy which maps from image
pixels to motor torques using a single demonstration of the
task? (2) how does the proposed approach perform compared
to existing methods and using varying dataset sizes?

We evaluate our method on family of planar reaching tasks,
as illustrated in Figure |1, where the goal of a particular task
is to reach a target of a particular color, amid distractors with
different colors. A policy roll-out is considered a success if it
comes within 0.05 distance of the goal. The input to the policy
includes the image observation, the arm joint angles, and end-
effector position. The policy output is the torques applied to
the two joints of the arm.

We optimized an expert policy using iLQG and collected
roll-outs from that expert as demonstrations, collecting several
demonstrations per task. At meta-test time, we evaluate the
policy on held-out colors and target positions. Note that
the one provided demonstration typically involves a different
target position than the trial.

We compare the proposed method to the following two
baselines (which were both proposed by Duan et al. [2]):

o random policy: A policy that outputs random actions
from a normal distribution with zero mean. For normal
distributions, we pick the variance that produces the best
results in each domain.

« contextual policy: A feedforward policy, which takes as
input the final image of the provided demonstration to
indicate the goal of the task. The current image is also
part of the input, while the action to take is the output.

o LSTM: A recurrent neural network which ingests the
provided demonstration and the current observation, and
outputs the current action, as proposed by Duan et al. [2].
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Fig. 2. One-shot success rate as a function of the meta-learning dataset size.

The baselines and the proposed approach are all trained
using the same dataset, with equal supervision. All three
methods use a convolutional neural network policy with 3
convolution layers of 40 3 x 3 filters each followed by 4 fully-
connected layers with hidden dimension 100. The recurrent
policy additionally has an LSTM with 2048 units that takes
as input the features from the final layer. All methods are
trained via a behavioral cloning objective (mean-squared error)
to the expert torque values, and using the Adam optimizer with
default hyperparameters and meta batch-size of 5 tasks. Our
policy with MAML uses 3 meta-gradient updates each with
step size 0.001. We also find it helpful to clip the meta-gradient
to lie in the interval [—10, 10] before applying it.

As shown in Figure 2] we find that our approach is able to
effectively learn how to adapt a visuomotor policy to new tasks
using only one demonstration. Furthermore, we confirm that
MAML provides significantly better data-efficiency than un-
constrained meta-learning methods that learn an optimization
strategy from scratch rather than utilizing gradient descent.

V. CONCLUSION

In this work, we proposed a method for one-shot visual
imitation learning using an efficient meta-learning method,
demonstrating the ability to learn new tasks from a single
video demonstration. Our approach compares favorably to
existing state-of-the-art approaches while using significantly
fewer demonstrations for meta-learning. Our experiments sug-
gest that the proposed approach can feasibly be applied to a
real robotic platform, which we plan to explore in future work.
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