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I. INTRODUCTION

A crucial capability of autonomous robots is their ability
to plan a sequence of actions to achieve their goals in the
visual world. In this work, we address the problem of visual
semantic planning: the task of predicting a sequence of
actions from visual observations. Rather than using tradi-
tional reinforcement learning approaches, we propose using
an optimal planner and imitation learning to train our agent.
Our experiments show near optimal results across a wide
range of tasks in the challenging THOR [6] environment. The
supplementary video can be seen at https://goo.gl/vXsbQP.

A. Visual Semantic Planning

Visual semantic planning (VSP) involves addressing sev-
eral challenging problems. For example, in the simple task of
putting a bowl in a microwave, a successful plan
involves finding the bowl, navigating to it, grabbing it, finding
and navigating to the microwave, opening the microwave, and
finally putting the bowl in the microwave. In this paper, we
address VSP as a policy learning problem. We focus on high-
level actions and do not take into account the low-level details
of motor control and motion planning. To address the large
state space and delayed rewards, we use imitation learning
with an optimal planner rather than reinforcement learning.

B. Related Work

Task planning: Task-level planning [2, 3] addresses the
problem of finding a high-level plan for performing a task.
These methods typically work with high-level formal lan-
guages and low-dimensional state spaces. In contrast, visual
semantic planning is particularly challenging due to the high
dimensionality and partial observability of the visual inputs.

Learning From Demonstration: Expert demonstrations, of-
ten performed by humans, offer a source of supervision in
tasks which must usually be learned with copious random
exploration. [4] presents an algorithm for efficiently using
human demonstration to learn complex policies. We differ
by using an optimal planner allowing us to cheaply “label”
infinitely many training examples.

II. METHOD
A. Interactive Framework
Our extended THOR [6] framework consists of 10 in-
dividual kitchen scenes. Each scene contains an average
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Fig. 1. An overview of the network architecture of our successor represen-
tation (SR) model. Our network takes in the current state as well as a specific
action and predicts an immediate reward 4 s as well as a discounted future
reward Qq,s, performing this evaluation for each action. The learned policy
7 takes the argmax over all @) values as its chosen action.

of 53 distinct objects. We interact with the environment
with seven high-level actions (navigate to, look up,
look down, open, close, pick up, put) which
each take an argument (e.g. open fridge). The combina-
tion of actions and arguments results in an average 80 actions
per scene.

B. Successor Representation

Successor representation (SR), proposed by Dayan [1]], uses
a value-based formulation for policy learning, differing from
traditional Q learning by factoring the value function into a
dot product of two components: a reward predictor vector w
and a predictive successor feature ¢(s,a). To derive the SR

formulation, we start by factoring the immediate rewards:
P(s,a)"w

(1)

where ¢(s, a) is a state-action feature. We expand the standard
Bellman equation using this reward factorization:
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Intuitively, the successor feature 1™ (s,a) summarizes the

environment dynamics under a policy 7. The reward predictor
vector w induces structure similar to an embedding task into
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Easy Medium Hard
Success Rate  Mean (o) Episode Length | Success Rate Mean (o) Episode Length | Success Rate Mean (o) Episode Length

Random Action 1.00 696.33 (744.71) 0.00 - 0.04 2827.08 (927.84)
A3C [5] 0.96 101.12 (151.04) 0.00 - 0.04 2674.29 (4370.40)
Basic IL 1.00 2.42 (0.70) 0.65 256.32 (700.78) 0.65 475.86 (806.42)

SR IL (ours) 1.00 2.70 (1.06) 0.80 32.32 (29.22) 0.65 34.25 (63.81)
Optimal planner 1.00 2.36 (1.04) 1.00 12.10 (6.16) 1.00 14.13 (9.09)

TABLE I

RESULTS OF EVALUATING THE MODEL ON THE EASY, MEDIUM, AND HARD TASKS. EACH TASK HAS A MAXIMUM OF 5,000 STEPS BEFORE FAILURE. FOR
EACH TASK, WE EVALUATE HOW MANY OUT OF THE 100 EPISODES WERE COMPLETED (SUCCESS RATE) AND THE MEAN AND STANDARD DEVIATION FOR
SUCCESSFUL EPISODE LENGTHS. FAILURES ARE NOT INCLUDED IN THE EPISODE LENGTH CALCULATIONS.

the reward functions. To utilize the successor decomposition,
we develop a neural network architecture to learn ¢, ¢ and
w, illustrated in Fig. [I]

C. Imitation Learning

Given a task, we generate a state-action trajectory:
T = {(SOa aO)a {(517 al)a LR (ST—la aT—l)’ (ST7 (Z))} 3)

using the planner starting from an initial state-action pair
(50, ag). Each state-action pair is associated with a true im-
mediate reward 7 , and a true Q value Q3 ,, computed using
the optimal plan. We use the mean squared loss function to
minimize the error of reward predictions:

T-1

1
L= T ;(r:,a - Zaw)2 + ( :,a - Zjaw)2

“4)

To fully explore the state space, we deviate from the optimal
plan with probability e. After every action, we recompute the
new optimal trajectory. Using this loss signal, we train the
whole SR network end-to-end on a large collection of state-
action pairs.

III. EXPERIMENTS
A. Quantitative Evaluation

We examine the effectiveness of our model and baseline
methods on a set of tasks that require three levels of planning
complexity. Easy tasks consist of a single navigate and
either an open or a close action. Medium tasks require
multiple objects to be collected from known locations. Hard
tasks require the agent to first find an object from an unknown
location, and move it to a target receptacle.

We compare our SR model with the state-of-the-art deep RL
model, A3C [5]] to establish a strong baseline for reinforcement
learning. We use the same architecture to obtain an imitation
learning baseline, trained with a softmax classifier to predict
the planner action given an input (Basic IL).

Table [] summarizes the results of these experiments. Pure
RL-based methods struggle with the medium and hard tasks
because the action space is so large that naive exploration
rarely, if ever, succeeds. Overall, the SR method outperforms
(or ties) the baselines across all three task difficulties.

B. Task Transfer

One benefit of the SR decomposition is its ability to transfer
to new tasks by retraining w while freezing the rest of the
network. We examine the sample efficiency of adapting a
trained SR model to multiple novel tasks within the same
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Fig. 2.  'We compare updating w with retraining the whole network for new
hard tasks in the same scene. By using successor features, we can quickly
learn an accurate policy for the new item. Bar charts correspond to the episode
success rates, and line graphs correspond to successful action rate.

scene. We take a policy for searching for a bowl and train a
new w for four additional items. Results are shown in Fig. 2]
By fine-tuning w, the model quickly adapts to new tasks.
In contrast, the model trained from scratch takes substantially
longer to converge. We also experiment with fine-tuning the
entire model, and it suffers from similar slow convergence.

IV. CONCLUSION

In this work, we presented a novel architecture using the
successor representation to train a visual semantic planner.
Using imitation learning on an optimal planner, we achieved
near-optimal results on complex planning procedures.
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