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Abstract—We propose to learn tasks directly from visual
demonstrations by learning to predict the effect of human and
robot actions on an environment. We enable a robot to physically
perform a human demonstrated task without knowledge of
the thought processes or actions of the human, only their
visually observable state transitions. We evaluate our approach
on two table-top, object manipulation tasks and demonstrate
generalisation to previously unseen states.

I. INTRODUCTION

Robots that can learn from human demonstrations are
unquestionably a desire of many roboticists. However, to be
useful in real world settings, some specific traits of any such
approach are required. Firstly, the robot should generalise
human demonstration sequences to unseen states; i.e. predict
the effect of a humans actions in states not visited during
the demonstrations. Secondly, human demonstrations should
be robot-agnostic; i.e. no knowledge or access to the target
robot is required to record task demonstrations. Thirdly, the
approach should be task-agnostic; i.e. the robot can learn new
tasks provided new demonstrations alone.

We propose to learn tasks directly from visual demonstrations
by learning to predict the effects of a humans actions on an
environment. Operating on visual demonstrations allows for a
wide range of avenues for obtaining human task demonstrations
and quite naturally leads to the setting of state as an RGB
image and task as sequences of RGB images.

II. LEARNING FROM DEMONSTRATION WITH RAW IMAGES

Let us assume a deterministic function πH : S → U
describes the actions ut ∈ U chosen by a human demonstrator
when in state st ∈ S, so that ut = πH(st). Let us also assume
the deterministic function πR : S→ A describes the actions
at ∈ A chosen by a robot when in state st ∈ S, so that
at = πR(st).

Our objective is to choose a policy πR that mimics πH .
Unlike many approaches to Learning from Demonstration, we
argue that the humans’ actions ut are unobservable by the
robot and potentially incompatible. To address this challenge,
we propose the following robot policy:

πR(st) = argmin
a
(i)
t

P̃ (st)	 Q̃(st,a
(i)) (1)

We define P : S → S as a deterministic predictive
model that models the humans state transitions such that
P (st) = argmaxst+1

p(st+1|st,πE). We also define Q :
S × A → S as an action-conditional deterministic predictive
model for the robots state transitions such that Q(st,at) =
argmaxst+1

q(st+1|st,at).
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Fig. 1. (a) The pushpull task involves moving the object left or right based
on its spatial location. (b) The movetopos task involves moving the object to
a specific location; the upper right-hand corner in our case.

The policy πR(st) executes the optimal action a∗t that
minimises the difference between the predicted effect of the
expert acting in state st, and the predicted effect of the agent
executing at in the current state. We write 	 above to indicate
a suitable difference metric on the state space S.

In this paper we utilise PredNet [2] to learn the approxima-
tions P̃ (st) and Q̃(st,a

(i)) and train it directly on raw images.
The state space S therefore is the space of RGB images, and
we show that a suitable metric to implement the 	 operator
is the mean squared error between the raw pixel values. We
choose to operate on raw images to maintain the robot-agnostic
and task-agnostic traits of our approach.

III. EXPERIMENTS

We demonstrate our approach on two table-top, single-object
manipulation tasks that demonstrate the desirable traits of our
approach. The first task requires the target object to be moved
to a target location and is referred to as movetopos. The second
task requires the target object to be moved in a specific direction
based on its spatial location and is referred to as pushpull.

For both tasks, the table was discretised into a 15x9 grid with
the distance the human and robot could move the object per
action equal. The state of the environment was captured with a
fixed overhead camera for both human and robot interactions.

A key component of our approach is to use the current
state of the environment as input for predicting the next state
if the human were to act. In practice, we found that our
predictor performed poorly under this restrictive setting. To
remedy this, we instead input the full sequence of robot-visited
states and found this greatly improved prediction performance.
Using the full sequence presumes that the sequence of human-
demonstrated states, and so the action spaces of the human and
robot, are compatible. For this reason, we set the action spaces
of the human and robot as U = A = {up, down, left, right}.



A. Next-frame prediction

Setting state as images allowed for leveraging work from the
computer vision community on next-frame video prediction
[2, 1, 3, 4, 5, 6, 7, 8]. The PredNet architecture was used herein
[2]. PredNet is comprised of a number of stacked modules that
attempt to predict the input to that module. PredNet is shown
to perform well on both synthetic and real world tasks and
can support variable length inputs at test time due to internal
recurrent layers.

B. Predicting what the human would do

We wish to approximate human task demonstrations with
PredNet. A small number of demonstrations were recorded
for each task as per Figure 1. Using the collected images,
one PredNet was trained for each task using similar hyper-
parameters to those reported by the networks authors in [2].

C. Predicting what the robots actions would do

We wish to approximate the results of a robot’s primitive
actions on the environment with PredNet. Specifically, we use
a separate PredNet to approximate each of the action-specific
predictive models Q(st,a

(i)) of the robot. Two demonstrations
were performed for each action from different starting locations.
Each demonstration involved the robot moving the object across
the table, repeatably applying the same action.

Note for both collecting the robot primitive training data
and implementing the approach on the robot, we require that
the robot arm be removed from the image of the scene. By
removing the robot arm, we remove any bias of the predictions
prescribing the robots joint configuration while performing the
task.

IV. RESULTS

We report the overall performance of our approach on our
two proposed tasks. For each task, we tested the system from
every possible start location, excluding their goal locations. We
define a trajectory as a sequence of steps the robot is allowed
to move the object within the task environment. A trajectory is
successful if the object arrives at the ground truth final location,
in alignment with the demonstrations.

100% of the 135 trajectories for the movetopos task success-
fully arrived at the goal location in the top right-hand corner of
the task-space. 74.1% of the 112 trajectories for the pushpull
task successfully arrived at the goal locations. Under the more
restrictive single-image prediction setting, the percentage of
successful trajectories reduced to 10.4% for movetopos and
37.5% for pushpull.

We show a number of full sequences of predicted images as
exemplars in Figure 2. These sequences used the full history of
prior states as input for future predictions. As can be seen, the
predictions move the block across the task-space in alignment
with the human-performed demonstrations. Note that a number
of the states visited in these exemplars were not visited by the
human, demonstrating generalisation to unseen states.
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Fig. 2. Full sequences of predicted images as exemplars are shown. The
red x’s mark predicted images that resulted in an incorrect action selection.
This caused these sequences to take one additional step over the ground truth.
Overall, 50 of the 134 successful movetopos trajectories contained an additional
step at the transition point from moving rightwards to upwards. The MSE
between action primitive prediction right and up at the failure locations were
very close.

V. CONCLUSION

We presented a Learning from Demonstration approach that
operates on raw images. Our approach is task, robot and human
agnostic. These traits are desirable for two key reasons. Firstly,
the human demonstrator does not require knowledge of the
target robot a priori, allowing for large, freely available video
databases such as YouTube to be used. Secondly, the robot can
perform the task correctly on its first attempt by predicting the
effect of all its actions before choosing to act at every state.
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