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Interoperability requires that communicating systems support compatible protocols. Maintaining compatible protocols is problematic
in heterogeneous networks, especially in a wireless infrastructure where hosts can move from one protocol environment to another. It is
possible to improve the flexibility of a communication network’s operation by deploying systems that support multiple protocols. These
multiprotocol systems require support mechanisms that enable users to effectively access the different protocols. Of particular importance
is the need to determine which of several protocols to use for a given communication task. In this work, we propose architectures for a
protocol discovery system that uses directory services and protocol feedback mechanisms to determine which protocols are supported.
We describe the issues related to protocol discovery and present protocol features necessary to support multiprotocol systems.

1. Introduction

The communication network is quickly becoming a crit-
ical component of computer systems in both educational
and commercial environments. The abundance of personal
computers at commodity prices as well as the overwhelm-
ing publicity associated with the National Information In-
frastructure is fostering a significant growth in the number
of networked computer systems. While this growth is im-
pressive, it is important to recognize that the value of net-
working to the end-user is limited by the degree to which
the needed resources can actually be accessed after going
on-line. The act of connecting a computer to a network,
either physically or through wireless communication, does
not guarantee that the user can access the resources avail-
able on the Internet. To a great extent, this access limitation
is a direct result of the incompatibilities between different
communications protocols.

As data communications evolved, many different pro-
tocols were developed to support new technologies and to
address varying user requirements. This evolution has led
to a diverse array of protocols that cannot interoperate. In
order to promote interoperability, several standards orga-
nizations have worked to define standard protocols (e.g.,
TCP/IP, OSI). However, it is now clear that no single stan-
dard protocol or protocol family will become the univer-
sal protocol supported by all networked systems. Instead,
large numbers of systems continue to be installed that sup-
port one of the standards or one of numerous proprietary
protocols (e.g., IPX, AppleTalk, SNA). Even the Internet
is no longer a single protocol network [15]. While TCP/IP
remains the primary protocol suite, other protocols (e.g.,
IPX, AppleTalk, OSI) exist either natively or encapsulated
as data within IP.
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Developing network systems that support multiple pro-
tocols can simplify the introduction of new protocols, like
IPng, and reduce the risk for network managers faced with
the prospect of supporting a new protocol. This will re-
sult in a faster, wider acceptance of new protocols and
increased interoperability between network hosts. It has
recently been pointed out that the National Information In-
frastructure will be a multi-supplier, multi-technology en-
deavor that will create difficult interoperability problems.
This will require mechanisms for negotiating commonality
between network systems [32].

In our research, we consider ways in which multiproto-
col networking can be accommodated through the use of
multiprotocol systems [5]. We describe the need for pro-
tocol discovery in multiprotocol systems and present two
mechanisms for performing this discovery. We also an-
alyze the protocol features necessary to use multiprotocol
systems and implement protocol discovery and we point out
limitations in some current protocols. We also present some
practical approaches to performing discovery and describe
our experience in implementing multiprotocol systems.

Although multiple protocol support is of general impor-
tance, it can be specially applicable in certain wireless en-
vironments.

• Because of system resource limitations, wireless and
mobile end-stations c an be rather inflexible in the proto-
cols they support. For example, the Apple Newton will
only support a specific flavor of AppleTalk protocols.
This requires that a wired mobile support station sup-
port multiple protocols in order to be conversant with
the different protocols that are being used by the mobile
stations within range.

• Mobile end-stations can be made flexible by allowing
them to download the protocols in use within a par-
ticular neighborhood. As the supported protocols can
change from one neighborhood to another, this necessi-
tates efficient protocol discovery services.
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In the next section we present the background for this
current work and a description of the multiprotocol model.
We also discuss the need for protocol discovery in mul-
tiprotocol systems. In section 3 we analyze the use of
directory services to assist in protocol discovery. This is
followed in section 4 by the presentation of a different ap-
proach to discovery called protocol probing. We describe
an integrated multiprotocol discovery system in section 5
and present our experiences in implementing multiproto-
col systems. Related work is described in section 6. We
conclude with a summary and future work in section 7.

2. Background

A simple definition of a multiprotocol system is “a host
that supports more than one protocol or protocol family”.
Later in this section we will provide a more formal defin-
ition of protocols and multiprotocol systems but for now,
this informal definition will suffice.

The data communications arena has witnessed the de-
velopment of many different protocols. These protocols
have been created over many years to support various new
technologies and changing user requirements. Several pro-
tocols have evolved into standard protocol families (e.g.,
OSI, TCP/IP) while many others were developed as pro-
prietary products (e.g., AppleTalk, DECNET, IPX, SNA).
As a result of this diversity, network installations must sup-
port a wide variety of protocols to provide the connectivity
demands of users.

Figure 1 depicts an example of the multiprotocol net-
work environments we consider. This network consists of
several hosts supporting one of several different protocol
families. The interoperability of the systems is indicated
by the dashed boxes. In this network an IP host can com-
municate with another IP host and an IPX host can likewise
communicate with another IPX host. Unfortunately, even
though the IP and IPX hosts are physically connected they
cannot directly communicate without the use of a protocol
translator or gateway [10,11].

Figure 1. Multiprotocol network.

The multiprotocol hosts on this network are able to pro-
vide communication with hosts supporting a variety of pro-
tocols. Consider a multiprotocol system that supports IP,
IPX, and OSI protocols. A user of this system would be
able to perform communication functions (e.g., file transfer)
with any of the other systems located on this network. In
addition, the multiprotocol mobile systems can move freely
from one protocol environment to another and still provide
communication using the protocols that are supported in the
new environment.

2.1. The multiprotocol model

The general problem we address is how to design net-
work systems that can interoperate in a multiprotocol net-
work. Our approach to achieving interoperability is to de-
velop multiprotocol end-systems that can directly commu-
nicate with many different protocol configurations. In this
section we present the model for our research.

In this work, we define a protocol as “a prior agreement
among systems regarding the form and meaning of mes-
sages”. A protocol entity (PE) is an object that implements
a given protocol. With this protocol, a PE can communi-
cate with another PE of the same type. In most cases, a
PE of type a will use another PE of type b to transfer mes-
sages over to a’s peer. This uses relationship between a and
b gives rise to the common layering model that describes
most network architectures. It is convenient to represent
this relationship as a protocol graph. For instance, figure 2
portrays a multiprotocol protocol graph. In this graph, each
box or node represents a PE and each edge represents a uses
relationship. Each instance of communication invoked by
a user of a protocol graph involves a particular subset of
protocols in the graph. We refer to this subset as a protocol
path or simply a path. A path encompasses a fixed set of
PEs, connected by the uses relation, that provides commu-
nication from the top layer PEs down to the bottom layer
PEs.

A system supporting the protocol graph in figure 2 pro-
vides a file-transfer service using nine different protocol

Figure 2. A multiprotocol graph.
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paths. It supports the FTP application using TCP and the
FTAM application using TP0 or TP4. This host supports
three different network layer protocols. It supports the stan-
dard Internet protocol version 4, identified as IPv4. It also
supports IPv6, the current proposed next generation Inter-
net protocol (IPng) [12]. The OSI CLNP protocol is also
supported along with the TUBA option [3] for providing
TCP applications over CLNP.

It is likely that many future network systems will be con-
figured to support multiple protocols, not unlike the system
in figure 2. As new protocols are deployed, it is unrea-
sonable to expect that users will be willing to give up any
aspect of their current connectivity for the promise of a
better future. For instance, most IPng installations will be
made “in addition to” the current protocols. The resulting
systems will resemble figure 2 in that they will be able
to communicate with systems supporting several different
protocols.

Unfortunately, in most current examples, multiprotocol
architectures like that in figure 2 are implemented as inde-
pendent protocol stacks running on a single system. This
means, for instance, that even though both TCP and CLNP
may exist on the system, there is no way to use TCP and
CLNP in the same communication. The problem with such
implementations is that they are designed as coexistence
(or so-called “ships in the night”) architectures and are not
integrated interoperability systems. We believe future sys-
tems should include mechanisms to overcome this tradi-
tional limitation. By integrating the components of multi-
ple protocol stacks in a systematic way, we can interoperate
with hosts supporting any of the individual stacks as well
as those supporting various combinations of the stacks.

In order to effectively use multiple protocols, a system
must identify which of the available protocols to use for
a given communication task. We call this the Protocol
Discovery task. In performing this task, a system deter-
mines the combination of protocols necessary to provide
the needed service. For achieving interoperability, proto-
cols are selected from the intersection of those supported
on the systems that must communicate. Two approaches to
protocol discovery that we explore are the use of directory
services to provide protocol configuration information and
the use of feedback mechanisms in protocol probing. We
present these two approaches separately in the next two
sections. In section 5 we present a unified multiprotocol
system that incorporates aspects of both approaches.

3. Protocol discovery using directory services

Network directory services such as the Internet Domain
Name System (DNS) or the OSI directory service (X.500)
provide a distributed database of information about hosts,
their addresses, and the applications they support. In cur-
rent architectures this database is typically consulted to map
host and service names to their respective network and ap-
plication addresses during protocol discovery. Adding in-
formation about a host’s protocols to this database is thus a

rather natural way to support protocol discovery in a mul-
tiprotocol environment.

An important feature of the directory-based approach is
that it does not require all hosts to make use of the direc-
tory service. For example, a host supporting only a single
protocol suite need not refer to the directory’s protocol in-
formation at all, because its protocol discovery problem is
simple. To aid other multiprotocol hosts in establishing
communication with the single-protocol host, information
describing the protocol(s) it supports should be stored in the
directory service, but no modification of its communication
subsystem – or the way it uses the directory service, if any
– is required. Note also that universal agreement on a sin-
gle directory service is not required: it is only necessary
that each multiprotocol host have access to a distributed
database that contains some encoding of the protocol infor-
mation for the hosts with which it communicates.

3.1. An ideal directory service

In this section we present the design requirements for a
directory service that most effectively supports the protocol
discovery task. Our objective is to describe the necessary
directory service features in a context which is free from
the constraints of any current directory service implemen-
tations. Later we discuss how most of these features can
be provided in the Internet Domain Name Service.

A problem in current directory service usage is the as-
sumption that the availability of a particular network ad-
dress for a host implies that the host supports a network pro-
tocol which utilizes that address. This assumption causes
problems, for example, when translating gateways are used
to provide transparent communication between two distinct
protocols. In this scenario, the originating host must obtain
an address for the destination that is compatible with the
originating host’s network protocol. For example, a host
X which only supports IP cannot use a NSAP address to
refer to another host Y even if X can communicate with
Y through an IP/CLNP gateway. Host X will need an
IP address to identify Y . An ideal multiprotocol directory
service should, therefore, maintain network address infor-
mation independent of protocol graph information. While
it is true that before using a given network layer protocol it
is necessary to obtain a network address for that protocol,
the existence of a certain type of address for a system does
not necessarily imply that the system directly supports any
protocols which use that address.

A host’s protocol graph information can be represented
in the directory service as a collection of PEs and their uses-
lists. The name of the PE is stored as a single string entry.
The uses-list is stored as a string describing the set of PEs
this PE can use. Conjunction and disjunction are indicated
by the characters “&” and “|”, respectively. Conjunction
in a uses-list indicates that a PE requires the services of
both underlying PEs to operate; e.g., OSI Presentation may
require several Session Functional Units. Disjunction indi-
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Table 1
Protocol graph entries.

Multiprotocol Single protocol
PE name Uses-list PE name Uses-list

FTAM TP0 | TP4 FTP TCP
FTP TCP TCP IPv4
TP0 TCP IPv4
TP4 IPv4 | IPv6 | CLNP
TCP IPv4 | IPv6 | CLNP
IPv4
IPv6
CLNP

cates that a PE can operate on any of the underlying PEs;
e.g., the Transport Switch can select either IP or CLNP.

Table 1 presents the information desired in a directory
service entry for the multiprotocol graph shown in figure 2
and for the graph of a single protocol host. PEs with an
empty uses-list are known as base PEs. These indicate
that no lower layer matching information is available for
protocol paths that include this PE. In general, the network
layer protocols will serve as base PEs.

The two main functions of a directory service for mul-
tiprotocol systems are:

LookupHost(input: Hostname, output: AddressInfo,
GraphInfo). This function retrieves the addressing and pro-
tocol graph information for the specified host from the di-
rectory service. The addressing information is returned as
a collection of network addresses of various types. The
graph information is returned as a collection of PEs with
their uses-lists. The initiating host will invoke this routine
once for the remote host and again to obtain its own local
graph information.

MatchPath(input: GraphInfo, LocalGraphInfo, output:
Path). This routine compares the two graphs and returns
one or more common protocol paths. The overall goal is
to find a protocol path that is common to both graphs and
will provide communication between the user application
and a base PE. The exact return value and algorithm used
is dependent upon the ultimate goal of the multiprotocol
system. The three possible path matching goals are:

• Succeed or fail. If the user is only interested in obtain-
ing communication or finding out if communication is
possible then a function that simply finds and returns
the first successful match would suffice. This algorithm
should start by matching a single PE and then try to
build a single matching path.

• All matches. If a user wishes to be able to choose from
multiple possible paths then it is necessary for the func-
tion to find all matches between the two graphs and
return them. This function would be useful when there
are several protocols supported by both hosts but one
may be more appropriate for the given application. It is
also possible that one or more of the valid paths may be
temporarily unavailable due to a network failure. In this
case the multiple paths would allow the user (or appli-
cation) to try several different paths until one succeeds.

• Partial matches. In some cases there may not be a
complete match found from the application all the way
down to the base PE. In this case it may be appropriate to
return partial match information about the PEs that did
match. This would allow the system either to obtain a
degraded level of communication or provide meaningful
diagnostics to indicate exactly which components of the
protocol architecture are missing. Partial matches might
also be used as an aid in determining which gateway or
translating bridge services might be useful in obtaining
the desired communication. The algorithm for finding
partial matches should be able to start anywhere in the
protocol graph and find all PEs that match between the
two graphs.

Each of the preceding path matching goals focus on find-
ing paths that allow hosts to communicate. These goals
could be further qualified to find paths that provide a par-
ticular service. This limits the matching algorithm to a
specific PE or set of PEs with which to start the search and
for which a path is considered valid.

3.2. A DNS-compatible implementation

The Internet Domain Name Service (DNS) is a popular
example of the type of directory service that could provide
protocol graph information. In this section we present an
approach to using DNS to provide this extended service.

Our primary objective in this design is to develop a
mechanism for delivering multiprotocol information that
provides as many of the features identified in section 3.1
as possible while minimizing the impact on current direc-
tory service implementations. Our approach requires that
additional DNS support be provided only in multiprotocol
systems that will take advantage of the new DNS features.
The changes we propose have no impact on systems that
currently use the DNS directory services. An alternative
approach to using DNS would be to extend an X.500 im-
plementation such as QUIPU, which is available with the
ISO Development Environment (ISODE) [29]. While this
approach would give us more flexibility to define new host
information records, the ubiquity of DNS in the current In-
ternet makes it more suitable for providing a system that
could be deployed today.

3.3. An overview of DNS

The DNS, described in [20,21], provides a hierarchically
distributed database of network host information. It is used
primarily to provide hostname to network address resolu-
tion. The two main components of the DNS are the domain
server and the resolver. The domain server provides name
service within a DNS domain. A domain corresponds to an
administrative group such as a company or university. The
resolver generally runs on the client host and provides the
lookup service by successively querying domain servers.
The actual data is stored on the server hosts in text files
known as master files. The basic unit of information stored
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in the DNS is a resource record (RR). Each RR includes,
among other things, a NAME field representing the node
to which this entry pertains, a TYPE field representing the
type of information stored, and an RDATA field represent-
ing the actual data for this entry.

Some important types of RRs are: A – the host address,
MX – mail exchange information, WKS – the supported well
known services, and TXT – a free-format text field. The
WKS record format has a 32-bit address entry indicating
the IP address, an 8-bit entry indicating a protocol, and a
variable length bitmap indicating which services use that
protocol. The protocol field contains the identifier of a
protocol that uses IP such as TCP or UDP. The bitmap
indicates which of the well known services are supported
on the host: if a service is supported then the appropriate bit
is set. These well known service numbers are used as port
identifiers in the TCP and UDP protocols. For example, if
FTP is supported then bit 21 is set since FTP uses port 21
of TCP. The protocol and well known service numbers are
defined in the Internet Assigned Numbers document [27].

3.4. A multiprotocol usage of DNS

While the DNS was developed primarily for the TCP/IP
environment, it has evolved to accommodate heterogeneous
networks. For diversity at the network layer, a number of
address formats have been defined. These address formats
include an X.25 format, ISDN format, and an OSI style
NSAP format. These are stored as RRs of TYPE X25,
ISDN, and NSAP, respectively. The RR type A is used for
32-bit IP addresses only.

An interesting aspect of the original design of DNS is
the inclusion of a CLASS field in each resource record.
This attribute is reserved for specifying information about
the “supported protocol family” of a host [20]. The most
natural extension of DNS to the multiprotocol environment
is to use the CLASS field to designate which protocol ar-
chitectures are supported. For instance, a class could be
defined to indicate use of the OSI protocols. Unfortunately,
this field has become largely meaningless in the current us-
age as only one value, “CLASS = IN” for Internet, has
been widely used. Instead of designating different classes,
each of the previously mentioned address type records has
been created within the Internet class.

As we mentioned earlier, we are interested in developing
a multiprotocol DNS that is compatible with most current
DNS implementations. Our experience with current name
server implementations, such as the BSD named program,
is that they are largely hard coded for use with RR entries
of class Internet. This means that the addition of a new
CLASS value would require that current servers be modi-
fied to support the new classes and their associated types.
We have not pursued this approach since this change would
conflict with our goal of not requiring the replacement of
current systems.

We have identified several possible approaches to using
the current DNS architecture for distributing multiproto-

Figure 3. A sample grammar for parsing PEInfo TXT entries.

Figure 4. A multiprotocol DNS entry.

col host information. These approaches represent proto-
col configurations in the directory service by assigning an
identifier to each PE. They all use the currently defined
IN class resource records. In this paper we present an ap-
proach that uses the TXT RRs. This approach provides the
most flexibility in encoding and presents the least danger of
conflicting with current implementation and usage. Some
alternative approaches we developed that use the WKS RR
are detailed elsewhere [6].

3.5. Delivering protocol configurations using TXT
resource records

We have designed and implemented a means for en-
coding protocol configurations using the DNS TXT entries.
Currently, there is no widely used format for a TXT entry.1

We propose that the TXT field be used to store a description
of the PEs available on a host as well as the uses-lists of
those PEs. The general format of the PE entries is “〈PE-
list〉/〈uses-list〉”. The “|” symbol indicates disjunction. We
use the leading string “PEInfo” to distinguish these proto-
col descriptions from other TXT fields in use. A grammar
for parsing these TXT entries is presented in figure 3.

Figure 4 shows a possible DNS entry for a host with
the protocol graph given in figure 2. This entry depicts
the master file format used by the DNS server to store the
domain information. Each line in this example corresponds
to a separate RR. All of these RRs are associated with the

1 Rosenbaum has proposed a new mechanism for using TXT fields for
arbitrary string attributes [30]. At the time of this writing, this was an
experimental Internet standard.
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host “mphost”. The second field in each record indicates
that the entry is of class IN for Internet. The third field
indicates the type of RR data stored in this entry. The re-
maining fields contain the actual RR data. The first line
in this example is the standard Internet address entry con-
taining the IPv4 address. The second line is an NSAP type
record providing an OSI-format address. This format is
described in [16] and is currently being updated [17].

The remaining lines contain TXT entries describing the
host’s supported protocols. Multiple PE entries in one TXT
record are separated by a “;”. If no uses-list is present, the
entry is assumed to be a base PE. The entries are grouped
by the protocol layer described. This organization is strictly
for convenience when maintaining the file. Note that we
have provided explicit entries indicating the presence of
the network layer protocols IPv4, IPv6 and CLNP. This is
consistent with our goal outlined in section 3.1 of keeping
the protocol graph information separate from the addressing
information. We do not assume that CLNP is available
based on the presence of the NSAP address.

This protocol representation provides flexibility in en-
coding and does not conflict with current DNS implemen-
tation and usage. One issue to note is that while the TXT
RRs are defined in the specification [21] from 1987, they
are not supported by all DNS implementations. The ver-
sion of named found in the 4.3 Reno release of BSD UNIX
includes support for TXT but the older BSD version that
provides the basis for Sun OS 4.1.3 does not. This means
that the WKS-based alternatives mentioned above [6] may
indeed be more compatible with existing servers. However,
since the use of newer address types like NSAP and X25
will require updating of name servers anyway, we expect
that most Internet name servers will include support for
TXT fields.

4. Protocol discovery using probing

While the directory service can provide useful informa-
tion regarding protocol configurations, it is important to
consider how a multiprotocol system should discover pro-
tocols when the directory service information is unavailable
or inaccurate. This section describes an alternative protocol
discovery technique called protocol probing. The idea be-
hind protocol probing is to use the features of networks and
the network protocols themselves in determining which pro-
tocol paths are available to support a given communication
task. This is done primarily by attempting to communicate
using different protocols and monitoring the attempts to
see what can be learned about the network configuration.
In protocol probing, we use the information gained from
these attempts to determine which protocols are supported
on the remote system.

Here we present the protocol probing concept, begin-
ning in the next section with a simple example. After the
example we give a formal description of the probing task
and present protocol features necessary for probing.

Figure 5. A sample network.

4.1. An example of protocol probing

Consider an initiating host supporting a multiprotocol
graph such as that of figure 2. This is the source or initiating
host, labeled S, in the network with topology presented in
figure 5. The user of this host is attempting to communicate
with the destination or responding host D. These hosts are
physically connected via two intermediate network layer
routers labeled I1 and I2.

In order to perform a file transfer, the user must first
determine which, if any, of the nine distinct local protocol
combinations are supported on the remote host. The task is
to determine which protocols supported by S are also sup-
ported by D. It is also necessary to determine the network
layer protocols supported by both I1 and I2 as well as S
and D.

In this case, without prior knowledge of the remote con-
figuration, the user determines the protocols to use based
on the feedback provided from the applications. The user
proceeds by attempting a connection with one of the two
applications and monitoring the way this attempt fails or
succeeds. A successful connection indicates that the cur-
rent application could be used. A failed connection indi-
cates one of several possible problems.

Suppose for instance that host D supports the single OSI
stack consisting of FTAM/TP4/CLNP. If the user decides
to first try the FTP application with TCP and IP then this
attempt will subsequently fail.2 Table 2 lists the feedback
provided to the user for various protocol incompatibilities.3

In this case, since no compatible network layer is found,
the user will receive the Connection timed out message.
Since this message does not provide information about the
actual cause of the failure, there is little to assist the user in
choosing the next protocol combination to try. If the user
continues by trying FTP with the two other options, both
will fail. However, the attempt with the FTP/TCP/CLNP
combination will fail with the Connection refused message.
Based on the information in table 2, the user can determine
that CLNP is supported on the remote system. Now, when
the FTAM application is tried, the user can choose the pro-
tocol combination that includes CLNP. In this example, the
FTAM/TP4/CLNP option is tried and the communication
succeeds.

2 The first type of failure that might be encountered is the failure to find
a network address for host D in the format required for the selected
protocol. In order to simplify the example, the discussion here assumes
that addresses are available for all the protocols attempted.

3 The error messages listed are for the FTP program from Sun OS 4.1.3
and FTAM program from the ISODE version 8.
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Table 2
FTP and FTAM error messages.

Compatibility problem FTP error message FTAM error message

Network congestion/partition Connection timed out Timer expired
Remote host off-line Connection timed out Timer expired
No compatible physical layer Connection timed out Timer expired
No compatible network layer Connection timed out Timer expired
No compatible transport layer Connection refused Timer expired
No compatible application layer Connection refused OSI service tsap#259 not found

4.2. The protocol probing task

The “guided” protocol selection carried out in the above
scenario is what we are interested in with protocol prob-
ing. At the beginning of performing protocol probing the
paths currently supported on the multiprotocol system S
are known. Given this, it is necessary to find a path that
is supported on both S, D, and the intermediate systems
I1 and I2. In protocol probing, this determination is made
based on feedback from interaction with the network, pri-
marily through communication attempts with various pro-
tocols. Until negative feedback arrives about a protocol in
a path, it may still be the case that the path is supported on
D. In general, it can only be determined that a path is not
supported on D after feedback arrives from some protocol
indicating that the path, or some protocol in the path, is
not supported on D. Because of intermittent failures and
delays, it is not possible to assume a path is not supported
on D based only on the failure of an attempt to use the
path. On the other hand, positive feedback about a path
on D may come as a result of successful interaction with
all of the protocols in the path or from another protocol
indicating that the path is supported on D.

In protocol discovery, using either directory services or
probing, it is not necessary to determine the set of all paths
supported by D. All that is needed is to find one com-
mon path between D and S that uses the same protocols
and will therefore provide sufficient communication. The
probing process performs a bottom-up search of the proto-
col graph to find a matching protocol path. The probing
system starts with a low level protocol, like the CLNP net-
work layer, and tries to establish whether it exists on the
destination. Once positive feedback arrives from the net-
work layer, the next step is to determine which transport
layer protocols are available through this network layer.
Eventually, when communication is established with some
application that provides the service requested, the probing
process can stop and normal communication can proceed.
In this case we say that a complete, matching protocol path
has been found. It is possible that an initially successful
communication attempt will not lead to complete success.
For instance, even after identifying a network and transport
layer, it may still be necessary to backtrack and find another
network layer if the first one does not lead to an application
providing the desired service.

4.3. Issues with protocol probing

In order to use protocol probing it is necessary to develop
an algorithm or set of rules that directs the operation of the
probing process. In this section we present several factors
that affect the design of these algorithms.

• Where to start: The first interesting question in design-
ing a probing algorithm is, “Which protocol should be
tried first?” The directory service described in section 3
should provide a good indication of protocols to start
with. A mobile multiprotocol system, when moved to a
new location, might listen for other protocol traffic on
the new network. If most of the other hosts appear to
support one specific protocol family, then those proto-
cols should probably be tried first.
Another good choice for a first try is a protocol that pro-
vides particularly good feedback when failures occur. In
this case, even if the protocol does not establish the de-
sired communication, it should provide good insight into
which protocols to try next.

• Interpreting failure: The most important aspect of the
probing process is the use of failed communication at-
tempts to learn as much as possible about the remote
configuration. The information learned is then used to
guide the selection of the next protocol to be attempted.
The extent to which this is possible depends on the type
of feedback provided by a protocol when it fails. In
section 4.1 we presented an example where more de-
tailed feedback would be useful for user probing. In the
next section we give more detail on the type of feedback
needed for probing.

• When to give up: Many failed attempts will result in
no feedback at all. In these cases it is difficult to dis-
tinguish a situation of temporary network congestion or
failure from a case where the protocols being used are
not supported on the remote system. The first decision
of this sort is to decide when to stop trying one protocol
and move on to another. Additionally, the probing algo-
rithm may be designed to start over after unsuccessfully
trying all the protocol combinations and try them again.
In this case the system must decide when to abandon
this probing cycle.

• Datagram vs. connection service: Probing fits most nat-
urally as part of the connection establishment process.
This is because of the fact that positive feedback of
communication success is provided as part of connec-
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tion establishment. Datagram service is often unreliable
and a “no feedback” situation could mean that the com-
munication was a success. In this case, higher level
indication from the application or user is necessary to
provide enough context to indicate when a communica-
tion attempt was successful.

• Access to protocol operation: The feedback mechanism
supported by a protocol is only useful for protocol prob-
ing if the probing system has access to it during each
communication attempt. In many cases, protocol imple-
mentations do not make the complete feedback infor-
mation available to the protocol users. It may also be
useful for the probing system to have access into the op-
eration of the protocol. One example of this is a system
that uses TCP as one of the possible transport protocols.
While the TCP handshake is taking place, some feed-
back has been received but the upper layer has not yet
heard indication of a connection. If the probing system
is about to give up on this attempt, it could check on
the state of the TCP protocol and detect that enough
progress has been made to warrant waiting further.
In order to provide this type of access to protocol opera-
tions it is necessary to “open up” the details of the actual
protocol implementations. This will be difficult for ap-
plications implemented as user level programs. Such
programs will have protection problems in getting to
detailed protocol information in popular systems like
UNIX where the protocols are commonly implemented
in a privileged kernel space.

• Parallel attempts: The probing algorithm can be de-
signed to try protocols one at a time or it could try
several protocols in parallel. In the parallel case, all
the possible protocol combinations would be tried at the
same time and the first one to successfully communicate
would be handed off to the user. The parallel approach
might be practical when parallel hardware is available
or when there is a long propagation delay between the
two systems and trying several protocols is faster than
waiting for feedback.
One problem with this approach is that it may result in
the creation of several successfully communicating ses-
sions, all but one of which would need to be gracefully
terminated without being used.

4.4. Feedback

The feedback provided by protocols regarding communi-
cation failures is important enough to the probing process to
warrant further discussion. As we described in section 4.2,
the only way a probing system S can determine for sure
whether a protocol path is supported on D is to obtain some
definite feedback indication.

The most effective way to obtain positive feedback about
the existence of a path is to get it directly from the protocols
that constitute the path. This feedback could be in the form
of a direct acknowledgment of transmitted data or it could
be any other data received from the destination that uses the

protocols in the path. This second approach is necessary
when doing probing with unreliable datagram protocols that
do not send back acknowledgments. It is also possible to
get feedback from other protocols, which are not part of a
path, indicating that the path is supported on D. While such
feedback would strongly suggest that the path is supported,
the only sure way to guarantee that a path is truly available
for communication is to hear it directly from the protocols
in the path.

Unlike positive feedback, negative feedback indicating
that a path is not supported on D will, in general, need
to be sent by some protocol other than the one missing
from D. Most of the time, useful negative feedback will
come from some lower layer protocol that carries the traf-
fic of the missing protocol. For instance, a network layer
protocol might return an error indicating that the desired
transport layer protocol was not found. The only example
we have encountered where negative feedback might come
from the protocol itself is the case of network protocols that
send feedback from an intermediate router (e.g., I1 in fig-
ure 5) indicating that D is not reachable using this network
protocol.

Clearly it is impractical for D to provide complete feed-
back for every protocol message sent by S; in the case of an
unreliable connection-less protocol, this would conflict with
the design intention of the protocol. One option that may
be useful for such protocols is to provide a variable feed-
back mechanism that allows the sender to request positive
feedback on certain data. This feedback could be turned on
by S for the first several datagrams while probing is taking
place. After the protocols are determined and communica-
tion succeeds, the feedback could be turned off to provide
the efficiency normally desired for such protocols.

We propose that future protocols include a three level
feedback mechanism. The feedback level is indicated by
the value of a 2-bit field in the protocol header. This field
tells the end and intermediate systems what type of feed-
back should be sent to S about the processing of this packet.
The highest feedback level indicates both positive and neg-
ative feedback. This is the level used during protocol prob-
ing. It allows both end and intermediate systems to provide
an immediate indication of the degree of success achieved
with this protocol. After determining which protocols to
use, the source sets the feedback field of all subsequent
outgoing packets to request only negative feedback. This
is the normal case for most feedback mechanisms today.
The third feedback level indicates that no feedback should
be provided to S regarding this packet. This option is use-
ful for any application where feedback is unnecessary or
could overwhelm the source.

4.5. Feedback analysis

This section provides a detailed analysis of the feed-
back mechanisms available in IP and CLNP that could
be used to support probing. With IP, network layer feed-
back is provided by the Internet Control Message Protocol
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Table 3
Protocol problem feedback for IPv4.

Compatibility problem ICMP feedback Generated by

No IPv4 at I1 None, timeout S
No IPv4 at I2 Net unreachable I1
No IPv4 at D Host unreachable I2
No matching transport at D Protocol unreachable D
No matching application at D Port unreachable D
IP option mismatch at I1, I2, D Parameter problem I1, I2, D
Time exceeded at I1, I2 Time exceeded in transit I1, I2
Time exceeded at D Time exceeded in reassembly D

Table 4
Protocol problem feedback for CLNP.

Compatibility problem CLNP feedback Generated by

No CLNP at I1 None, timeout S
No CLNP at I2 Destination unreachable I1
No CLNP at D Destination unknown I2
No matching transport at D None D
No matching application at D None D
CLNP option mismatch at I1, I2, D Unsupported option I1, I2, D
Time exceeded at I1, I2 Lifetime expired in transit I1, I2
Time exceeded at D Reassembly lifetime expired D

(ICMP) [25]. ICMP is an unusual protocol in that it is both
an integral part of IP and a user of IP, using IP to transfer
its messages. ICMP has several different message types,
most of which are used to provide feedback during com-
munication. These messages are generated by a network
host when it encounters an error while processing an IP
datagram.

Table 3 gives the ICMP feedback that would be gener-
ated for several possible protocol compatibility problems.
The most difficult problem to recognize is when there is
no compatible network layer at I1, the next hop from the
source. When this occurs, there is no direct feedback and
therefore a failure can only be inferred by a timeout in a
higher layer protocol. For the other compatibility prob-
lems listed in table 3 there are unique feedback messages
in ICMP to indicate the problem. These messages can be
used by a multiprotocol system to determine where an in-
compatibility occurs. The feedback presently proposed for
IPv6 is a straightforward extension of the current ICMP
with few differences [9].

Unlike IPv4 and IPv6, CLNP includes a feedback mech-
anism as part of the network protocol definition. CLNP
supports a number of Error Report (ER) PDUs that pro-
vide feedback during the operation of the network layer
protocol. Most of the ER messages are designed to pro-
vide specific feedback for the operation of CLNP itself.

The ER PDUs returned for various protocol compati-
bility problems are given in table 4. Two important mes-
sages that are not provided by the CLNP ER PDUs are the
Protocol and Port Unreachable messages found in ICMP.
These messages are particularly useful in multiprotocol net-
works where there may be several different transport and
application layer protocols. Like ICMP, there is no means
for CLNP to automatically detect that the protocol is not

supported on the next hop I1. A timeout mechanism is
also required in this case to detect such a failure. CLNP
provides a two level feedback mechanism that allows the
source to specify whether or not negative feedback should
be returned. Feedback is requested by setting the error
report (ER) flag in the header of each packet for which
feedback is desired.

4.6. A protocol probing algorithm

Based on the feedback analysis of the previous section,
we developed algorithms for carrying out protocol probing
with the protocols studied. An example of such a probing
algorithm is presented in figure 6. This algorithm begins
in the upper left block with the TCP/IPv4 protocols. We
chose this as our starting point since a large percentage
of the systems on our network support these protocols. If
the attempt succeeds then the connection is established and
communication proceeds. If the attempt fails, this algorithm
takes one of three different paths depending on the feedback
given. If an ICMP Protocol Unreachable is received then
we know that IPv4 is supported on the remote system and it
is probably best to try a different upper layer protocol. If a
TCP Reset message is received then we know that both IPv4
and TCP are supported but the requested application was
inaccessible through TCP. The system could still support
this application over TCP using the RFC-1006 mechanism
for providing OSI applications over TCP. If TCP is found,
the RFC-1006 option is attempted next. If TCP is not found
but IPv4 is, then the TP4 protocol is attempted with IPv4. If
neither of these feedback messages are received, the system
assumes that IPv4 is not supported on the remote system
and goes on to try the TCP/IPv6 combination.
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Figure 6. Protocol probing algorithm.

The IPv6 portion of the algorithm proceeds much like
the IPv4 portion since the ICMP feedback is similar for
the two protocols. In our implementation, discussed in sec-
tion 5.2, we do not yet support the IPv6 protocol so this
portion of the algorithm is not used. The CLNP algorithm
does not include the two options for higher level proto-
col problems since it does not include specific feedback
about unreachables.4 For CLNP, if a packet arrives for an
unsupported upper layer protocol the packet is simply dis-
carded. This means that the case of no feedback from a
CLNP attempt could still mean that CLNP is supported on
the system. When TP4 is found on the remote system but
the application is not available, TP4 will return a Discon-
nect Request TPDU. In the algorithm presented here, this
feedback does not affect the order of protocol attempts.

4 The TUBA proposal [3] recommends the addition of these as two new
ER types.

5. An integrated protocol discovery architecture

While it is possible to develop practical multiprotocol
systems that use only one of directory services or probing to
perform protocol discovery, we feel it is best to incorporate
aspects of both approaches in multiprotocol systems. In this
section we describe such an integrated system and present
issues uncovered in our implementation experience.

We have identified the following two basic approaches
to supporting protocol discovery in multiprotocol systems.

• User based discovery. In this approach, the user per-
forms discovery by querying the directory service and
then attempting to use different protocol paths. This is
the approach carried out in the previous example using
FTP and FTAM. To support this approach it is neces-
sary to enhance the current protocol systems to provide
explicit failure indications. In the above scenario, a mes-
sage such as CLNP supported, TP4 not supported rather
than the simple Connection refused would greatly assist
the user in determining which protocol path to attempt
next.

• Automated protocol discovery system. This approach in-
volves implementing a protocol subsystem that performs
protocol discovery automatically as part of the normal
protocol operations. Such a system could receive a com-
munication request from the user such as, “transfer files
from host A to host B”, and then determine which pro-
tocols to use to perform the task.

In the current work, we focus on the second approach.
A goal of this research is to develop the necessary com-
ponents for a multiprotocol system that can take a user’s
request and return a “connected” communication session.
This system will operate without the user being aware of the
protocols used, directory services accessed, different net-
work address formats, or failures during protocol attempts.
In this system, feedback is given to the user only after the
communication is successfully established or all possible
protocol combinations are exhausted.

5.1. Automated discovery architectures

Here we describe three different architectures for devel-
oping an automated discovery system. Each architecture
has its own virtues and limitations. As we will see, the
main distinction among the architectures is the scope of the
discovery system in terms of the protocols included. This
difference in scope is depicted in figure 7.

The first approach to automated discovery is to perform
protocol discovery as part of a Generic Application that
provides a common service. The generic File Transfer Ser-
vice of figure 7 presents the user with a consistent interface,
regardless of the actual protocols or applications used [28].
This approach incorporates the entire protocol graph, in-
cluding the applications, into the discovery system. The
main advantage of this approach is that it allows the user
to communicate with a wide range of currently-installed
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Figure 7. Automated discovery architectures.

systems, including those supporting a variety of applica-
tions.

A problem with this approach is that it is difficult to hide
the actual applications and some limitations will always
arise when developing the generic interface. For instance,
the FTAM application includes several features not found
in FTP. These features will need to be either emulated for
FTP communications or not provided at all.

The second approach to performing automated protocol
discovery is to develop Multiprotocol Applications that per-
form discovery themselves. For example, a multiprotocol
FTP implementation could support discovery by including
calls to several different protocols.5 This approach pro-
vides the user with a familiar user interface and functional-
ity while hiding many of the details of protocol discovery.
The user will still need to perform part of the discovery
process by selecting the application that is supported on
the remote host.

One disadvantage of this approach is that it only provides
communication with systems that support some version of
this multiprotocol application. In the short term, this ap-
plication will primarily be supported only over its native
protocols (e.g., FTP over TCP/IP). This will limit the con-
nectivity attainable by the multiprotocol system. Another
drawback is that this approach may require extensive mod-
ification of the application to support new protocols and
address formats.

The effort needed to modify the application to support
multiple protocols can be alleviated by performing proto-
col discovery below the application/protocol interface in a
Multiprotocol Network Subsystem. This is the idea behind
our third approach where a multiprotocol network subsys-
tem is used to provide multiprotocol support through stan-
dard programming interfaces. The network subsystem is
the portion of a host operating system that supports protocol
implementations. Two popular examples are the System V
Streams [2] and BSD UNIX Socket [14] environments. Im-

5 Some of the changes needed to provide this support in FTP have already
been proposed [24].

plementing protocol discovery as part of the network sub-
system enables current applications to run over multiple
protocols with little or no modification to the actual appli-
cation. The degree of connectivity provided is essentially
the same as in the multiprotocol application approach.

The main drawback of this approach is that it requires
extensive modification of the network subsystem. Also, as
with the generic application, the use of a generic interface
to many protocols will usually result in a compromise of
functionality for some of the protocols. For instance, TCP
provides a graceful disconnect while the OSI TP4 does
not. Another issue is that since the discovery process is
performed automatically, the application programmer loses
some control over the actual protocols used as well as the
discovery process itself.

5.2. Discovery system implementation

To demonstrate the feasibility of the protocol discov-
ery concept we developed an implementation incorporating
two of the three network protocols from figure 2: IPv4 and
CLNP.6 We pursued both the multiprotocol application and
multiprotocol network subsystem architectural approaches
(see section 5.1). This implementation was done in Sun
OS 4.1.3 for the Sun SPARC architecture. This work in-
volved the addition of the CLNP protocol7 as well as the
development of the discovery system we describe.

For the directory services implementation we developed
a set of extensions to the BSD DNS resolver library. We
added the LookupHost( ) and MatchPath( ) functions dis-
cussed in section 3.1. The LookupHost( ) function retrieves
the various address RRs and retrieves and parses the TXT
fields to build the protocol graph information. MatchPath( )
compares the two protocol graphs and returns a list of paths

6 The IPv6 protocol is still evolving. We have been closely following the
standardization effort and will be incorporating IPv6 into our implemen-
tation as the specification matures.

7 For the CLNP portion we made significant use of code from the NetBSD
software release. Additionally, we are indebted to Francis Dupont for
the contributions made to support TUBA.
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that support the required service. The discovery system
implementation utilizes the probing algorithm presented in
figure 6. This algorithm performs probing of protocols that
provide a connection-oriented service.

In our implementation of the multiprotocol application
architecture we perform discovery as part of a multiprotocol
FTAM application. The application calls the LookupHost( )
and MatchPath( ) DNS routines to determine the likely pro-
tocols and addresses to use. For each protocol combination
attempted by the algorithm, the application creates a new
socket using the appropriate protocols. The standard socket
interface does not provide the level of feedback required by
our probing algorithm. In order to provide feedback regard-
ing the actual failures we added several new error codes
(i.e., errno values) that indicate the ICMP return codes.

To implement the multiprotocol network subsystem, we
incorporated discovery into the BSD socket architecture. In
this implementation we introduced the novel concept of a
multiprotocol family. This new protocol family is denoted
as PF MULTI. To use the multiprotocol system, a program-
mer creates a socket with this protocol family and the proto-
col service type required (e.g., datagram or stream). When
the socket is created it is still not known exactly which pro-
tocols will be used to implement this socket. The discovery
system is invoked when the user attempts to establish a con-
nection via the connect( ) system call. After the protocols
are determined, the protocol specific values are filled in to
the socket structure. For datagram service, protocol dis-
covery is performed at the time of the first data send (e.g.,
with the sendto( ) system call).

It is important to note that our multiprotocol subsystem
version of automated discovery is implemented within the
UNIX kernel and has access to the entire set of protocol
implementations and the feedback they provide. When im-
plementing an automated discovery system in other archi-
tectures where protocols are not part of the same privileged
address space (e.g., Mach [1]), it will be important to pro-
vide access to the protocol feedback systems.

One interesting challenge with this architecture is how
to specify the appropriate address information for each of
the protocols that will be attempted. In current systems, the
application creates an address structure of the appropriate
type (e.g., AF INET) and passes it in as an argument to
the connect( ) system call. With our system, it is necessary
to have addresses for each of the several different proto-
cols that will be attempted. The application calls the DNS
resolver functions and then passes the results on to the sub-
system which carries out the protocol probing. We provide
these in the connect( ) call as a linked list. We felt this
to be a better approach than the alternative of having the
PF MULTI domain code call the directory service directly.

Both of our implementations provide protocol discovery
that enables the user of an application on a multiprotocol
system to communicate with hosts supporting any of five
different protocol combinations. The protocol subsystem
approach provides this support without requiring the appli-
cation programmer to implement discovery.

6. Related work

In most cases, what is meant by multiprotocol support
is that a system includes multiple independent protocol en-
vironments; the so called “ships in the night” approach
popular with multiprotocol routers. This is similar to the
“dual-stack” architecture described in [28] where a single
system supports two independent protocol stacks with no
communication between them.

Encapsulation or tunneling is commonly used where two
networks that support a common protocol must be con-
nected using a third intermediate network running a dif-
ferent protocol. This approach is only appropriate when
both communicating end systems support the same pro-
tocol stack. It does not provide interoperability between
these end systems and systems running the protocol sup-
ported in the intermediate network. Some examples of this
approach are: a mechanism for providing the OSI transport
services on top of the Internet protocols [4], encapsulating
IEEE 802.2 frames in IPX network packets [18], tunneling
IPX [26] and AppleTalk traffic over the Internet backbone.

A great deal of previous research has focused on ad-
dressing the problem of multiple protocols through the use
of translation or conversion gateways. In [10], Green de-
scribes the conversion task and characterizes the aspects
of communications protocols that must be considered when
defining a protocol converter. Several examples of protocol
converters exist in the literature, most of them residing at
the application layer [11,28,29].

Recently, others have begun to research the issues in-
volved in integrating protocols from different architectures.
Ogle et al. [23] are developing a TCP/IP and SNA sys-
tem that performs protocol selection below the socket level
interface. Janson et al. [13] consider options for interop-
erability between OSI and SNA networks, and analyze the
addressing issues arising when these protocols are com-
bined in a single network.

The diversity of communicating systems was addressed
in the Heterogeneous Computer Systems (HCS) Project at
the University of Washington [22]. They develop a Re-
mote Procedure Call (RPC) based environment for devel-
oping implementations that are independent of underlying
protocol systems. Another approach to achieving interop-
erability in diverse systems is to provide a mechanism for
hosts to exchange protocol information before carrying out
the communication task. Two early examples of this ap-
proach are the Network Command Language described by
Falcone [8] and the “meta-protocol” concept proposed by
Meandzija [19]. Similarly, Tschudin describes a “generic
protocol” in [31].

The recent work of Comer and Lin [7] describes the use
of a technique called active probing to deduce characteris-
tics of a TCP implementation. While their work focuses on
discovering possible problems with a known protocol, the
technique used is somewhat similar to the probing process
we perform.
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7. Concluding remarks

Conventional wisdom once held that a single standard
protocol architecture would eventually “win out” over all
others, thus guaranteeing interoperability among all sys-
tems. In contrast, today’s communications environment is
one of multiple, co-existing protocols. This paper describes
the development of systems that support several different
protocols. These multiprotocol systems are likely to be sig-
nificant in providing interoperability in heterogeneous en-
vironments. Multiprotocol systems may also be practical in
the wireless mobile computing world where systems move
between different protocol environments.

A challenge for multiprotocol systems is to determine
which of the several supported protocols should be used
for a given communication task. We have developed two
approaches to performing this protocol discovery. The first
approach uses directory services to deliver protocol con-
figuration for a system. For this approach, we have de-
scribed protocol representations and an implementation so-
lution that can be deployed today with currently available
Internet software. The second protocol discovery approach
presented is protocol probing. This technique uses the feed-
back from communication attempts to determine which pro-
tocols are currently supported. We present a detailed analy-
sis of current feedback mechanisms and describe features
that would be useful for future protocols.

In this work we describe three main architectures for
developing multiprotocol systems that automatically per-
form discovery. These architectures offer varying levels
of interoperability with other network systems. While the
generic application offers the user seamless connectivity to
the widest range of systems, this approach has the highest
development cost since much of the implementation can
only be used for the specific application it was developed
for. The multiprotocol subsystem approach allows a sin-
gle discovery implementation to support several different
applications.

The probing algorithm presented here was designed af-
ter analyzing the feedback provided by the protocols in use,
studying the implementation options in our development en-
vironment, and using empirical evidence to decide which
protocols were the more likely to succeed after each failure.
Our future work will include the continued study of discov-
ery algorithms for different protocols and the exploration of
ways to simplify the design of probing algorithms. We will
also look at the area of protocol subsystem requirements
for multiprotocol systems that can rapidly change protocol
configurations through mechanisms such as protocol down-
loading.
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