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ABSTRACT

Planet-scale applications are driving the exponential growth of the

cloud, and datacenter specialization is the key enabler of this trend,

providing order of magnitudes improvements in cost-effectiveness

and energy-efficiency. While exascale computing remains a goal

for supercomputing, specialized datacenters have emerged and

have demonstrated beyond-exascale performance and efficiency in

specific domains.

This paper generalizes the applications, design methodology, and

deployment challenges of the most extreme form of specialized dat-

acenter: ASIC Clouds. It analyzes two game-changing, real-world

ASIC Clouds–Bitcoin Cryptocurrency Clouds and Tensor Process-

ing Clouds–discuss their incentives, the empowering technologies

and how they benefit from the specialized ASICs. Their business

models, architectures and deployment methods are useful for en-

visioning future potential ASIC Clouds and forecasting how they

will transform computing, the economy and society.
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1 WHAT ARE ASIC CLOUDS

In the last decade, two parallel trends in the computational land-

scape have emerged. The first is the bifurcation of computation

into two sectors: cloud and mobile. The second is the rise of dark

silicon [29] and dark silicon aware design techniques [48, 54] such

as specialization and near-threshold computation. Specialized hard-

ware has existed in mobile computing for a while due to extreme

power constraints, however recently there has been an increase

in the amount of specialized hardware showing up in cloud data-

centers. Examples include Baidu’s GPU-based cloud for distributed
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neural network acceleration and Microsoft’s FPGA-based cloud for

Bing Search [49].

At the level of a single node, we know that ASICs can offer

order-of-magnitude improvements in energy-efficiency and cost-

performance over CPU, GPU, and FPGA. Our recent papers [35, 36,

43] explore the concept of ASIC Clouds which are purpose-built

datacenters comprised of large arrays of ASIC accelerators. ASIC

Clouds are not ASIC supercomputers that scale up problem sizes for

a single tightly-coupled computation; rather, ASIC Clouds target

scale-out workloads consisting of many independent but similar

jobs, often on behalf of many users. Notably, our work [1] predicted

the Google TPU [33] before Google announced it.

As more and more services are built around the cloud model,

we see the emergence of planet-scale workloads. Examples include

Facebook’s face recognition, Siri answering speech queries, and

YouTube transcoding user-uploaded videos to Google’s VP9 for-

mat. For systems of this scale, the total cost of ownership (TCO)

improvements derived from the reduced marginal hardware and

energy costs of ASICs could make it a routine business decision to

create ASIC Clouds.

In this paper, we overview the emergence of datacenter special-

ization in different industries and then examine two real-world

game-changing ASIC Clouds—Bitcoin ASIC Clouds and Tensor Pro-

cessing ASIC Clouds for ML—what their incentives were, and the

impact they hard in their respective markets. Performing deep anal-

ysis of real ASIC Clouds provides valuable insights on ASIC Cloud

design and deployment problems. Unlike conventional servers that

are assembled from low cost off-the-shelf components, ASIC Clouds

involves high mask cost and long time-to-market which prevents

fast and incremental design iterations. We summarize the end-to-

end system-level optimization techniques and discuss deploying

problems that are unique to ASIC Clouds. By considering the chip

design, server design, and data center design of an ASIC Cloud in

a cross-layer system-oriented fashion, our work [36, 43] develops

methodologies which designers can use to create novel systems

that optimize the TCO in real-world ASIC Clouds. We conclude by

showing the designs of several ASIC Cloud systems that use the

aforementioned design methodologies for the following applica-

tions: Bitcoin mining, YouTube-style video transcoding, Litecoin,

and Deep Learning.

1.1 ASIC Cloud Applications

Hardware specialized in the cloud is used to attain both high perfor-

mance and power efficiency. Specialization can be done at different
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Industries Workloads
Specialized

Level
Representative Specialized Clouds

Artificial Intelligence

Image Recognition,

Natural Language Processing,

Speech Recognition/Translation

Server, FPGA,

ASIC

Google TPU [33], Microsoft BrainWave [22],

Neural Network Accel [13, 17, 20, 21, 28, 31, 37, 42, 50, 51, 60]

Financial
Blockchain, High Frequency Trading

Real Time Risk Control
FPGA, ASIC

Bitcoin Miner [56], Litecoin Miner [8], Ethereum Miner [6],

HFT Accel [40], J.P. Morgan FPGA Accelerator [52]

Internet Database, Web Search, Social Network FPGA, ASIC
Bigdata Accel [25], Memcached Accel [26, 38, 41],

Graph Accel [12, 27, 47], Microsoft Bing Cloud [49]

Media/Entertainment Video Transcoding, Live Streaming Server, ASIC ASIC Cloud Transcoder [43]

Genomics
Burrows-Wheeler Aligner (BWA),

Genome Analysis Toolkit (GATK)
Server, FPGA

Microsoft Genomics Clouds [9],

Intel-Broad Genomics Stack [3],

Amazon-Falcon Accelerated Genomics Pipelines [7],

Darwin Accel [58], GenAx [24],

DRAGEN FPGA Bio Platform [5]

Scientific Computing
Physical Simulation,

Modular Dynamics
ASIC GF11 [16], Anton 1 [23], Anton 2 [18], GRAPE8 [44]

Table 1: Specialized Clouds in industry and academia.

levels, from Server, to FPGA, and ASIC. Server Specialization uses

customized motherboard with dedicated processor (GPU), storage

devices, networks and software stacks; FPGA Specialization uses

FPGAs to accelerator certain workloads;ASIC Specialization employ

ASIC chip arrays to execute tasks with extreme constrains. Table 1

shows the prominent specialized clouds appearing in industry and

academia.

The performance and efficiency of different specialization level

increase exponentially, but the cost for design and deployment them

also increase exponentially. The specialization level is a trade-off be-

tween the investment, time-to-market and total cost of ownership.

With sufficient marketing and capital incentives, ASIC specializa-

tion specialization can be applied to any cloud applications, turning

it into an ASIC Clouds. In later sections we will examine when it

makes sense to design and deploy an ASIC Cloud and proposes a

new rule, the two-for-two rule that highlights the link between

development cost (NRE) and the speedup or energy improvements

the ASIC Cloud must get in order to have a net benefit.

2 ANALYSIS OF TWO GAME-CHANGING
ASIC CLOUDS

Among all of the ASIC Clouds, Bitcoin miners and Google’s TPU

are the most influential. In this section, we review the history,

incentives and benefits with corresponding market and technology

backgrounds for these ASIC Clouds.

2.1 Bitcoin ASIC Clouds

Bitcoin, since its deployment in January 2009 [45], has experienced

explosive exponential growth. As of summer 2018, there are 17.15

million Bitcoins (BTC, or B ) in circulation with the USD/BTC ex-

change rate being $6,366. Therefore, Bitcoin’s market capitalization

exceeds $109B.

Such rapid growth has made Bitcoin the most successful digital

currency. Underpinning Bitcoin’s success is a series of technological

innovations spanning from algorithms, to distributed software, and

to hardware. Amazingly, these innovations were not initiated by

corporations or governments but rather emerged through a grass-

roots collaboration of enthusiasts.

In this section, we introduce the hardware systems that main-

tain the integrity of the Bitcoin blockchain, discuss the relevant

economic forces, and then delve into the fascinating hardware

ecosystem that has emerged—from GPUs to FPGA to custom ASICs.

Greater discussion of Bitcoin’s software and user-experience can

be found in [45, 53].

The latest round of hardware—dedicated ASICs—was financed,

developed, and deployed by Bitcoin enthusiasts which is perhaps an

unprecedented event in recent history. As the value of the Bitcoin

ecosystem grew, the industry rapidly matured and Bitcoin mining

has attained extraordinary scale, equivalent to 3.2 billion high-

end GPU’s. Bitcoin ASIC hardware has co-evolved with datacenter

design and now a majority of the computation is performed in

highly specialized ASIC-filled datacenters that collectively form an

ASIC Cloud [35, 36, 43].

2.1.1 CPU: First Generation Mining. The bitcoin miner source

code is on github, and is surprisingly simple (see https://github.com/

bitcoin/bitcoin/blob/master/src/miner.cpp). The basic computation,

while (1)

HDR[kNoncePos]++;

IF (SHA256(SHA256(HDR)) < (65535 << 208)/ DIFFICULTY)

return;

leverages existing high-performance SHA256 hashing libraries. One

simple optimization employs a mid-state buffer, which hashes the

first part of the block’s header’ which precedes the nonce and has a

constant intermediate hash value. More optimizations are discussed

in [46].

The SHA256 computation takes in 512 bit blocks and performs

64 rounds of a basic encryption operation involving several long

chains of 32-bit additions and rotations, as well as bit-wise func-

tions including xors, majority, and mux functions. An array of 64

32-bit constants are used as well. Each round depends on the previ-

ous round, creating a chain of dependencies between operations.

Although successive SHA256 rounds cannot be parallelized, every
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Figure 1: Le�: An open-air GPU mining rig. Five GPUs are suspended above the motherboards, with riser cables connecting

the GPU’s PCI-E connector to the motherboard below, and a single high-wattage power supply. Center,Right: Two pictures of

a homebrew 69-GPU Bitcoin mining datacenter. Note the ample power cabling, left, and the cooling system, consisting of box

fans and an air duct, right. Photos Credit: James Gibson (gigavps).

nonce can be tested in parallel with each other making this a classic

Eureka-style computation. Furthermore, some operations inside

a round are parallelizable. Typical multicore machines have ex-

tra hardware optimized for less regular computations, resulting in

wasted performance and energy efficiency.

2.1.2 GPU: Second Generation Mining. In October 2010, open-

source miner software for GPUs was released on the web. It was

rapidly optimized and adapted by several open-source efforts. Typi-

cally, this software would implement the Bitcoin protocol as well

as GPU voltage/temperature/error control in a language such as

Java or Python. The core nonce-search algorithm was distributed

as a single OpenCL file (e.g., [10]) that would be compiled down,

by installed runtimes , into the GPU’s hidden native ISA.

Scaling upGPUs.GPUs proved much more accessible than FPGAs

for Bitcoin enthusiasts, requiring only PC-building skills and avid

forum-reading but no formal training in parallel programming or

FPGA tools. After investing time in building a GPU-based mining

rig that is literally minting cash, the natural inclination is to scale

it up.

Efforts to scale BTC hash rate through GPUs pushed the limits

of consumer computing in amazing and novel ways. As described

in [53], a crowd-sourced standard evolved, where 5 GPUs were

suspended over a cheap AMD motherboard with minimum DRAM,

connected via 5 PCI-E 8x-to-1x extender cables to reduce moth-

erboard costs, and using a large high-efficiency power supply to

drive all GPUs. The system was open-air to maximize airflow, as

shown in Figure 1-left. These approaches enabled a low-cost moth-

erboard, CPU, and DRAM combination to be amortized across 5

GPUs, improving capital efficiency.

After optimizing per-GPU overhead, the next scaling challenge

is the prodigious power and cooling requirements of maintaining

many GPUs. With each GPU consuming 300W, the power density

exceeded that supported by both high-density datacenters and

residential electric grids. Most successful Bitcoin mining operations

typically relocated to warehouse space with a large air volume for

cooling and cheap industrial power rates. Figure 1-right shows a

homebrew datacenter consisting of 69-GPU rack that is cooled by

an array of 12 box fans and an airduct.

2.1.3 FPGA: Third Generation Mining. June 2011 brought the

first open-source FPGA bitcoin miner implementations. FPGA are

inherently good at both rotate-by-constant operations, and at bit-

level operations both used by SHA256, but not so good at SHA256’s

32-bit adds.

The typical FPGAminer design replicates multiple SHA-256 hash

functions and unrolls them. With full unrolling, the module creates

different hardware for each of the 64 hash rounds, each of which

was separated by pipeline registers. These registers contain the

running hash digest as well as the 512 bit block being hashed. The

state for a given nonce trial would proceed down the pipeline, one

stage per cycle, allowing for a throughput of one nonce trial (hash)

per cycle.

Hackers developed custom boards that minimized unnecessary

cost due to parts like RAM and I/O and focused on providing suffi-

cient power and cooling. These boards attained 215 MH/s rates with

Spartan XC6SLX150 parts, and quad-chip boards were developed

to reduce board fabrication, assembly and bill-of-materials costs,

reaching 860 MH/s at 216 MHz and 39 W, and costing $1060.

Another manufacturer, Butterfly Labs (BFL), based in Kansas,

offered a non-open-source version that cost $599 with similar 830

MH/s performance. BFL was by all accounts the most successful

commercial FPGA miner vendor.

Unfortunately, FPGAs had trouble competing on cost per GH/s

with high-volume GPUs that were on more advanced process nodes

and often would go on sale at NewEgg. FPGA had superior energy-

efficiency by as much as 5×, breaking-even on total cost of owner-

ship (TCO) after a year or two.

The reign of FPGAs was brief because ASICs arrived soon after,

providing orders of magnitude cost and energy-efficiency improve-

ments.

2.1.4 The Race to ASIC:

Fourth Generation Miners. Three companies came to market with

ASIC miners in very close succession. The designs were based

loosely on FPGA-based miners. Because ASICs had such an enor-

mous benefit over prior devices, the emphasis was to get a working,

not necessarily optimal, design out as quickly as possible. To under-

stand the relative benefits of GPU and ASIC performance, cost, and

energy for Bitcoin, especially as process geometries shrink, refer

to [35, 43].
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Figure 2: Le�: A USB hub hosting an array of ASICMINER Block Erupter USB-stick style bitcoin miners, and a USB-powered

cooling fan. Each USB-stick uses a 130-nm ASIC that hashes at 330 MH/s, or about half the performance of $450 28-nm AMD

7970 GPU. Right: Bitmain Antminer machine with two parallel sea-of-ASICs PCBs. Photo Credits: DennisD7, and dogie of

bitcointalk.org.

Butterfly Labs (BFL) BFL was first to announce an ASIC prod-

uct line, confident from their prior FPGA product line success. BFL

took pre-orders in June 2012 for three types of machines; $149

Jalapenos rated at 4.5 GH/s, $1,299 SC Singles rated at 60 GH/s

and $30K SC MiniRigs rated at 1,500 GH/s. At these prices, the

machines could generate 20-50× more bitcoins per dollar invested

versus GPUs. The pre-order funds, which exceeded $250K on day

one, presumably covered the considerable ∼500K NRE mask costs

for BFL’s 65-nm GLOBALFOUNDRIES process.

The BFL chip used in all three products contained 16 double-

SHA256 hash pipelines. The die was 7.5 mm on a side, and placed

into a 10x10 mm BGA 144 package.

Surprises. BFL initially targeted Nov 2012 for product ship date,

however the schedule repeatedly slipped after setbacks and delays

from the ASIC foundry, packaging and BFL itself. It took almost

until Nov 2013 to clear the order backlog. A major cause was that

the chip’s power consumption was 4–8× expected, requiring a

redesign of all ASIC systems. For example, the Jalapenos, slated to

use one chip, shipped with two chips to meet the 4.5 GH/s rate, and

they typically operated at 30 Watts, close to 6W per GH/s.

ASICMINER

The ASICMINER Bitcoin effort started in early July, after BFL

had started taking pre-orders for their machines, and consisted of

three Chinese-national founders. A key motivation was to prevent

BFL from being the sole Bitcoin ASIC purveyor and controlling the

blockchain. Their approach was quite different than BFL’s; they

intended not to sell hardware initially, but to run an ASIC datacenter

that mined Bitcoin on behalf of shareholders. This is arguably the

earliest example of an ASIC Cloud. This approach, eliminating the

need to ship HW to customers, won them the race to large-scale

deployment.

Lacking BFL’s name recognition, they raised funding through

online forums, namely bitcointalk.org, and also some Chinese-

language forums. They carefully outlined their plan for developing

an ASIC, and responded to hundreds of questions by the online com-

munity, regarding their business model, their technical decisions,

and their financial trustworthiness. This paper [53] summarizes

the openly-posted developments.

The IPO closed Aug 27, selling 163,962 shares, roughly equivalent

to 160K USD.

By Feb 14, they had 2Th/s chip deployed and hashing. Officially

the ASIC Bitcoin movement was in full force! First they sold boards

from their datacenter, but later they developed a USB miner stick,

the Block Erupter, containing a single ASIC, which sold initially for

2 bitcoin in large lots to be resold by others, and rapidly dropped in

price. Figure 2-left shows a USB hub hosting an array of ASICMiner

Block Erupter USB-stick style bitcoin miners, and a USB-powered

cooling fan. Each USB-stick uses a 130-nm ASIC that hashed at 330

MH/s at 1.05 V and 2.5 W, which is 40× more energy efficient than

the 28-nm AMD 7970 GPU, and 4.4× cheaper per GH/s.

ASICMINER shares reached 4 BTC each in October 2013, sig-

nifying a 40× return to the initial investors, in BTC. Of the three

efforts, clearly ASICMINER was the most innovative in trying out

new ASIC products and business models.

Avalon

The Avalon company was another grass-roots effort that secured

funding by direct Internet pre-sales of units via an online store. A

key founder, ngzhang, established his reputation with the design

of a top Bitcoin FPGA board, Icarus.

They focused on an 110-nm TSMC implementation of a single

double-SHA256 pipeline, measuring 4 mm on a side, and packaged

300 chips across 3 blades inside a 4U-ish machine. Like ASICMiner,

they were based in Shenzhen, China. They ran pre-order sales for

300 rigs, each selling for $1299 each, or 108 bitcoin at the time, and

hashing at 66 GH/s on 600W.

They taped out slightly after ASICMiner, with a target date of

Jan 10. On Jan 30, 2013, Jeff Garzik, a Bitcoin developer, was the first

customer in history to receive a Bitcoin ASIC mining rig, which

earned ∼15 BTC the first day.
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involves a tremendous amount of computation which makes gen-

eral purpose CPUs inefficient. Fortunately, deep learning algorithms

are well structured and can be accelerated using specific computer

architectures. Recently, many companies like Google, Graphcore,

Horizon, Bitmain, and others have been developing dedicated hard-

ware architectures and chips that can train and deploy deep learning

models with more than one order magnitude better efficiency when

compared with traditional CPUs and GPUs.

While there are many deep-learning accelerators for inference,

GPUs have dominated training acceleration until the reveal of the

TPU.

Google announced the TPU version 1 in 2016 and published their

results at the International Symposium on Computer Architecture

(ISCA) in 2017 [33]. The results showed about 15-30× better perfor-

mance and 30-80× better performance-per-watt when compared to

CPUs and GPUs. These improvements enabled the ability to run

large neural networks at a relatively low cost and at scale.

Google’s TPUwas taped out in 28nm and achieves 700MHzwhile

drawing 40W. It was deployed as an accelerator plug-in card and

uses a 12.5 GB/s PCIe Gen3 x16 PCIe interface.

2.2.1 Architecture, Implementation and So�ware of TPU. Most

Deep Learning processing is ultimately memory-bound. To increase

the memory bandwidth, two arrays of DRAM chips are placed

closely to the TPU chip, as shown in Figure 3 (b). The card interacts

with the host via a high speed PCIe bus, receiving TPU instructions

and data to execute rather than having an on-board standalone

CPU.

The TPU can be seen as a special matrix multiply accelerator.

Figure 3 (a) shows the TPU’s floorplan. It mainly consists of a 24 MB

Unified Buffer, a Matrix Multiply Unit and other auxiliary units. The

24 MB Unified Buffer holds temporal data and takes up a third of

the die area. The 24 MB size was chosen to match the dimension of

the Matrix Multiply block and to simplify compilation. The Matrix

Multiply Unit uses a systolic array micro-architecture which can

compute GEMM effectively and takes up a quarter of the die area.

Figure 3 (b) shows the TPU mounted on a its PCB which plugs into

servers using a PCIe connector.

The TPU software stack is divided into User Space and Kernel

Space Drivers. The low-level Kernel driver directly interacts with

the hardware and is only responsible for primitive memory access

and interrupts. This lightweight interface is designed for long-term

compatibility. In contrast, the User Space Driver supports multiple

APIs to run the applications that are originally developed for CPUs

and GPUs so it changes often. It invokes and checks TPU execution,

reshapes data, translates API calls into TPU instructions binaries.

The User Space driver is more like a JIT runtime, it compiles a model

the first time it is deployed, caching the binaries and transmitting

the weight parameters into the TPU; subsequent invocations do

not require this overhead.

With a dedicated accelerator architectures, the power efficiency

of TPU is about 1 order of magnitude better than that of CPUs

(Intel Haswell) and GPUs (Nvidia Tesla K80). The K80 server is 1.7×

- 2.9× better than a Haswell server while a TPU server has 17× -

34× better than Haswell server in terms of total-performance/Watt,

which makes the TPU server 14× - 16× power efficient than the

K80 server [33].

chip TPUv1 TPUv2 TPUv3

Announced 2016 May-17 May-18

Access Internal-Only Service-Beta Undisclosed

Nodes 28nm 20nm est. 16/12nm est.

Die Size 300mm
2 Undisclosed Undisclosed

Data Precision INT8/INT16 bfloat16 bfloat16

Performance 92/23 TOPS 45 TOPS 90 TOPS

Memory 8GB DDR3 16GB HBM 32GB HBM

CPU Interface PCIe3.0 x16 PCIe3.0 x8 PCIe3.0 x8 est.

Power 40W 200-250W est. 200W est.

Table 3: Comparison of TPUs, Data source: Paul Teich,

TEARING APART GOOGLE’S TPU 3.0 AI COPROCES-

SOR [57]. Deep learning is memory centric. New versions

have larger memories. The ’bfloat16’ is a float point format

used only in TPU, which consists of 8 bits exponent and 7

bits mantissa.

2.2.2 The Economics of the TPU. Even though it took long time

to design the first TPU, Google quickly released its successors in

next two consecutive years. Table 3 shows estimated metrics for

three TPU generations.

While the TPU had attained better power efficiency then GPUs,

it continued to be improved in the latest generations. The cloud

economics greatly benefited from TPU’s power efficiency improve-

ments and today, the TPU is available on the Google Cloud via

virtual machine instances with relatively low prices.

Table 2 shows the cost of using GPU and TPU. The GPU (Nvidia

Tesla V100s) is from AWS (V100s are not yet available on the Google

Cloud). Based on the processing ability (images per seconds), we

can compute the number of images per $ that can be processed on

the different platform. From Table 2 we can see that the Cloud TPU

is a clear more cost effective. However, for a certain deep learning

model, training is a progress with improved accuracy along time.

To reach a certain accuracy, the time needed may vary among these

platforms. To compare the cost more reasonably, we assume an

acceptable solution at 75.7% for ImageNet [39] (the best accuracy

achieved by the GPU implementation), and then we can calculate

the cost to achieve this accuracy based on required epochs and

training speed.

Figure 4 compares the total cost to achieve this accuracy with

GPU and TPU. It is clear that with TPU the total cost is almost

halved. Though we are not sure how much is the net profit differ-

ence that Google and amazon are making from these cloud services,

the TPU clouds are more cost effective in theory.

3 GENERAL ASIC CLOUDS DESIGN
METHODOLOGY

We have demonstrated that ASIC Clouds not only increases the

performance of the target application but also reduces the TCO.

Nevertheless, the high NRE costs of ASIC Clouds and long time-to-

market often make it a one-time investment, precluding multiple

optimization iterations. In this section, we discuss how can we

design an optimal ASIC Cloud with constraints for applications

with varying features (e.g, computation bound or memory bound).
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Figure 4: Cost of training with TPU and GPU. Data source:

Elmar Hauβmann, Comparing Google’s TPUv2 against

Nvidia’s V100 on ResNet-50 [30]. The task is to classify Im-

ageNet dataset into one of 1000 categories, like Humming-

bird, Burrito, or Pizza. The dataset consists of about 1.3 mil-

lion images for training (142 GB) and 50 thousand images

for validation (7 GB). The GPU reaches the final accuracy of

75.7% after 84 epochs, while the TPU implementation only

needs 64 epochs to reach this accuracy [30].

3.1 General Architecture of an ASIC Cloud

At the heart of any ASIC Cloud is an energy-efficient, high-

performance, specialized replicated compute accelerator, or RCA,

that is multiplied up by having multiple copies per ASICs, with

multiple lanes of ASICs per server, multiple servers per rack, and

multiple racks per datacenter. Work requests from outside the data-

center will be distributed across these RCAs in a scale-out fashion.

Figure 5 shows the architecture of a basic ASIC Cloud. Looking

inside the racks, each server contains an array of specialized ASICs

arranged on a customized printed circuit board along with DC/DC

converters . The servers are powered by high-efficiency power sup-

ply units (PSU) and contain cooling systems comprised of inlet fans

and customized heatsinks on each ASIC. In each customized ASIC,

there is a router for off-ASIC communication, a control plane that

schedules and distributes off-ASIC workloads across the RCA’s, as

well as an on-ASIC interconnection network. A control processor

or FPGA schedules computation and feeds the ASICs–and DRAMs

if applicable–from an off-PCB network .

3.2 Design Metrics and Trade-offs

For scale-out ASIC Cloud servers, the die area, power budget and

performance of each individual chip is not critical, so long as the

workload’s latency, throughput and cost requirements are met . By

examining the TCO of the target computation, we can optimize

across process nodes and correctly weigh the importance of cost-

efficiency, energy-efficiency, and NRE to attain cost savings in an

ASIC Cloud workload. The maximum transistors per die metric

excludes nodes that do not have sufficient transistor density to fit

even a single accelerator. Similarly, the transistor frequency metric

"ASIC Clouds: Specializing the Datacenter," Magaki, Khazraee, Gutierrez, and Taylor. In
International Symposium on Computer Architecture, pp. 178-190., June 2016

serves to filter out process nodes that do not offer the required

single-accelerator performance or latency.

Overview. Figure 6 examines various metrics based on data we

collected from four sources in order of preference: 1) CAD tool sim-

ulations in our lab, 2) disclosure of technical details 3) interviewing

industry experts, and 4) using CMOS scaling to interpolate missing

data points.

For CMOS scaling, the factor S refers to the ratio of featurewidths

of two nodes; for example, given 180nm and 130nm, S=180/130=1.38×.

Typical scaling factors between successive nodes are often assumed

to be S=1.4×. Typically, transistor count increases with S
2, transis-

tor frequency with S , and transistor capacitance (and energy per

op at a fixed voltage) decreases with S .

Because of our use of historical and current data rather than pre-

dictive scaling theory, our nodes are different than typical scaling

theory nodes, reflecting the reality of available process technology.

In today’s nodes, 40nm has supplanted 45nm, 28nm has supplanted

32nm, and 16nm FinFET has supplanted 20nm.

Although most of the tech node feature widths are spaced by

S=1.4×, 65nm and 40nm are spaced by S=1.6×, and 28nm and 16nm

are spaced by S=1.75×. Accordingly, we have plotted the data on a

log-log plot with the X axis plotting feature width. Thus a straight

line with slope of 1 indicates feature-width-proportional scaling. For

mask costs, we have standardized on 9 metal layers if the process

supports it, and otherwise the maximum number of layers for older

processes (i.e. 5 layers for 250nm and 6 layers for 180nm). More

metal layers entails more masks, incurring more NRE.

Due to the nature of CMOS scaling, these metrics improve ex-

ponentially with more advanced process nodes. At the same time,

mask NRE worsens exponentially as nodes advance. The space from

250nm to 16nm spans a 89× range inmask cost, a 152× range in

energy/op, a 28× range in cost per op/s (558× for non-power

density limited designs), a 256× range in maximum acceler-

ator size in transistors, and a 15.5× range in maximum transis-

tor frequency. Note that the Y axis typically spans two decades

of range, but frequency is only slightly more than one decade, and

transistor count spans a full three-decades.

Mask Costs. Figure 6-A and Table 6 show mask costs, which range

from ∼65K for 250nm to almost ∼6M for 16nm. Mask cost scal-

ing with feature width actually varies widely, as indicated by the

varying slope of the segments. For example, 65nm and 40nm are

particularly cheap steps, and 180nm to 130nm is a large step, rela-

tive to the previous node. Overall, mask cost multiples are smaller

after 90nm than before, possibly because the number of metal layers

has stabilized.

Energy per Op. As can be seen in Figure 6-B, energy per op (e.g.

CV
2) improvements are markedly different after 90nm. This co-

incides with the end of Dennard scaling [59] after 90nm. Prior to

90nm, energy improvements were driven by S voltage scaling and

by S capacitance scaling, and in 65nm and later, they are driven

by S capacitance scaling and only marginal voltage scaling (about

1.04× per node, post-Dennard scaling, as shown in Table 4). Thus,

Tech Node (nm) 250 180 130 90 65 40 28 16

Nom. Vdd (V) 2.5 1.8 1.2 1.0 1.0 0.9 0.9 0.8

Table 4: Real nominal supply voltages for each tech node.
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Table 5: CPU Cloud vs. GPU Cloud vs. ASIC Cloud Deathmatch.

Application Perf. Cloud HW Perf. Power Cost ($) lifetime Power/ Cost/ TCO/

metric (W) (years) op/s. op/s. op/s.

Bitcoin GH/s C-i7 3930K(2x) 0.13 310 1,272 3 2,385 9,785 20,192

Bitcoin GH/s AMD 7970 GPU 0.68 285 400 3 419 588 3,404

Bitcoin GH/s 28nm ASIC 7,341 3,731 7,901 1.5 0.51 1.08 3.22

Litecoin MH/s C-i7 3930K(2x) 0.2 400 1,272 3 2,000 6,360 16,698

Litecoin MH/s AMD 7970 GPU 0.63 285 400 3 452 635 3,674

Litecoin MH/s 28nm ASIC 1,164 3,401 12,620 1.5 2.92 10.8 23.7

Video Transcode Kfps Core-i7 4790K 0.0018 155 725 3 88,571 414,286 756,489

Video Transcode Kfps 28nm ASIC 159 1,654 6,482 1.5 10.4 40.9 87.0

Conv Neural Net TOps/s NVIDIA Tesla K20X 0.26 225 3,300 3 865 12,692 8,499

Conv Neural Net TOps/s 28nm ASIC 235 1,811 2,538 1.5 7.70 10.8 42.6

3.5 ASIC Clouds design examples

Our recent paper [43] examines the design of four types of ASIC

Clouds with diverse needs. In this paper we summarize these re-

sults. Bitcoin ASIC Clouds require no inter-chip or inter-RCA band-

width, but have ultra-high power density and have little to no

on-chip SRAM. Litecoin ASIC Clouds are SRAM-intensive and have

lower power density. Video Transcoding [34] ASIC Clouds require

DRAMs next to each ASIC and high off-PCB bandwidth. Finally,

our DaDianNao-style [19] Convolutional Neural Network ASIC

Clouds make use of on-ASIC eDRAM and HyperTransport links

between ASICs to scale to large multichip CNN accelerators.

We evaluated all server configurations spanning the design space

for total silicon area per lane, total chips per lane, and all operating

voltages from 0.4 up in increments of 0.01V, and pruning those

combinations that violate system requirements, e.g., thermals.

In Table 5, we compare the performance of CPU Clouds versus

GPU Clouds versus ASIC Clouds for the four applications that we

presented. ASIC Clouds outperform CPU Cloud TCO per op/s by

6,270x; 704x; and 8,695x for Bitcoin, Litecoin, and Video Transcode

respectively. ASIC Clouds outperform GPU Cloud TCO per op/s

by 1057x, 155x, and 199x, for Bitcoin, Litecoin, and Convolutional

Neural Nets, respectively.

3.6 When do we go ASIC Cloud?

Given these extraordinary improvements in TCO, what determines

when ASIC Clouds should be built? We have shown some clear

examples of planet-scale applications that could merit ASIC Clouds.

The key barrier is the cost of developing the ASIC Server, which

includes both the mask costs (we estimate about $ 1.5M for a 28

nm mask), and the ASIC development costs, which collectively, we

term the non-recurring engineering expense (NRE).

We propose the two-for-two rule. If the cost per year (i.e. the TCO)

for running the computation on an existing cloud exceeds the NRE

by 2X, and you can get at least a 2X TCO per op/s improvement,

then going ASIC Cloud is likely to save money. Essentially, as the

TCO exceeds the NRE by more and more, the required speedup to

breakeven declines. As a result, almost any accelerator proposed in

the literature, no matter how modest the speedup, is a candidate

for ASIC Cloud, depending on the scale of the computation.

The promise of TCO reduction via ASIC Clouds suggests that

both Cloud providers and silicon foundries would benefit by invest-

ing in technologies that reduce the NRE of ASIC design, including

open source IP such as RISC-V, in new labor-saving development

methodologies for hardware and also in open source backend CAD

tools. With time, mask costs fall by themselves, and in fact older

nodes such as 40 nm are likely to provide suitable TCO per op/s

reduction, with half the mask cost and only a small difference in

performance and energy efficiency from 28 nm.

4 GENERAL ASIC CLOUDS DEPLOYMENT
CHALLENGES

The feasibility of an ASIC Cloud for a particular application is

directly gated by the ability to manage the Non-Recurring Engi-

neering (NRE) costs of designing and fabricating the ASIC such that

it is significantly lower (e.g. 2×) than the TCO of the best available

alternative.

In this section, we show that technology node selection is a major

tool for managing ASIC Cloud NRE and allows the designer to trade

off an accelerator’s excess energy efficiency and cost performance

for lower total cost. We explore NRE and cross-technology opti-

mization of ASIC Clouds. We address these challenges and show

large reductions in the NRE, potentially enabling ASIC Clouds to ad-

dress a wider variety of datacenter workloads. Our results suggest

that advanced nodes like 16nm will lead to sub-optimal TCO for

many workloads, and that use of older nodes like 65nm can enable

a greater diversity of ASIC Clouds. Although research in acceler-

ators has been widespread, translation of these accelerators into

commercial practice has proven challenging for two key reasons:

deployment friction and Non-Recurring Engineering (NRE) costs. In

this section, we discuss recent trends that have reduced deployment

friction and then examine minimizing all costs required to create

and deploy an ASIC accelerator.

4.1 The Friction in deploying ASIC Clouds

We employ the term deployment friction to refer to the difficulty

of deploying these accelerator designs into a real-world computing

ecosystem. For accelerators that target client devices, deployment

of a researcher’s accelerator often requires convincing Apple, Intel,

or Qualcomm to add the accelerator to their high-volume SoCs, a

difficult technology transfer problem with complex social and eco-

nomic aspects. Beyond the standard organizational barriers, these

companies must be convinced that customers will pay extra money

to provide sufficient additional profit over the increased cost across

a large number of price-sensitive parts. In many cases, emerging

applications may not have achieved sufficiently wide-spread use
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Figure 8: NRE Cost Breakdown Across Tech Nodes. Mask costs rise rapidly for newer technology nodes and become the dom-

inant part of NRE. IP, CAD Tool and Labor Costs are application-dependent but can dominant mask costs in older nodes.

Frontend labor and CAD is constant across nodes. IP costs for DDR and PCI-E/HyperTransport for newer nodes rises quickly.

Tech 250nm 180nm 130nm 90nm 65nm 40nm 28nm 16nm

Mask cost ($) 65K 105K 290K 560K 700K 1.25M 2.25M 5.70M

Cost per wafer ($) 720 790 2,950 3,200 3,300 4,850 7,600 11,100

Wafer diameter (mm) 200 200 300 300 300 300 300 300

Backend labor cost per gate ($) [32] 0.127 0.127 0.127 0.127 0.127 0.129 0.131 0.263

Table 6: Wafer and mask costs rise exponentially with process node in early 2017. Backend cost per gate jumps with double-

patterning.

Based on our analysis, frontend labor costs do not vary much

with technology node, and relate more to design complexity (as

measured imperfectly in lines of code, functional blocks, or gates.)

For backend labor costs, costs scale with the number of unique

design gates being mapped to the die, and by the complexity of

the target node. Advanced nodes like 16nm that employ double-

patterning suffer an additional multiplier based on greatly escalated

back-end design costs. Since the ASIC Clouds employ regular arrays

of accelerators on-die connected by a simple NoC (Network on

Chip), we assume a hierarchical backend CAD flow that scales with

RCA complexity rather than raw instance count on the die. A fixed

gate count overhead is considered for I/O and NoC at the top-level

of the chip. Frontend and backend labor salary rates as well as

top-level overheads are shown in Table 7. 65% overhead is assumed

for employee benefits and supplies.

Tool Costs. The tool costs include the frontend tools (e.g. Verilog

Simulation and Synthesis), backend tools (e.g. RTL-to-GDS tools

like Synopsys IC Compiler or Cadence Innovus), and PCB design

tools. Of these tools, the backend tools are by far the most expensive.

The model described in [32] gives the total backend labor cost in

terms of gates. To calculate the required man-months for backend

CAD tools, we divide the backend cost by the backend labor salary.

IP Costs. Each application’s IP licensing cost depends on that appli-

cation’s specific IP requirements. Almost all accelerators will need

standard cells (e.g. VLSI layouts for the gates, and basic LVCMOS

I/O cells) and generator programs for making SRAMs. Typically,

these are provided free for nodes at 65nm and older, and cost $100K

or so for advanced nodes at 40nm & up. Designs that use fast (>

150 MHz) clocks need an internal PLL. For systems that use DRAM,

two IP blocks are required: a DRAM controller, and a DRAM PHY,

the mixed-signal block that does high-performance signaling out-

side the chip. Similarly, for high-speed interfaces like PCI-E or

HyperTransport, a controller and PHY IP block are required. Simple

applications like Bitcoin may not need any IP beyond the standard

cells, while a video transcoder might require a DRAM PHY, and

a neural network ASIC Cloud might require a PCI-E or Hyper-

Transport block. These IP costs greatly escalate the NRE of these

accelerators. Table 8 shows typical IP licensing costs.
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Frontend Labor Salary [2] $/yr 115K

Frontend CAD Licenses $/Mm 4K

Backend Labor Salary [2] $/yr 95K

Backend CAD Licenses $/month 20K

Overhead on Salary 65%

Top-level gates 15K

NRE, flip-chip BGA package $ 105K

Table 7: Node-independent NRE parameters in San Diego,

CA in late 2016. Mm=man-month. Backend Tools are more

expensive than the people using them. Flip-chip packages

add significant NRE.

IP Cost Correlation with Nodes. In our investigation illustrated

by Figure 9, we have found that IP costs rise rapidly as the

technologynode increases, and that themost expensive IP blocks

in general are PHY blocks found in PCI-E and DDRs. For 180nm

and 250nm, no DDR DRAM blocks are available, and so a free SDR

controller suffices. At advanced nodes like 16nm PCI-E and DDR

cost almost $1M.

Based on the aforementioned NRE model, we now can estimate

the NRE cost for different ASIC Clouds. NRE cost breakdown across

nodes and applications is shown in Figure 8. The trend clearly shows

that the overall NRE cost rapidly increases as technology node

advances and that mask costs for newer nodes become the dominant

part of NRE. Labor, tool costs, IP costs and system NRE vary widely

between applications but with the exception of backend labor in

16nm and PHY IP, is relatively constant across nodes. Figures 9 and 8

show how IP prices scale across tech nodes.

Tech Node (nm) 250 180 130 90 65 40 28 16

DRAM Ctlr NA NA 125 125 125 125 125 125

DRAM PHY NA NA 150 165 175 280 390 750

PCI-E Ctlr NA NA 90 90 125 125 125 125

PCI-E PHY NA NA 160 180 325 375 510 775

PLL 15 15 15 20 30 50 35 50

LVDS IO 7.5 7.5 0 150 90 36 40 200

Standard

Cells, SRAM 0 0 0 0 0 100 100 100

Table 8: IP Licensing Costs increase with advancing Technol-

ogy Nodes. Commonly used IP licensing costs across tech

nodes, in late 2016, thousands of USD. Costs generally rise

with node, but there are some irregularities.
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Figure 9: IP Licensing Costs increase with advancing Tech

Nodes. High-speed I/O blocks rise exponentially.

4.3 Mask Cost reduction

The rich menu of available nodes means that we have an equally

rich tradeoff space that links mask cost NREs, energy efficiency (i.e.

joules per operation), cost efficiency (i.e. $ per op/s, a function of

frequency, transistor count and wafer cost), maximum transistor

count per accelerator, and frequency (i.e. serial performance per

accelerator).

Our data suggests that using the latest node (e.g. 16nm) for an

emerging datacenter accelerator can be a mistake. For example,

our results show that 16nm was optimal only for TCOs starting at

$805M for Litecoin and reaching a geomean of $6.36B across all

four applications. Effectively, by choosing an advanced node to do a

study, a researcher is setting too high of an NRE on the technology,

preventing a prospective company or investor from adopting the

technology. Rather, the optimal node must provide just enough TCO

improvement over the baseline. Moreover, reduced NREs allow an

ASIC Cloud to be more agile, updating ASICs more frequently to

track evolving software.

5 CONCLUSION

Datacenter and ASIC co-development has sparked the interest for

researchers and industry for several reasons. First, the datacenter

provides a low-friction deployment surface for ASIC developers;

eliminating the worry about varying customer environments (tem-

perature, customs and certifications, making the system 220V/110V

compatible, setup guides, tech support, shipping, returns, war-

ranties...) and enabling new kinds of optimizations for cost, energy

efficiency and performance. Second, the time to market for an ASIC

is significantly reduced if the product does not have to be pack-

aged, troubleshooted and shipped to the customer. Third, quicker

time time market means earlier profits which is critically important

with highly competative markets such as cryptocurrencies where

the network hashrate is increasing exponentially and the bulk of

the profits are early on in a machine’s life. Finally, meeting strict

performance targets in an ASIC design is challenging and must be

met before shipping which leads to product delay and a reduction

in the ASICs time-to-live.

Bitcoin mining and the TPU are two examples of the emerging

class of planet-scale computations being optimized on ASIC clouds.

Companies like Apple, Facebook and Google are deploying planet-

scale applications like Facebook Live, Siri, and Google Brain. Like

Bitcoin, these applications scale-out as the number of people using

these systems increases. Ultimately the total cost of ownership

(TCO) of the computation becomes so large that it makes economic

sense to build specialized ASICs to reduce hardware cost and power

consumption. Recent ASIC Cloud research [35, 36, 43] extracts

lesson from the history of Bitcoin miners and shows how these

same ideas can apply to other planet scale workloads. The future

of ASIC Clouds is bright, in part due to the many pioneers who

took financial, legal and technical risks to accelerate the Bitcoin

hardware ramp and design an entirely new class of planet-scale

hardware.
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