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Abstract
We introduce an approach to designing FPGA-accelerated

middleboxes that simplifies development, debugging, and per-
formance tuning by decoupling the tasks of hardware ac-
celerator implementation and software application program-
ming. Shire is a framework that links hardware accelerators
to a high-performance packet processing pipeline through a
standardized hardware/software interface. This separation of
concerns allows hardware developers to focus on optimizing
custom accelerators while freeing software programmers to
reuse, configure, and debug accelerators in a fashion akin to
software libraries. We show the benefits of Shire framework
by building a firewall based on a large blacklist and porting
the Pigasus IDS pattern-matching accelerator in less than a
month. Our experiments demonstrate Shire delivers high per-
formance, serving ∼200 Gbps of traffic while adding only
0.7–7 microseconds of latency.

1 Introduction

FPGAs have become the preferred platform for high-speed
packet processing due to their flexibility: middleboxes per-
form a wide variety of network functions, many of which
require hardware acceleration to function at today’s line rates.
For example, intrusion detection systems (IDS) leverage hard-
ware acceleration for signature matching [17, 31] and SD-
WAN middleboxes [15] rely on hardware acceleration to sup-
port encrypted tunnels. Critically, FPGAs—as opposed to
ASICs—also make it possible for vendors to update their mid-
dleboxes after deployment. For example, release notes from
Palo Alto Networks indicate they have patched a variety of
FPGA bugs in their deployed firewalls [16].

Despite their popularity, there are several challenges to ef-
fectively employing FPGAs in network middleboxes. Perhaps
the most fundamental is the need to parallelize operations
to meet the throughput requirements of line-rate packet pro-
cessing. FPGA logic operates 4–10× slower than ASICs (e.g,
250 MHz vs. 1–3 GHz). Therefore, to achieve 100-Gbps or
greater throughput, middlebox developers are forced to ar-
range individual accelerators into a carefully crafted parallel
packet processing pipeline. This elaborate orchestration also

makes maintaining FPGA middleboxes challenging because
any changes to accelerator implementation or middlebox logic
will likely require a hardware programmer to redesign the en-
tire pipeline to maintain the same performance.

Unfortunately, existing FPGA packet processing frame-
works such as ClickNP [11] and HxDP [3] do not address
this challenge: they still require developers to manually or-
chestrate packet processing pipelines—a task typical network
software programmers are ill-equipped to handle. Indeed, Mi-
crosoft “found the most important element to successfully
programming FPGAs has been to have the hardware and
software teams work together in one group” [5]. As further
evidence of the complexity of this task, the Pigasus 100-Gbps
IDS middlebox [31] took two years to develop.

We present Shire, a programming framework that both sim-
plifies the development and improves the performance of mid-
dleboxes that employ custom FPGA-based hardware accel-
erators. Shire abstracts away the packet-processing pipeline
so hardware developers can focus on implementing accelera-
tors following a familiar packet-based DMA interface. Soft-
ware programmers can then integrate these accelerators into
packet-processing pipelines on RISC-V cores through a C-
based API (Section 3). Scheduling and data movement are
managed by the Shire framework and implemented in our
runtime that meets the physical constraints of large FPGAs
(Section 4). Shire leverages the packetized nature of network
traffic to achieve line rate. Packets represent natural units of
concurrency and Shire allows the runtime to exploit them
without requiring developers to explicitly manage it. More-
over, by invoking multiple instances of the same accelerator in
a pipelined or concurrent fashion, Shire increases the number
of cycles available to a hardware designer.

Shire makes it possible to use existing hardware accelera-
tors to process network traffic at 200 Gbps. We implement our
runtime on the Xilinx XCVU9P 200-Gbps FPGA and demon-
strate that we can instantiate 16 parallel packet processors
running at 250 MHz providing a 16× increase in clock cycles
available to process each packet (Section 5). For payloads of
128 bytes, Shire can can process—and generate—packets at
a line rate of 200 Gbps; 65-byte minimum-sized packets can
be forwarded at 173 Gbps. Even at the smallest packet size
our framework adds only ∼0.7 µsec (∼7.1 µsec worst case
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for jumbo packets) of latency (Section 6). We build a firewall
based on a large blacklist and ported the Pigasus IDS’s pattern
matching accelerator in less than a month (Section 7). Shire
is implemented in Verilog with all open-source IP cores; we
will release it as open source at the time of publication.

2 Background and motivation

The primary benefit of FPGAs is programmability: middlebox
developers can use FPGAs to avoid the development costs as-
sociated with creating an ASIC. Historically this programma-
bility came at the cost of performance and capability: FPGAs
have slower clocks and smaller logic and memory capacity
than ASICs. In this section, we explain why FPGAs have
recently become popular for high-performance 100-Gbps+
middlebox implementation and motivate the need for Shire.

2.1 Network-targeted hard logic
Modern FPGA vendors overcame the prior functionality lim-
itations by tailoring FPGA hardware for high-speed packet
processing. In particular, FPGAs now contain ASIC-like hard-
ened logic for communication links, e.g., 100-Gbps Ether-
net and PCI Express PHY/MAC. They also contain larger
(e.g., 8×) memory cells to enable buffering multiple pack-
ets, providing needed slack for complex, long-running packet
processing (e.g., managing different packet sizes) [28].

These network-specific resources, however, are provided
as bare-bones hardware; middlebox developers need to im-
plement their own glue logic from scratch to use them. Shire
hides the complexities of using these networking-specific
hardware elements by integrating them with the Shire runtime.
With Shire, middlebox developers can focus their hardware
effort on accelerator design, and integrate their accelerators
into the runtime using software.

2.2 Higher density complicates development
Similarly, manufacturers addressed clock-speed limitations
by boosting fabric capacity (e.g., logic, memory, and I/O)
through cutting-edge techniques that increase transistor den-
sity on FPGA chipsets [23]. For instance, Xilinx employs
7-nm CMOS process nodes and multiple (2–3) interconnected
FPGA dies to multiply the logic available in a chipset [21].
Middlebox developers can use these additional resources to
increase throughput by parallelizing their implementations.

Unfortunately, scaling up FPGA resources introduces an
additional challenge for developers: they need to provide
hints to the heuristic-based FPGA design tools to help them
find a feasible physical layout for their implementation in the
FPGA’s fabric. Xilinx recommends that developers organize
their designs in an hierarchical fashion [29] and try iteratively
compiling (i.e., synthesizing) different designs and layouts
until they find one where the heuristic-based approach can

satisfy the timing and placement constraints of the FPGA’s
fabric. For large designs typical of middleboxes, each of these
compile runs takes multiple hours; therefore development
iterations to find a feasible design and layout can take days.
These layout decisions are especially difficult when the de-
veloper needs to expand their logic to cross die boundaries as
die interconnects only exist on certain locations.

Developers are also attracted by the promise of partial
reconfiguration—recently termed Dynamic Function Ex-
change (DFX). This feature enables update of only a portion
of the FPGA. Instead of fully pausing the FPGA functionality
during load of bit stream, DFX can help developers reach a
feasible implementation by initially crafting a portion of the
design as a static part, and adding on incrementally with builds
for the configurable regions. However, these approaches intro-
duce additional constraints for selection of those configurable
regions, the interface to that region, and also ensuring the sys-
tem remains stable during the partial reconfiguration process.

The Shire framework significantly reduces the need for
developers to consider layout of their hardware design, reduc-
ing lengthy development cycles. Shire itself only needs to be
laid out for a particular FPGA chipset once. Developers de-
sign and layout their custom hardware accelerators within the
partially reconfigurable regions, dedicated for Shire’s packet
processors.

2.3 Parallelization is challenging

While the increased real estate of modern FPGA makes paral-
lelization possible, actually realizing a parallel design requires
careful orchestration on the part of the middlebox developer.
FPGA hardware development languages (i.e., HLS) have the
potential to assist, but no existing development tool has the
capability to automatically produce performant parallelized
implementations that operate at today’s highest link rates. Mi-
crosoft’s HLS middlebox framework, ClickNP [11] relies on
proprietary Catapult framework, and only operates within an
acceleration unit, called a role. Even still, it requires develop-
ers to manually decide how their hardware accelerators are
pipelined. More to the point, published reports only document
operation at 40 Gbps without partial reconfiguration support,
whereas we demonstrate that middleboxes developed with
Shire can achieve 200 Gbps.

HLS also has the potential to bridge the gap between soft-
ware and hardware development, similar to how Shire pro-
vides a software-like programming interface for hardware
accelerator development. However, HLS is still at its core
a tool that generates Verilog, so the developer needs to be
fully aware of hardware restrictions and dependencies among
different hardware modules when they write their code. More-
over, HLS does not support software-like debug tools, such
as break points or memory dumping. FPGA developers need
to explicitly integrate debugging hardware into their design
if they want visibility into run-time state. Furthermore, HLS
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Figure 1: The Shire framework provides a simplified abstrac-
tion for FPGA-accelerated middlebox packet processing.

designs are typically less performant than developing Verilog
from scratch [11]. However, developers may find HLS useful
in the development of their custom hardware accelerators,
and those HLS-generated accelerators can be placed inside
Shire’s packet processors.

3 Shire abstraction

The centerpiece of Shire is a new hardware abstraction: a
reconfigurable RISC-V core connected to a set of custom
hardware accelerators, all residing inside a partially recon-
figurable hardware blocks. As shown in Figure 1, the Shire
runtime orchestrates packet scheduling, allowing the devel-
oper to focus on the implementation of packet processing
logic. Lightweight functions like parsing and selecting rule-
sets can still be implemented in software, but run on RISC-V
cores instantiated directly on the FPGA where it can invoke
custom hardware accelerators when appropriate. If desired,
the developer can implement custom packet schedulers in
software to assist in steering packets to the appropriate packet
processor to meet locality constraints (e.g., to support stateful
flow-based functionality).

Shire’s C-like programming model benefits all aspects of
the development cycle. In production, software running on
the RISC-V cores can dynamically configure and invoke hard-
ware accelerators. In addition, software running on the host
can dynamically update the accelerators using partial recon-
figuration. During development, hardware developers can
identify and mitigate issues with accelerators by monitoring
the state of accelerators and raising faults that are handled
directly on the soft core. Similarly, software programmers
can use Shire’s simulation framework to test how their code
would work with existing accelerators, without needing to lay
out a full design and running it on actual traffic.

3.1 Architecture of Packet Processors
Figure 2 shows the internal architecture of a packet processor.
Each packet processor contains two primary processing com-
ponents, a RISC-V core, and a set of accelerators that the core
controls. The RISC-V core and the accelerators communi-
cate over two memory-based interfaces: (1) a basic memory-
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Figure 2: Internal architecture of a Shire packet processor

mapped IO for configuring and reading accelerator registers,
and (2) a novel hybrid memory subsystem. The hybrid mem-
ory subsystem (Section 4.1) provides a unified memory for
both the core and accelerators to share packets that are cur-
rently being processed, as well as the state of both the core
(e.g,. stack) and the accelerators (e.g., scratchpad), and the
instructions that the RISC-V core is executing. A “wrapper”
module provides the connection between the packet processor
and the packet distribution subsystem. These modules enable
the Shire framework to schedule and switche packets between
packet processors, the FPGA’s NIC interfaces, and the host’s
DRAM (Section 4.2). The wrapper informs the core about
arriving packets by giving it descriptors, and the core can
send packets back to the packet distribution framework by
giving descriptors with the desired destination to the wrapper.
The wrapper also provides a control interface from the host
to the packet processor, for example, it can read and write the
status registers, and interrupt the processor. The entire packet
processor resides inside a partially reconfigurable region of
FPGA logic, called a PR block, making it possible to replace
it with new accelerators, or a reconfigured RISC-V core.

3.2 Goal: Flexibility
Packet processors provide a well-defined interface for soft-
ware and hardware to interact: the memory interface between
the core and the accelerators. As long as hardware and soft-
ware follow the same interface, either can change, without
affecting the operation of the other. Software can tell an ac-
celerator what data to operate on (e.g., packet) by passing a
pointer—using memory-mapped I/O—to the data’s location
in the hybrid memory. Then hardware accelerator uses its
port to the hybrid memory to read the data it needs using the
address it was given by the software. This effectively brings
to FPGAs the modular hardware accelerator interface used in
SoCs, with the additional benefit of allowing developers to
modify hardware accelerators.

The main challenge with supporting reconfigurability at
runtime is transitioning the state from a running packet pro-
cessor to a new one, without resulting in inconsistent state,
or dropping any packets. To do so, the host sends a signal to
the packet framework to stop sending packets to that specific
packet processor, and interrupts the RISC-V CPU to inform
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it to finish processing the current packet and save its state to
the host via the packet framework. To reconfigure hardware,
the host writes the new bitfile to its PR block in the FPGA.
Then, to reprogram software, the host uses the packet frame-
work to to write directly to the RISC-V core’s instruction
and data memory residing in the hybrid memory subsystem.
After reconfiguring the FPGA, the new RISC-V core boots up,
restores its state by reading it back from host memory, then
the host sends a signal to the packet framework to start send-
ing packets to the core again. If the new hardware was just a
bug fix or optimization, and not a functionality change, the
RISC-V’s execution can start again at the next unprocessed
packet, with all of the previous state retained.

3.3 Goal: Debuggability
An additional benefit of our unified memory architecture is
the ability to support multiple debugging tools and techniques.
For example, at runtime hosts can send an interrupt to tell a
packet processor and its accelerators to stop processing, then
the host can read the state of both the accelerators and CPU by
dumping the entire hybrid memory subsystem. Moreover, our
framework provides 64-bit debug registers that allow the host
and packet processor to communicate directly. For example,
if the hardware hangs (i.e., the packet subsystem), software
on the RISC-V can detect the hang, read the accelerator state,
and put it on the debug channel.

Shire’s architecture also supports a preventive approach to
debugging: simulating an entire packet processor’s operation,
including hardware accelerators, hybrid memory subsystem,
and the RISC-V core controlling them. We build a Python-
based packet processor test bench framework based on Cocotb.
Developers can then link in the hardware accelerators and
software they want to test, and run full simulation of the packet
processor’s operation before deploying on the FPGA. Another
benefit of using python is availability of several libraries,
such as Scapy [2] that we use to generate test cases. We also
provide a python library with the functions available between
host and packet processor.

4 Architectural Components

In this section we describe the architecture components that
make it possible to provide the Shire abstraction without a
significant decrease in link rate or increase in latency over
fully customized FPGA implementations. These components
are designed in particular to work around the relatively slow
clock rates of typical FPGAs (e.g., 250 MHz). The hybrid
memory subsystem inside each packet processor makes it pos-
sible for a relatively slow RISC-V CPU core to keep up with
the high packet rate, and also communicate efficiently with the
high-performance hardware accelerator pipelines. Our packet
distribution framework facilitates running over a dozen par-
allel packet processors, delivering a combined throughput of
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Figure 3: Hybrid memory subsystem in each packet processor

200 Gbps. At the end of this section, we overview the host
software interface to these components.

4.1 Memory subsystem

We observe that accelerators and RISC-V cores have differ-
ent ways of accessing memory. Accelerators usually read the
packet payloads in a streaming manner (e.g., word-by-word
in sequence). The reason is, often accelerators need to process
the entire payload in order, and perform compute-heavy, i.e.,
relatively time-consuming processing. As a result, for accel-
erators we can benefit from using the larger higher-latency
memories (e.g., Xilinx’s “Ultra-RAMs”) that can be pipelined
to hide the latency, and also keep up with line-rate throughput.

In contrast, the RISC-V cores have more random access;
for example parsing a header and deciding on the next field to
read based on the output of that first read. This random read
pattern is very difficult to support with higher-latency mem-
ories. Fortunately, the amount of data in the packet headers
that the cores need access to is much smaller. As a result, we
can use smaller lower-latency memories (e.g., BRAMs) for
the RISC-V cores. This contrast provides an opportunity to
design a tailored memory architecture.

Figure 3 shows an overview of our hybrid memory architec-
ture: we split the memory space into three parts. First, there
are instruction and data memories of the RISC-V core which
are small and can be accessed within a cycle. Then, there is
the large packet memory (center), where the packets arrive at
from the switching system. This memory is shared between
the RISC-V and accelerators, and can be used as a scratch
pad. Finally, accelerators can have local memory loaded by
the switching subsystem for lookup tables or similar.

The DMA engine inside the wrapper has access to all these
memories. This DMA engine is customized to copy an in-
coming packet to the shared packet memory, and also copy
the packet header into the local RISC-V memory. This design
enables the RISC-V core to parse the header with low latency,
while at the same time several accelerators can access the
entire packet from the packet memory in a streaming fashion.
It can also be used to initialize the memories from the host—
before booting the RISC-V core—to load lookup tables, or
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read them back for debugging purposes.
One limitation with FPGA memories is that they only have

two ports. To avoid contention, local RISC-V memories have
a dedicated port to the core, and the other port is used for
the DMA engine to exchange packet-header data and facil-
itate low latency communication among packet processors
(see Section 4.2.2). Since cores sparsely access the packet
memory—e.g., for table look-up once per packet or for change
a value in packets header—we share that port with the DMA
engine and give higher priority to the core. This frees up
the other packet memory port for the accelerators to have
exclusive access. Finally, both ports of the local accelerator
memory are dedicated to the accelerators for faster reads, only
during boot or readback where the accelerators are not active,
can DMA engine uses one of the ports. For accelerator config-
uration or result readback, the RISC-V cores uses a separate
memory mapped I/O (MMIO) channel to perform writes or
reads the accelerators’ registers.

4.2 Packet distribution

Shire’s packet-distribution subsystem internally moves pack-
ets between interfaces and packet processors in an efficient
manner. Figure 4 shows an overview of how packets flow
from interfaces to packet processors. Incoming packets first
arrive at a physical or virtual Ethernet interfaces where the are
assigned a destination packet processor by a programmable
scheduler. For instance, we can implement a balancing sched-
uler that assigns a new packet to the least-loaded core. The
packet is then sent over a sequence of on-chip switches to the
selected packet processor; after processing, another switch
carries the packet to an outgoing interface. There are two
other possible sources and sinks for packets: (1) Host DRAM:
indeed, we reuse the packet switches to move data over PCI-e
to and from the host, and (2) loopback: this is used when a
packet processor wants to send a full packet to another packet
processor, further described in Sec.4.2.2. These interfaces typ-
ically carry much less traffic than network-facing interfaces,

so they can share the same infrastructure without sacrificing
throughput.

As shown in Figure 4, switching is performed in two stages:
first among four clusters and then among four packet pro-
cessors. This is to achieve the required performance with
resource utilization in mind. We implement a separate switch
for each cluster that has full throughput on one side, and four
links running at 1/4th throughput on the other side. By us-
ing separate FIFOs for each incoming link inside this switch,
we enable non-blocking forwarding: each FIFO provides bit-
conversion without blocking the other incoming interfaces.
Thus, the only necessary arbitration is when two input inter-
faces send to the same packet processor. We use round-robin-
policy arbitration by default; it can be replaced with more
sophisticated policies if necessary.

4.2.1 Packet movement

We leverage the packet-based data flow to separate memory
addressing from the switching subsystem. In particular, we
abstract away memory addresses and refer to packet data by a
descriptor or slot number. Similarly, communication between
host DRAM and packet processors is also packetized, using
a different slot number, i.e., DRAM tag. The wrapper imple-
ments address handling and interfacing with the core, as well
as communicating to the scheduler and the host DRAM access
manager. In other words, we split the control functionality
into a central part—the scheduler—and a distributed part each
wrapper, to make it more scalable. Coordination is facilitated
by separate control channels for messages among packet pro-
cessors and packet scheduler, as well as request messages
to host DRAM access manager. These control channels are
shown in Figure 5. The switches have two stages similar to
data-flow switches described in the previous subsection, but
there is no bit-width conversion and simple switches are used.

We can now describe how packets actually flow through the
system. At boot, software running on RISC-V allocates some
slots for packets and notifies the central scheduler about the

5



Host DRAM 
Access 

Manager
Scheduler

Broadcast 
Messaging

Wrapper x16
Pkt Processor

Figure 5: Control messaging flow

number of slots and their maximum size. When the scheduler
assigns a packet to a packet processor, its wrapper notifies the
core of an active a descriptor. When sending out a packet, a
RISC-V core has two options: it can ask the wrapper to send
it out directly, or it can tell the scheduler which slot is ready
to be sent out and scheduler sends the transmit command to
the wrapper. In both cases the wrapper notifies the scheduler
about slot being freed after it is sent out.

4.2.2 Inter-packet processor messaging subsystem

Sharing state across packet processors can be necessary to
implement applications that require stateful packet process-
ing. Unfortunately, due to limited memory and the low clock
rate on FPGAs; replicating incoming packets in the internal
memory of all cores, or benefiting from shared caches are
inefficient and impractical methods to implement.

Our insight is most of the message passing in networked
applications can be put into two categories: (1) copying a
packet or portion of memory to another core, or (2) a short
message to update other cores. In a cached system both of
these can be implemented through coherency. However, we
can take advantage of our packet subsystem to provide similar
functionality. We provide a loopback module that can route a
packet from any packet processor to any other packet proces-
sor. RISC-V cores can use the provided interface to ask the
scheduler for a packet slot of the destination packet processor,
and the packet can be transmitted using the same switching
subsystem system. Inter-core packet messaging can be used
to implement a chain of heterogeneous packet processors with
different accelerators and capabilities.

For the second type of messaging, in cached systems a write
to a location in shared memory would evict that value from
every other core. Later when another core requires that value
it gets the updated value from this core. We simplified this to a
broadcast system, where portion of memory is semi-coherent:
a write to this portion would be propagated to all the other
cores, and they would receive the message at the exact same
time. This system is shown in Figure 5. This simpler method
incurs less contention than a coherent cache. Also a program
can select a range in the shared memory address space to get
interrupts for arrival of such messages, alongside the address
of the incoming data, which helps to separate data and control
messages. Shire also provides a FIFO for these addresses not
to lose their order and new messages addresses, removing the
need to pool the entire shared memory for the new messages.

4.3 Interaction with the framework
Finally we briefly explain different host interfaces available
to the packet distribution framework, and how they can be
used to achieve our flexibility and debuggability goals.

Interface between the host and switching subsystem.
Hosts can read counters for for all the physical and virtual
ethernet interfaces, as well as each packet processor. These
counters read the number of transferred bytes, frames, drops,
or stalled cycles and can shed light to how packets are going
through the system, how the scheduler is distributing them or
where the bottlenecks are.

Interface between the host and user’s scheduler. There
is a read/write channel going from host commands to the
scheduler, with 30 bits of separate address space for write and
read, along side 32 bit write and read values. The user can
fully customize this channel to configure and control their
scheduler during runtime. For instance, we use this channel
to select which cores are used for incoming traffic, which
cores are disabled, or to read number of available slots inside
the scheduler per packet processor and other status registers.
These data helps us to detect freezes or starvation scenarios.
Also we can prepare the scheduler for load of a new packet
processor by flushing the slots in the scheduler.

Customizing the packet distribution framework. The
main flexibility available to developers in the packet distri-
bution framework is to change the scheduler hardware. We
provide TCL scripts to make faster incremental builds from
the base FPGA image with a new scheduler. We also can
customize the number and size of each packet processor; the
user just has to select the PR regions in the FPGA and map
them in the script to the packet processors.

5 Implementation

Our implementation uses a Xilinx Virtex UltraScale+ FPGA
VCU1525 board with an XCVU9P FPGA chip as shown in
Figure 6 and Figure 7. There are 16 and 8 packet proces-
sor versions respectively, where each packet processor has
a unique PR allocation as well as a wrapper next to it for
communicating to the rest of the system. There is another
larger PR block for the scheduler, labeled Scheduler_block.
Note that our current scheduler implementations are basic
and require very few resources, and the rest of reserved area
is empty for potentially a more sophisticated user scheduler.
Reconfiguring scheduler during run time would stop the sys-
tem, and the main role of partial reconfigurability is to isolate
placement and routing. If run time updates more than just a
few parameters are required, there could be a replica to switch
to during partial reconfiguration.
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Figure 6: Layout of components of XCVU9P FPGA with 16
packet processors and Firewall accelerator.

Component LUTs Registers BRAM URAM DSP
Single processor 4588 (0.4%) 3755 (0.2%) 24 (1.1%) 32 (3.3%) 0
Remaining (PR) 23251 (2.0%) 52165 (2.2%) 12 (0.56%) 0 168 (2.5%)

Scheduler 9858 (0.8%) 15119 (0.6%) 0 0 0
Remaining 68526 (5.8%) 143281 (6.1%) 144 (6.7%) 48(5.0%) 576 (8.4%)

Single wrapper 2916 (0.2%) 2935 (0.1%) 0 0 0
CMAC 9132 (0.8%) 13804 (0.6%) 0 18 (1.9%) 0
PCIe 42505 (3.6%) 68502 (2.9%) 110 (5.1%) 32(3.3%) 0

Switching 99320 (8.4%) 126530 (5.4%) 48 (2.2%) 64(6.7%) 0
Complete design 280858 (23.8%) 330995 (14.0%) 542 (25.1%) 626 (65.2%) 0

VU9P device 1182240 2364480 2160 960 6840

Table 1: Base resource utilization for 16 packet processors

There are two main components for the incoming and out-
going interfaces. First, the physical Ethernet interfaces are
connected via MAC modules and FIFOs, colored in green.
Second, there are PCIe modules for connecting to the host for
control, accessing host DRAM, and providing a virtual Ether-
net interface, together colored in yellow. The main component
of the PCIe module is a multi-queue PCIe DMA engine. This
DMA subsystem includes a driver for the Linux networking
stack, enabling operation as a NIC. These components are
provided by the Corundum open-source 100 Gbps virtual
network interface [6].

Finally, the switching subsystem is shown in orange, and
each wrapper is connected to this subsystem; red lines show
a few of these connections. Wider switches are implemented
as 512-bits wide and the narrower switches as 128-bits wide,
which provide max throughput of 128 Gbps and 32 Gbps re-
spectively. There is some overhead for arbitration that reduces
the performance from their maximum values, but remains
above 100 Gbps for the wider interfaces.

Tables 1 and 2 show the utilization breakdown of the 8
and 16 packet processor Shire runtimes. The main blocks, as
well as the average resource utilization per packet processor,
without any accelerators in them. The average remaining
resources per PR block for each packet processor as well as
the remaining resources in the reserved scheduler_block are
also shown. Note that both tables show the Round Robin
scheduler stats, and since for 8 packet processors the amount
of arbitration logic decreases, we see less resource utilization
and even Vivado decided not to use any Block RAMs. We are
able to meet timing at 250 MHz for the design. The only hard
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Figure 7: Layout of components of XCVU9P FPGA with 8
packet processors and Pigasus accelerator.

Component LUTs Registers BRAM URAM DSP
Single processor 4635 (0.4%) 3780 (0.2%) 24 (1.1%) 32 (3.3%) 0
Remaining (PR) 59526 (5.0%) 125100 (5.3%) 90 (4.2%) 32 (3.3%) 384 (5.6%)

Scheduler 9169 (0.8%) 14886 (0.6%) 0 0 0
Remaining 104847 (8.9%) 215514 (9.1%) 180 (8.3%) 96(10.0%) 648 (9.5%)

Single wrapper 3069 (0.3%) 3036 (0.1%) 0 0 0
CMAC 9111 (0.8%) 13800 (0.6%) 0 18 (1.9%) 0
PCIe 42663 (3.6%) 68479 (2.9%) 110 (5.1%) 32(3.3%) 0

Switching 54073 (4.6%) 69809 (3.0%) 36 (1.7%) 32(3.3%) 0
Complete design 179706 (15.2%) 223115 (9.4%) 363 (16.8%) 338 (35.2%) 0

VU9P device 1182240 2364480 2160 960 6840

Table 2: Base resource utilization for 8 packet processors

IP blocks are the SERDES, PCIe and Gigabit CMAC; the rest
are our own open source IP.

We developed an API library to provide the host-based con-
trol of packet processors described in this section. This library
also integrates the Xilinx’s PR-loading tool, MCAP_tool, and
the Corundum 100 Gbps FPGA-to-host NIC driver [6]. There-
fore, user can update a packet processor using the PR-loading,
and initialize the packet processors memories and scheduler
configurations through C code running on the host. We mea-
sured the time to reload a packet processor image using this
library over 20 loads, and find that it takes 756 milliseconds
on average.

6 Evaluation

In this section we evaluate the performance of the framework
through benchmarks to understand the limitations of different
subsystems. We use a round robin scheduler for this evalua-
tion, as well as optimized bare-metal code on the RISC-V to
isolate user defined module overhead from the framework.

Our experiments are conducted using a host with an Intel(R)
Xeon(R) CPU E3-1230 V2 running at 3.3 GHz and a PCIe
Gen 3 x16 expansion bus. We install two separate Xilinx
Virtex UltraScale+ FPGA VCU1525 boards into the PCIe
bus, one serves as a traffic source/sink, while the other runs
the system under test. Both ports of each FPGA are connected
to the other FPGA with a 100-Gbps QSFP+ cable, so each
can send and receive at 200 Gbps.
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Figure 8: Full-throttle packet forwarding performance. Using
(a) 16, and (b) 8 packet processing units.

6.1 Forwarding throughput

First we test the loss-free forwarding performance of the
framework as a function of packet size. We consider packet
sizes ranging from 64–8192 bytes by powers of two (exclud-
ing the 4-byte FCS), the worst case of 65 bytes, and typical
datacenter MTU packet sizes of 1,500 and 9,000 bytes. we
send packets from the tester FPGA at maximum rate on one
or both interfaces and observe what portion of the packets
make it back.

Figure 8 (a) and (b) shows the maximum forwarding rate
as a function of packet size for 16 and 8 packet processors re-
spectively. For 16 packet processors, this matches our packet
generation capability except at the smallest packet sizes. (The
dotted lines depict the maximum rate our traffic generator
was able to source.) As shown, our 16 packet processor im-
plementation can forward the offered load at 100 Gbps for
every packet size other than 65 bytes, which achieves 89%
of maximum rate. Our implementation can also forward the
offered load at 200 Gbps with packets of least 128 bytes. 64-
and 65-byte packets achieve lower rates of 88% and 89% of
maximum rate respectively. For 8 packet processor units, we
need at least 1024 byte packets to reach full 200 Gbps.

The performance drop for 64 and 65-byte packets for 16
packet processors comes mainly from the software latency.

Figure 9: Round-trip latency as a function of packet size

The minimum time for our packet forwarder to read a descrip-
tor, and send it back is 16 cycles. Therefore, each packet pro-
cessor forwards a packet every 16 cycles, and with 16 packet
processors we can hit at most 250 Mpps equal to the clock
rate, for both packet sizes. Similarly, with 8 packet processor
design we reach a maximum packet rate of 125 Mpps.

6.2 Forwarding latency

Next, we measure forwarding latency in terms of round trip
time (RTT) from the traffic source, through the FPGA un-
der test, and back to the original card. The packets are time-
stamped just before leaving the core and latency is measured
right upon arrival. Figure 9 shows the measured latencies for
different packet sizes, under both low load and maximum load
scenarios. The source of these delays are serialization. When
a packet arrives at the FPGA and when it leaves the FPGA,
we have to pay serialization latency at rate of 100 Gbps. Shire
introduces another serialization latency at 32 Gbps, due to
the fact that packet is fully loaded into each packet processor
memory before the RISC-V core is notified, and also it has to
be fully read out on the way out after the descriptor is released.
The dotted line in Figure 9 shows the computed serialization
delay according to Equation 1. Note that 0.765µsec is the
minimum latency of packet going through our system.

Est. latency (µs) = (size∗8∗ ( 2
100

+
2

32
)/1000)+0.765

(1)

High load introduces only marginal additional delay, which
comes from packets not being perfectly uniform distributed
between the two outgoing interfaces and have congestion.
The only exception is 64-byte packets. The reason is that our
packet generator can supply at full 200 Gbps, but our packet
forwarder lacks behind. In steady state this results in receive
FIFO becoming full, and hence the 35µsec latency.
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6.3 Inter-core messaging performance
First, we measure the throughput of the inter-core loopback
messaging system. Our implementation only uses a single
100-Gbps loopback port, as sending full packets among cores
for each incoming packet is not the intended design. To test the
performance of this loopback port, we implement a two-step
forwarding system: we assign half of the cores to be recipients
of the incoming traffic, and then each of these cores forwards
packets to a specific core in the other half, and that core returns
the packet to the link. We achieve 60% and 61% maximum
throughput for packet sizes 64B and 65B respectively, mainly
bottlenecked by the destination core header being attached to
each packet. For packet sizes larger than 128 bytes the system
can keep up with the 100-Gbps link rate.

Next, we perform two tests to measure the latency of broad-
cast messages, one with paced messages and one where each
core is trying to send as many messages as it can. We times-
tamp each message and compare arrival time against transmit
time. When paced, messages experience a latency between
72 to 92 ns. At full rate—which is not the intended use for
this communication channel—we observe 1,596–1,680 ns of
latency for the worse case design with 16 packet processors.
This latency mostly comes from the 18 FIFO slots in each
packet processor, 16 from actual FIFO and 2 from PR regis-
ters, which can be sent out every 16 cycles due to round-robin
arbitration among cores, constituting 1,152 ns of this latency.
Note that the write to the broadcast memory region will be
blocked until there is room in the FIFO. The rest of the latency
is due to FIFOs and registers in the switching subsystem and
the software that can have slight variation.

7 Case Studies

In this section we evaluate how well Shire can reduce devel-
opment effort and time, while achieving 200 Gbps line rate
throughput. We demonstrate this with two case studies.

Case study 1: Porting Pigasus to achieve 200G. We de-
scribe how ported someone else’s custom hardware accelera-
tor it to Shire to scale up the performance. For this case study,
we chose Zaho et al’s Pigasus IDS [31], which is the first and
open source hardware design to achieve 100 Gbps throughput.
The main questions we answer in this case study is: can we
easily port the core Pigasus hardware accelerators—string and
port matching—to Shire’s packet processors? How well can
we implement packet reordering needed by IDSes in Shire?
How much will we improve Pigasus’s performance?

Case study 2: Building a Blacklisting Firewall. For our
second case study, we wanted to evaluate how hard it is to
make a new accelerator from scratch. We chose to imple-
ment simple firewall with a hardware accelerator that blocks
packets that match an IP blacklist.

Pigasus in Shire
Control in Software

Compute in Hardware

Pigasus
Control in Hardware

Compute in Hardware

FPGA SmartNIC FPGA SmartNIC

Parse fields

Host CPU

Host DMA

100G MAC

Parse fields
Packet Processor

Pattern matcher 

100G MAC  

Port matcher

Host DMA

Pattern matcher 

Port matcher

Host CPU

Figure 10: How we ported the Pigasus IDS to Shire.

We were able to develop both of these case studies in less
than a month, and we improved the line rate of the Pigasus IDS
from 100 Gbps to 200 Gbps for average internet packet size
of 800B, and for packet size of 256B and above for firewall.

7.1 Pigasus IDS/IPS

7.1.1 Why is an IDS hard to develop in an FPGA?

IDSes identify suspicious behavior by monitoring network
traffic and comparing it to a set of known fingerprints, stored
in a constantly evolving ruleset. Many operators run all incom-
ing traffic through an IDS, however they often have to divide
traffic across clusters of servers to handle the computationally-
intensive pattern matching for line-rate traffic [8]. Therefore,
FPGAs are often considered for accelerating IDSes [4,14,26].
The Pigasus team built the first FPGA-based IDS accelerator
to provide 100 Gbps acceleration for the Snort IDS running
on a single server.

The most computationally expensive part of the processing
in Pigasus is checking to see if traffic matches any of the rules
in the ruleset—a task that is easy to parallelize. The Pigasus
team had to build from scratch a significant fraction of their
IDS hardware design to hit line rate on an FPGA. As shown
in the left hand side of Figure 10, the developers had to build
their own packet processing pipeline from scratch, including
building hardware accelerators for parts of the processing that
could be done in software, such as packet parsing.

7.1.2 Porting Pigasus to the Shire framework

Using the Shire framework, we can use the system architec-
ture shown in the right hand side of Figure 10. We ported
the two main hardware accelerators of the IDS—the pattern
matcher and port matcher—to Shire. The DMA interface in
the Shire packet processor was compatible with the streaming
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packet interface of these accelerators, so we did not have to
make significant changes to use them in Shire. Indeed, from
the Pigasus code base we simply copied the files in the string
pattern matcher and port matcher directories, and we added
them to the Shire packet processor’s top block.

We did make one small change to incorporate their acceler-
ator to our design: because the RISC-V core communicates
with the accelerator on demand, we added a FIFO for the input
and output data of the accelerator, and its configuration regis-
ters, to be able to asynchronously control the accelerator from
software running on the RISC-V core. Also we swapped a few
components, such as FIFO modules, where they used Intel
IP libraries, and we used our own Verilog libraries that were
tested for Xilinx FPGAs. We also modified their rule packer
module at the to output several chunks of 32 bits rather than
128 bits, matching our RISC-V word size. At this stage we
were able to test the functionality of their accelerator within
our Python testbench framework, running a basic C code to
feed the accelerators with the incoming packets.

7.1.3 Porting challenges and new features

Next we tried to build an image from it for our FPGA. Un-
fortunately, the scaled up design for achieving 200 Gbps did
not fit in our FPGA. After reaching out to the team, they
mentioned that memory became a bottleneck for going to
200 Gbps, even when they used a large Intel Stratix 10 MX
FPGA. However, upon a close look at the utilization report,
we noticed that no large URAMs were used for the string or
port matcher designs, while they had very large lookup ta-
bles. This is because URAMs cannot be initialized with tables
when an FPGA bitstream is loaded, as they are targeted for FI-
FOs. One method would be to initialize them during runtime,
but that would have required a separate development effort to
enable initialization from the server hosting the FPGA.

Thanks to the memory subsystem in Shire, we were able
to fill these tables at runtime. We simply added a write port
to four of the memories in the matching accelerators.

We were able to fit about four times more instances of
their accelerators in only 2/3rd of our similar-capacity FPGA
(Table 3). Therefore, we used the same 250 MHz clock and
we did not need to double-clock the logic at 400 MHz like
the original design. In turn, this further simplified the design
and reduced the required resources.

One caveat of the original Pigasus design is that there is
no way to reconfigure the pattern matcher’s ruleset during
runtime: the only method to update the ruleset is to reload a
new FPGA image. However, since several of these rulesets
resided in the packet processor’s memories, we could use the
switching subsystem to modify them during runtime. Also, as
it is native to the Shire design, we can use partial reconfigura-
tion to change the smaller rulesets that do not use URAMs,
or fix bugs in their accelerators at runtime.

To further evaluate the benefits and impacts of the Shire

Component LUTs Registers BRAM URAM DSP
RISCV core 2008 (3.1%) 1015 (0.8%) 0 0 0

Mem. subsystem 3429 (5.3%) 896 (0.7%) 16 (14.0%) 32 (50.0%) 0
Accel. manager 1197 (0.1%) 2730 (0.1%) 0 0 0

Pigasus 35799 (55.8%) 49410 (38.3%) 56 (49.1%) 22 (34.4%) 80 (20.8%)
Total 42431 (66.1%) 54051 (41.9%) 72 (63.2%) 54 (84.4%) 80 (20.8%)

Packet processor 64161 128880 114 64 384
Scheduler 12233 (1.0%) 16499 (0.7%) 26 (1.2%) 0 0
Remaining 101783 (8.6%) 213901 (9.0%) 154 (7.1%) 96(10.0%) 648 (9.5%)

Table 3: Resource utilization for Packet processor with Piga-
sus, and Hash-based scheduler
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Figure 11: Pigasus performance in Shire

framework, we also wondered if we could implement TCP
flow reordering in software on the RISC-V core instead of
hardware. We built a hash-bashed packet scheduler for Shire
to always send packets of the same flow to the same packet
processor. In each packet processor, we used the scratch pad
memory to keep 0.5 MB of flow state, to remember what is
the time and sequence number of the last seen packet from
each flow, tag of the stored flow to avoid collisions, and finally
last 7 bytes required to be checked with the next packet. Note
that we use 18 bit out of 32-bit hash result for index and the
collision at the same time is very unlikely, as we also time out
older flows. If we encounter reordering, we use up to half of
our packet slots (e.g., 16) to buffer the out of order packets
until the re-ordered packets arrive. Note that this solution will
definitely be less efficient than the hardware based solution
proposed in Pigasus, but use of software next to hardware can
be used for prototyping or testing new ideas. Note that we
could port the full Pigasus flow reassmebler into our scheduler,
as we have 5 times more logic elements and 1.5 times more
memory cells remaining when we built the basic RR scheduler
(Table 2). Table 3 shows the average resource utilization break
down inside each Pigasus packet processor unit, as well as
the hash scheduler used for this mechanism.

7.1.4 Evaluation

In our evaluation, we first made a packet trace based on the
ruleset used for the generation of the Pigasus accelerator. Af-
ter verifying that the expected number of packets are received
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in hardware, we used tcpreplay to play back the attack pattern,
and used another FPGA to fill the rest of the pipe with back-
ground traffic to hit 200 Gbps. Note that since attack packets
are short we were not able to achieve more than 5.8 Gbps
from tcpreplay, even using 16 concurrent tcpreplays, with full
throttle mode, evenly distributed among the NUMA nodes.
Figure 11 shows the result of this experiment.

The Round Robin (RR) line shows the use of an RR sched-
uler, this shows the best-case performance for Pigasus in Shire,
assuming Pigasus reassmebly engine exists inside the sched-
uler. This baseline implementation achieved 200 Gbps for a
larger packet size (>1024 Bytes), and it could hit 100 Gbps
for a moderate packet size of 800 Bytes.

Next, we added a “Hash”-based scheduler in Shire along-
side our software-based packet reordering. The scheduler pads
the 4-byte hash result to the beginning of each packet. We
observed that Shire could hit 166 Gbps for larger packet sizes.
Note one reason for this drop is due to imperfect randomiza-
tion of our packet generator, and hence uneven distribution
of packets among the packet processors. Finally, On the “Re-
order” line with 1% reordering, we see a drop to max rate
of 143 Gbps. At a packet size of 800B, we can almost hit
full 100 Gbps rate using the software reorder, as long as the
reorder amount is less than the normal 0.3%.

It is worth noting that these results were achieved after we
obtained a 30% improvement in packet rate by adjusting the
order of members in an struct, and also applying a bug fix
from the latest RISC-V GCC which was not available on the
Arch Linux repositories. This suggests that there is room for
compiler improvements, and also careful design of software
is very important to achieve high performance in Shire.

7.2 Firewall
For our firewall case study, we built a simple firewall mid-
dlebox from scratch. The firewall checks every single packet,
and if they have an IP that matches a blocklist the packet
would be dropped, otherwise they are forwarded to the other
Ethernet interface. In this case study, our goal was to evaluate
how much effort is required to make even a simple middlebox
in the Shire framework.

To implement a firewall, we built a simple IP prefix lookup
accelerator from the list of 1050 blacklist IPs from the emerg-
ing threats1. We wrote a basic python script to generate a
Verilog that first checks for the first 9 bits of the IP prefix, if
they match, then it checks for the remaining 15 bits in the
next cycle, and if there was a match it raises a flag in a register.
We implemented the simple lookup this way so it could be
performed in only two clock cycles.

Then we assigned a register address that the RISC-V core
could use to load the IP into the accelerator, and another
register to read the flag. The code below shows a small code
snippet from the RISC-V code to show how this works, and

1https://rules.emergingthreats.net/fwrules/emerging-PF-DROP.rules

Component LUTs Registers BRAM URAM DSP
RISCV core 1896 (6.8%) 999 (1.8%) 0 0 0

Mem. subsystem 2183 (7.8%) 868 (1.6%) 16 (44.4%) 32 (100%) 0
Accel. manager 519 (0.0%) 1957 (0.1%) 0 0 0

Firewall IP checker 838 (3.0%) 197 (0.4%) 0 0 0
Total 5434 (19.5%) 4021 (7.2%) 16 (44.4%) 32 (100%) 0

packet processor 22405 55920 36 32 168

Table 4: packet processor resource utilization with Firewall

the full code can be found in the Appendix. We load the IP
address from the Ethernet packet using the DMA descriptor
given by the switching subsystem. Then we load it into the
IP matching accelerator (ACC_SRC_IP) and check the flag
to see the results (ACC_FW_MATCH). Finally, if it was a
match we drop the packet by setting the descriptor length to
0, and if it was not a match we forward it by swapping the
port value between 0 and 1; this tells the switching subsystem
to send the packet to the other 100 Gbps port.

unsigned i n t s r c _ i p =
* ( ( unsigned i n t *) ( desc −> d a t a + 14 + 12) ) ;

ACC_SRC_IP = s r c _ i p ;
i f (ACC_FW_MATCH) desc −> l e n = 0 ;

e l s e desc −> p o r t ^= 1 ;
p k t _ s e n d ( desc ) ;

Doing similar packet-generator testing, we were able to hit
at 200 Gbps, for sizes 256 bytes and above. Table 4 shows the
average resource utilization break down inside each firewall
packet processor unit.

8 Related work

There has been a significant amount of prior work in devel-
oping FPGA and System-on-Chip NIC frameworks that are
flexible and debuggable. However, no prior framework has
addressed the issues of required hardware parallelization for
middleboxes, while providing the flexibility and debugga-
bility of an C-language software, and the ability to change
hardware acceleration—even during runtime—like we desire
for an FPGA.

8.1 FPGA Frameworks
This work builds on a large body of prior work on improving
the software and hardware development process for FPGAs,
despite the fact that most of them were not targeted for middle-
boxes. As shown in Table 5, each of these prior frameworks
demonstrated it was feasible to accomplish one or more of
the goals of Shire [3, 5, 7, 9, 11–13, 19, 20, 22, 25, 32]. The
goals we set out to accomplish were heavily inspired by these
prior works: each of these frameworks demonstrated a new
way that we could improve flexibility or debuggability, and
several demonstrated a number of these features could be
accomplished simultaneously.

Yet, none of these prior works demonstrated it was feasible
to build a generic abstraction, like Shire, that can provide these
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SW Flexibility HW Flexibility Debuggability
Framework Prog. Model Statefulness HW/SW interface Partially Reconfig. Add Custom Accel. SW debuggable

Shire C X X X X X X
FPGA HxDP [3] eBPF X X X

(Software) RISC+NetFPGA [7] C X X X
AzureNIC [5] Microcode X X X

NIC SoCs Cavium/Melanox SoCs C X X X X
(Software) PANIC [12] C X X

Mellanox Innova NIC Verilog X
NetFPGA [13] Verilog X

Catapult [20] Verilog X
FPGA P4FPGA [25]/SDNet P4

(Hardware) FlowBlaze [19] P4 X
P4VBox [22] P4 X
ClickNP [11] C (HLS) X X

Gorilla [9] C (HLS) X X

Table 5: A comparison of the development features of various programmable NIC frameworks.

features simultaneously in one FPGA development frame-
work. For instance, the most recent framework HxDP [3],
demonstrated a significant number of the development fea-
tures could be provided by one framework. However, the
HxDP framework focuses on software-based compilation de-
velopment environment for FPGAs and does not provide an
interface to add new hardware accelerators to their framework,
and therefore it also does not provide a solution to parallelize
custom accelerators. Other works’ main focus was demon-
strating that adding custom accelerators could be done in
a well-defined framework on an FPGA. However, none of
these works attempted to provide this at the same time as they
provided software flexibility. [5, 9, 11, 13, 20]. In this work
we demonstrate that it’s not only feasible integrate hardware
and software flexibility into one development abstraction, but
it also demonstrates that there are significant benefits to do
doing this. We also show that software flexibility benefits
hardware flexibility.

8.2 Prior work that can benefit from Shire

There are numerous projects that implemented hardware ac-
celerated network middleboxes with their own custom FPGA
hardware pipeline, including an ML platform [18], a key value
store [10], packet filtering [24], and several Intrusion Detec-
tion Systems [1, 4, 14, 26]. We believe that future efforts such
as these may be bolstered by this platform, as developers
will be able to focus on building their application-specific
accelerators, and not have to manually tune a pipeline to get
high-performance or manually build debugging hardware.

8.3 Hybrid SoC FPGA platforms.

A potential platform for our design is SoC-like FPGAs
with hardened CPUs, such as Xilinx Zynq UltraScale+ MP-
SoC [30]. However, they have limited parallelism with a lim-
ited number of cores, small memory per core, low incoming
bandwidth (< 20 Gbps per core). Most importantly though,

they have high communication latency to the logic fabric
(> 100 ns [27]) in the FPGA, and use a generic shared bus
that introduces contention, both of which critically limit their
ability to orchestrate parallel processing in the accelerators.

9 Conclusion and Discussion

We present Shire, a flexible and debuggable FPGA middlebox
development framework. Shire provides a packet-processing
abstraction consisting of a RISC-V core augmented with hard-
ware accelerators, unified by a hybrid memory subsystem.
Shire provides a packet distribution framework around these
processing elements, and we demonstrate that it is possible
to achieve 200 Gbps. We also demonstrate that Shire has a
marginal effect on latency (especially when compared with
PCIe and OS latencies). We plan to port Shire to several
FPGA boards, from both Xilinx and Intel, to make it possible
to use the same packet processors among them. We believe
many applications, including research projects can benefit
from this framework.

In the future, we believe that our packet processor-based
framework can be “hardened” in an SoC architecture in future
FPGAs. This will result in significantly faster packet process-
ing performance that we can achieve instantiating RISC-V
cores inside of an FPGA. Note that Xilinx has similar hard-
ened IPs in their newest FPGAs, such as Network-on-Chip
IP or AI Engines, which with minor modification can sat-
isfy Shire needs. Finally, although FPGA-based middleboxes
benefit most from the flexibility offered by Shire, we believe
scope of Shire can be potentially wider. SoC-based Smart-
NIC designs might benefit from this framework to scale to
higher link speeds. Fully custom ASIC designs can use Shire
for their incremental builds where only the accelerators are
updated between revisions.
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10 Appendix

The following code shows the C code running on RISC-V
core for firewall case study.

# i n c l u d e " c o r e . h "

/ / A c c e l wrapper r e g i s t e r s mapping
# d e f i n e ACC_SRC_IP ( * ( ( v o l a t i l e unsigned i n t

*) ( IO_EXT_BASE + 0x00 ) ) )
# d e f i n e ACC_FW_MATCH ( * ( ( v o l a t i l e unsigned char

*) ( IO_EXT_BASE + 0x04 ) ) )

s t a t i c i n l i n e void s l o t _ r x _ p a c k e t ( s t r u c t Desc *
desc )

{
unsigned s h o r t e t h _ t y p e = * ( ( unsigned s h o r t *)

( desc −> d a t a + 12) ) ;
unsigned i n t s r c _ i p = * ( ( unsigned i n t *)

( desc −> d a t a + 14 + 12) ) ;

/ / check e t h t y p e
i f ( e t h _ t y p e == bswap_16 (0 x0800 ) )
{

/ / s t a r t F i r e w a l l IP check
ACC_SRC_IP = s r c _ i p ;
i f (ACC_FW_MATCH)
{

goto drop ;
}
e l s e
{

desc −> p o r t ^= 1 ;
p k t _ s e n d ( desc ) ;
re turn ;

}
}

drop : / / Non IPV4 or i n f i r e w a l l l i s t
desc −> l e n = 0 ;
p k t _ s e n d ( desc ) ;

}

i n t main ( void )
{

/ / I n i t i a l i z i n g s c h e d u l e r and wrapper
i n i t _ h d r _ s l o t s ( 1 6 , 0 x804000 , 128) ;
i n i t _ s l o t s ( 1 6 , 0 x000000 , 16384) ;

/ / Enable o n l y E v i c t and Poke I n t e r r u p t s
s e t _ m a s k s (0 x30 ) ;

whi le ( 1 )
{

/ / check f o r new p a c k e t s
i f ( i n _ p k t _ r e a d y ( ) )
{

s t r u c t Desc desc ;
/ / read d e s c r i p t o r
r e a d _ i n _ p k t (& desc ) ;
s l o t _ r x _ p a c k e t (& desc ) ;

}
}

re turn 1 ;
}
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