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Abstract

We explore a novel approach for building DNN training clus-
ters using commodity optical devices. Our proposal, called
TOPOOPT, co-optimizes the distributed training process across
three dimensions: computation, communication, and network
topology. TOPOOPT uses a novel alternating optimization
technique and a group theory-inspired algorithm to find the
best network topology and routing plan, together with paral-
lelization strategy, for distributed DNN training. To motivate
our proposal, we measure the communication patterns of dis-
tributed DNN workloads at a large online service provider.
Experiments with a 12-node prototype demonstrate the feasi-
bility of TOPOOPT. Simulations on real distributed training
models show that, compared to similar-cost Fat-tree intercon-
nects, TOPOOPT reduces DNN training time by up to 3×.

1 Introduction
Our society is rapidly becoming reliant on deep neural
networks (DNNs). New datasets and models are invented
frequently, increasing the memory and computational re-
quirements for training. This explosive growth has created an
urgent demand for efficient distributed DNN training systems.

Today’s DNN training systems are built on top of traditional
datacenter clusters, with electrical packet switches arranged in
a multi-tier Fat-tree topology [45]. Fat-tree topologies are traf-
fic oblivious fabrics, allowing uniform bandwidth and latency
between server pairs. They are ideal when the workload is un-
predictable and consists mostly of short transfers–two inherent
properties of legacy datacenter workloads [47, 48, 51, 63, 64].
However, Fat-tree networks are becoming a bottleneck for
distributed DNN training workloads [55,65,71,76,90,93,116].

Prior work has focused on addressing this challenge by
reducing the size of parameters to transmit through the
network [46, 55, 56, 65, 69, 73–75, 82, 93, 105, 119] and
developing techniques to discover faster parallelization
strategies while considering the available network band-
width [44, 46, 76, 93, 109]. These proposals co-optimize
computation and communication as two important dimensions
of distributed DNN training, but they do not consider the
physical layer topology as an optimization dimension.

Recently, SiP-ML [79] demonstrated the benefits of
8 Tbps silicon photonics-based networks for distributed
training workloads. While encouraging, the silicon photonics
technology is not yet commercially available, which begs the
question: “Can we build an optimized network topology for
DNN training clusters using today’s commodity hardware?”

To answer this question, we analyze DNN training jobs
from production clusters of a large-scale service provider with
billions of users, which we call BIGNET for anonymity. We
demonstrate that training workloads do not satisfy standard
assumptions about datacenter traffic that underlie the design
of Fat-tree interconnects. Specifically, we show that (i) the
communication overhead of large DNN training jobs increases
dramatically as we increase the number of workers; and (ii)
the traffic heatmap of DNN training jobs highly depends on
their parallelization strategies and AllReduce collectives.

Motivated by these observations, we propose TOPOOPT, a
DNN training system that co-optimizes network topology and
parallelization strategy. In this paper, we grapple with the algo-
rithmic challenges of finding the best topology, such as how to
navigate the large search space across computation, communi-
cation, and topology dimensions, and also with various opera-
tional challenges, such as which optical switching technologies
match well with the traffic patterns of various DNN models.

In particular, we cast the topology and parallelization strat-
egy co-optimization problem as an off-line alternating opti-
mization framework. Our optimization technique alternates
between optimizing the parallelization strategy and optimiz-
ing the network topology. It searches over the parallelization
strategy space assuming a fixed topology, and feeds the traffic
demand to a TOPOLOGYFINDER algorithm. The updated topol-
ogy is then fed back into the parallelization strategy search al-
gorithm. This alternating process repeats until the system con-
verges to an optimized parallelization strategy and topology.

We demonstrate that finding an optimized network topology
for DNNs with hybrid data & model parallelism is challenging
because the ideal network topology needs to meet two goals
simultaneously: (i) allocate most of the available bandwidth
to AllReduce transfers; and (ii) ensure a small hop-count for
Model Parallel transfers. To meet these goals, we propose a
novel group theory-based technique, called TotientPerms. Our
TotientPerms approach builds a series of AllReduce permu-
tations that not only carry AllReduce transfers efficiently, but
also are well-positioned to carry Model Parallel transfers and,
hence, improve the overall training performance.

To demonstrate the feasibility of TOPOOPT, we build
a 12-server testbed with NVIDIA A100 GPUs [37] and
100 Gbps NICs. Our large-scale simulations with four
representative DNN models (DLRM [20], CANDLE [3],
BERT [114], VGG [107]) show that TOPOOPT reduces the
training iteration time by up to 3× compared to a similar-cost
Fat-tree. Moreover, we demonstrate that TOPOOPT is, on
average, 3.4× cheaper than an ideal full bisection bandwidth
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Fat-tree. Finally, we evaluate the impact of reconfiguration
latency on performance and argue that today’s reconfigurable
optical switches are too slow for large-scale DNN workloads.

TOPOOPT is the first system with entirely commodity hard-
ware that co-optimizes topology and parallelization strategy
and is currently being evaluated for deployment at BIGNET.

2 Characterizing DNN Workloads

Data parallelism. Data parallelism is a popular paralleliza-
tion strategy, whereby a batch of training samples is distributed
across training nodes accelerators. Each accelerator holds a
replica of the DNN model and executes the forward and back-
propagation steps locally. In data parallelism, all accelerators
synchronize their model weights during each training itera-
tion. This step is commonly referred to as AllReduce and can
be performed using various techniques, such as broadcast-
ing [121], parameter servers [81], ring-AllReduce [2, 75, 110],
tree-reduce [101], or hierarchical ring-AllReduce [111, 113].

Hybrid data & model parallelism. Prior work showed that
pure data parallelism may be a suboptimal strategy for large
training jobs because of the increasing cost of synchronizing
model parameters across accelerators [20, 72, 76, 92, 94, 106].
In BIGNET, we use a hybrid of data & model parallelism for
training large DNNs, where different parts of a DNN and its
dataset are processed on different accelerators in parallel. To
keep each accelerator’s utilization high, we use pipeline par-
allelism [93] together with model parallelism, where training
samples across multiple iterations are processed in parallel
with the partitioned model in a pipelined fashion. In this paper,
we use model parallelism as a generic term that includes both
model and pipeline parallelism.

Types of data dependencies in DNN training. Each train-
ing iteration includes two major types of data dependencies.
Type (1) refers to activations and gradients computed during
the Forward and Backpropagation steps. This data dependency
is required for each input sample. Type (2) refers to synchroniz-
ing the model weights across accelerators through the AllRe-
duce step once a batch of samples are processed. Depending
on the parallelization strategy, these data dependencies may
result in local memory accesses or cross-accelerator traffic. For
instance, in a hybrid data & model parallelization strategy, both
type (1) and (2) result in cross-accelerator traffic, depending
on how the model is distributed across accelerators. Given
that type (1) is related to model parallelism, we refer to the
network traffic created by type (1) as MP transfers. Similarly,
we refer to the network traffic created by type (2) as AllReduce
transfers. Note that AllReduce transfers do not strictly mean
data parallelism traffic since model parallelism can also create
AllReduce transfers across a subset of training nodes (§3.3).1

1We only consider transfers related to training because our servers have
dedicated NICs for storage and other non-training traffic.
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Figure 1: Profiling distributed DNN training jobs in BIGNET.
2.1 Production Measurements

We study traffic traces from hundreds of production DNN
training jobs running on multiple clusters at BIGNET. We
instrument each job to log its training duration, number of
workers, and the total amount of data transferred across its
workers during training.

Number of workers and job duration. Figure 1a shows
the CDF of the number of workers for different models in our
clusters. Most jobs are distributed across 32 to 700 workers,
agreeing with recent announcements by other major players
in the industry [43, 92]. A worker can be a CPU or a GPU
depending on which cluster the job is executed on. Figure 1b
demonstrates the CDF of total training job duration, showing
that most jobs last over 10 hours. In fact, the top 10% of jobs
take more than 96 hours (four days) to finish.

Network overhead. Figure 2 illustrates the percentage of
network overhead as the number of GPUs is increased from
8 to 128 for six DNN jobs in production. We use RDMA to
transmit packets between servers and measure the percentage
of time consumed by communication during training as net-
work overhead. The figure shows that as the number of GPUs
increases, the network quickly takes up a significant portion of
training iteration time. Similar observations have been made
in prior work [56, 71, 79, 93, 105]. This is because our training
servers are equipped with several NICs; hence, each server
takes up several ports on its Top-of-Rack (ToR) switch, which
limits the number of servers under the same rack. As a result,
our network topology spans across multiple switches and racks,
which, in turn, increases the likelihood of network bottlenecks.

Traffic heatmaps. Figure 3 shows the heatmap of server-
to-server traffic for four training jobs running in our produc-
tion GPU clusters. The rows and columns indicate source and
destination servers (each with eight GPUs), while the color
encodes the amount of traffic between server pairs. The values
on the colormap are not shown for confidentiality reasons. All
heatmaps in the figure contain diagonal squares (in dark blue),
indicating a ring communication pattern between servers. This
is expected since ring-AllReduce is the dominating AllRe-
duce communication collective at BIGNET. However, the MP
transfers (light blue and green squares) are model-dependent
because MP transfers depend on the parallelization strategy
and device placement of a training job. Moreover, we find that
the traffic patterns of our training jobs do not change between it-
erations for the entire training duration, resulting in exactly the
same heatmaps throughout the training time. Once a training
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Figure 2: Network overhead
measurements in BIGNET.
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Figure 3: Traffic heatmaps of production jobs in BIGNET.
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Figure 4: DLRM traffic heatmaps.
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Figure 5: Ring-AllReduce permutations.
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Figure 6: CANDLE traffic heatmaps.

job starts, the same parallelization strategy and synchronization
method are used across training iterations, resulting in a peri-
odic and predictable traffic pattern. Similar observations have
been made in prior work [120]. In particular, the traffic heatmap
is identical between different training iterations. Note that the
traffic pattern changes within a training iteration. Section 5
evaluates the impact of reconfiguring the physical topology
within training iterations vs. simply keeping the topology the
same throughout the job.

2.2 Controlled Experiments

To better understand the impact of parallelization strategy on
network traffic, we analyze the heatmap of two large DNN
models, Deep Learning Recommendation Model (DLRM) and
CANcer Distributed Learning Environment (CANDLE), dis-
tributed across 16 servers each with one GPU interconnected
with a full bisection bandwidth Fat-tree topology.

DLRM traffic pattern.

DLRMs are a family of personalization and recommenda-
tion models based on embedding table lookups that capitalize
on categorical user data [95]. Typically, DLRM models are
large, up to 10s of trillion parameters, primarily due to their
large embedding tables. Large embedding tables result in large
AllReduce transfers. Moreover, the look-up time of embedding
tables does not drop significantly as the batch sizes decrease.
Hence, a common parallelization strategy for DLRMs is to
use model parallelism to place each embedding table on one
GPU and use data parallelism for the rest of the model [90].
Consider a simplified DLRM architecture with four embed-
ding tables E0,···,E3, each with embedding dimensions of 512
columns and 107 rows (total size 20 GB) distributed across 16
servers S0,···,S15. Following the parallelization strategy used
in BIGNET, we place E0 on S0, E1 on S3, E2 on S8, and E3 on
S13, and replicate the rest of the model on all servers. This par-
allelization strategy creates a mix of MP and AllReduce traffic,
shown in Figure 4. Each heatmap in 4a, 4b, and 4c corresponds
to a different ring-AllReduce permutation, shown in Figures 5a,
5b, and 5c. Although all three heatmaps correspond to the exact
same parallelization strategy and device placement, the blue
diagonal lines appear at different parts of the heatmaps, depend-
ing on the order of servers in the ring-AllReduce permutation.
However, MP transfers (green vertical and horizontal lines in
each heatmap) are dictated by the parallelization strategy and
device placement, and therefore remain at exactly the same
spot in all three heatmaps. Hence, AllReduce transfers are
permutable but MP transfers are not. We leverage this unique
property of DNN training jobs in our TOPOLOGYFINDER al-
gorithm (§3.3). Note that MP transfers in DLRM form one-to-
many broadcast and many-to-one incast patterns to transfer the
activation and gradients to all nodes because each server han-
dling an embedding table needs to communicate with all other
servers. The size of each AllReduce transfer in this example
is 4 GB, whereas the size of MP transfers is 32 MB.

CANDLE traffic pattern. CANDLE is a family of DNN
architectures used to predict the response of cancerous tumors
to drug treatments, based on molecular features of tumor cells
and drug descriptors [3, 6]. CANDLE models often contain
several multilayer perceptrons (MLPs) for drug and cell fea-
tures [3]. Consider a simplified CANDLE model with one drug
MLP D0 and one cell MLP C0, each with a size of 4 GB. A
common parallelization strategy is to distribute the model by
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Figure 7: Illustration of TOPOOPT’s interconnect.

replicating D0 on four servers (e.g., {S0,S1,S2,S3}) and C0
on another set of four servers (e.g., {S12,S13,S14,S15}). The
rest of the model is replicated across all servers {S0,···,S15}.
This parallelization strategy creates mostly AllReduce traffic
with a few MP transfers, as shown in Figure 6. Similar to the
DLRM experiments, we permute the order of servers in the
ring-AllReduce communication according to Figure 5 and plot
three different heatmaps in Figures 6a, 6b, and 6c. Similar to
the above, we confirm that the position of MP transfers remains
fixed, while AllReduce transfers are permutable. We repeat the
above experiment using tree-AllReduce and confirm the same
takeaways hold (see Appendix A).

3 TOPOOPT System Design
This section describes TOPOOPT, a novel system based on com-
modity optical devices that jointly optimizes DNN paralleliza-
tion strategy and topology to accelerate today’s training jobs.

3.1 TOPOOPT Interconnect

A TOPOOPT cluster is a shardable interconnect where each
server has d interfaces connected to a core layer of d optical
switches, as shown in Figure 7. The optical switches enable
TOPOOPT to partition the cluster dedicated partitions for each
training job. The size of each partition depends on the number
of servers that the job requests. Given a DNN training job and
a set of servers, TOPOOPT first finds the best parallelization
strategy and topology between servers off-line. Then, it
reconfigures the optical switches to realize the target topology
for the job.

There is a wide range of optical switching technologies suit-
able for a TOPOOPT cluster, including commodity available
optical patch panels [41] and 3D-MEMS [16, 39], as well as
futuristic designs such as Mordia [99], MegaSwitch [53], and
Sirius [50, 57]. All of these technologies are valid choices for
a TOPOOPT cluster. Section 4 discusses the impact of optical
switching technologies on scale and reconfiguration frequency.

Degree of each server. We denote the number of interfaces
on each server (i.e., the degree of the server) by d. Typically, d
is the same as the number of NICs installed on the server. In
cases where the number of NICs is limited, the degree can be
increased with NICs that support break-out cables or with the
next generation of co-packaged optical NVLinks [10]. As an
example, in our testbed, we use one 100 Gbps HP NIC [29]
with 4×25 Gbps interfaces to build a system with degree four

FlexFlow’s MCMC 
Parallelization Strategy Search

Topology and routing

Parallelization strategy

Comm. x Topo. plane

Comp. x Comm. plane

Device placement
topology

Find Allreduce
permutations & 

maximum weight 
matchings

Use coin-change 
routing and 

shortest path 
routing

TopologyFinder Algorithm (Section 3.3)

Figure 8: TOPOOPT searches for the best parallelization
strategy, jointly with routing, and topology.

(d=4). Section 5 evaluates the impact of d on performance.
Target workload. The target workload for TOPOOPT is

long-lasting DNN training jobs with hybrid data & model
parallelism. Hence, we assume the set of servers assigned to
each job remains the same throughout the lifetime of the job,
and the GPUs are not shared across multiple jobs. Section 7
discusses potential approaches to enable dynamic scheduling
and multi-tenancy in TOPOOPT.

Storage and control plane traffic. BIGNET’s training clus-
ters consist of custom-designed servers, each with eight GPUs,
eight dedicated NICs for training traffic (GPU NICs), and four
additional NICs for storage and other traffic (CPU NICs). Other
companies, such as Facebook and NVIDIA, have similar server
architectures [9, 90]. TOPOOPT only considers GPU NICs as
server degree and partitions the network that is dedicated for
training traffic. The CPU NICs are connected through a sepa-
rate fabric to carry storage and other control plane traffic.

3.2 Co-optimizing Parallelization Strategy and Network
Topology

The search space is too large. Finding the optimal paralleliza-
tion strategy is an NP-complete problem, and adding network
topology and routing makes the problem even harder [76].
An extreme solution is to jointly optimize compute, commu-
nication, and topology dimensions using a cross-layer opti-
mization formulation. Theoretically, this approach can find the
optimal solution, but the search space quickly explodes, even
for modest networks (e.g., six nodes [109]). Our cross-layer
optimization problem is computationally expensive, as it needs
to evaluate a large number of operator placements and network
configurations.

Naive approach. The other extreme is to optimize the net-
work topology sequentially after the parallelization strategy
has been found. While this approach is able to reconfigure
the network to better match its traffic demand, the eventual
combination of topology and parallelization strategy may be
sub-optimal in the global configuration space because the paral-
lelization strategy search algorithm needs to assume a generic
static network topology and might miss opportunities to find a
better strategy enabled by a different topology.

Our approach: alternating optimization. In TOPOOPT,
we seek to achieve the best of both worlds. To make the prob-
lem tractable, we divide the search space into two planes:
Comp.×Comm. and Comm.×Topo. and use an alternating
optimization technique to iteratively search in one plane while
keeping the result of the other plane constant. Figure 8 illus-
trates TOPOOPT’s alternating optimization framework. The
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green box represents our Comp.×Comm. plane, which uses
FlexFlow’s MCMC (Markov Chain Monte Carlo) search algo-
rithm [76] to find the best parallelization strategy for a given
topology while considering the link bandwidths as communi-
cation cost. We feed the output of FlexFlow’s parallelization
strategy to our Comm.×Topo. plane each time it finds a strat-
egy with improved runtime, or after 50 iterations of MCMC
search when it cannot find an improvement, to escape local
optimums. The yellow box in Figure 8 represents TOPOOPT’s
Comm.×Topo. plane where, given a parallelization strategy
and device placement as input, it finds the best network topol-
ogy and routing to minimize the training iteration time using
our TOPOLOGYFINDER algorithm. The best discovered topol-
ogy is fed back into the Comp.×Comm. plane, which further
optimizes the parallelization strategy and device placement
based on the updated topology. This optimization loop repeats
until convergence or after k iterations, where k is a configurable
hyper-parameter. The next subsection describes our TOPOLO-
GYFINDER algorithm inside the Comm.×Topo. plane.

3.3 TOPOLOGYFINDER Algorithm

Prior proposals are inefficient for DNN workloads. At first
blush, finding a network topology seems straightforward: we
just need to translate the parallelization strategy and device
placement from Comp.×Comm. plane into a traffic matrix
and map the traffic matrix into circuit schedules. Several
prior papers have addressed this problem for datacenter net-
works [53, 60, 64, 68, 79, 83–85, 99, 117]. The conventional
wisdom in prior work is to allocate as many direct parallel
links as possible to elephant flows and leaves mice flows to take
multiple hops across the network. In principle, this approach
works well for datacenters but we argue it leads to sub-optimal
topologies for distributed DNN training because the size of
AllReduce transfers is larger than MP transfers in BIGNET
(Appendix B). Hence, the conventional approach leads to cre-
ating parallel direct links for carrying AllReduce traffic and
forcing MP flows to have a large hop-count. But MP transfers
are on the critical path of processing every batch, and a slight
delay in their completion time negatively impacts the entire
training iteration time. Consequently, having a large hop-count
for MP transfers degrades training performance.

TOPOOPT’s novel technique. In TOPOOPT, we seek to
meet two goals simultaneously: (i) allocate most of the avail-
able bandwidth to AllReduce transfers since the bulk of the
traffic belongs to them; but (ii) ensure a small hop-count for MP
transfers. We meet both goals by leveraging a unique property
of distributed DNN training traffic, namely that the AllReduce
part of the traffic matrix is mutable and can be split across
multiple permutations (§2.2). Intuitively, this is because MP
traffic is composed of network flows among nodes that contain
different parts of a DNN model thus creating immutable data
dependencies across these nodes, while AllReduce transfers
contain network flows among nodes that handle the same part
of the model, providing flexibility on the order of nodes par-

ticipating in AllReduce. Consequently, if a group of servers
is connected in a certain order, simply permuting the label-
ing of the servers gives another ordering that would finish the
AllReduce operation with the same latency while potentially
providing a smaller hop-count for MP transfers. Instead of
selecting just one AllReduce order, we find multiple permuta-
tions for each AllReduce group that best satisfy MP transfers
and overlap their corresponding sub-topologies. In doing so
we, not only serve the AllReduce traffic, but also decrease the
hop-count for MP transfers.

TOPOLOGYFINDER steps. Algorithm 1 presents the pseu-
docode of our TOPOLOGYFINDER algorithm. The algorithm
takes the following inputs: N dedicated servers for the training
job, each with degree d, as well a list of AllReduce and MP
transfers (TAllReduce and TMP) based on the parallelization strat-
egy and device placement obtained from the Comp.×Comm.
plane. The algorithm then finds the best topology (G) and rout-
ing rules (R) and returns them to the Comp.×Comm. plane
for the next round of alternating optimization. Our algorithm
consists of the following four steps.

Step 1: Distribute the degree. The first step distributes the
degree d between AllReduce and MP sub-topologies propor-
tionally, based on their share of total traffic. We specifically
start with AllReduce transfers and allocate at least one degree
to the AllReduce sub-topology to ensure the network topology
remains connected (line 2). The remaining degrees, if any, are
allocated to the MP sub-topology (line 3).

Step 2: Construct the AllReduce sub-topology and rout-
ing. To find the AllReduce sub-topology, the algorithm iterates
over every AllReduce group k and allocates degree dk to each
group proportionally based on the amount of traffic they re-
quire (line 6). Note that in hybrid data & model parallelism
strategies, the AllReduce step can be performed across a subset
of servers when an operator is replicated across a few servers
instead of all servers. For each AllReduce group k, TOPOLO-
GYFINDER efficiently finds a set of permutations across those
servers in k (line 8). It then selects the top dk permutations
that best satisfy MP traffic demands using a module called
TopPermutations (line 9). There are several metrics to use
in TopPermutations module to measure satisfaction of MP
demand. In our implementation, we use the sum of MP transfer
sizes with a direct link from AllReduce permutations as our
metric. TOPOLOGYFINDER’s approach of selecting AllRe-
duce permutations while considering MP traffic demand is
a key reason to look for alternative AllReduce permutations.
However, at large scales, finding the set of all possible AllRe-
duce permutations is non-trivial, since the number of possible
permutations is O(n!), where n is the number of servers in
group k. Inspired by group theory, we develop a technique to
address this challenge, called TotientPerms, described next.

Using group theory to find AllReduce permutations.
Given that ring-AllReduce is the dominant AllReduce col-
lective in BIGNET, we describe our TotientPerms technique
based on ring-AllReduce. Appendix C explains how to ex-

5



Algorithm 1 TOPOLOGYFINDER pseudocode
1: procedure TOPOLOGYFINDER(N, d, TAllReduce, TMP)

. Input N: Number of dedicated training servers for the job.

. Input d: Degree of each server.

. Input TAllReduce: AllReduce transfers.

. Input TMP: MP transfers.

. Output G: Topology to give back to the Comp.×Comm. plane.

. Output R: Routing rules to give back to the Comp.×Comm. plane.
. Distribute degree d between AllReduce and MP sub-topologies

2: dAllReduce = max(1, dd× sum(Treduce)
sum(Treduce)+sum(TMP) e)

3: dMP =d−dAllReduce
. Construct the AllReduce sub-topology GAllReduce

4: GAllReduce = {}
5: for each AllReduce group k with set of transfers Tk do

. Assign degree dk to group k according to its total traffic
6: dk = ddAllReduce×

sum(Tk )
sum(Treduce)

e
7: dAllReduce = dAllReduce−dk

. Find all the permutations between servers in group k
8: Pk = TotientPerms(N, k)

. Select dk permutations from Pk according to TMP
9: GAllReduce =GAllReduce∪ TopPermutations(N, dk, Pk, TMP)

10: if dAllReduce== 0 then
11: break

. Compute routes on GAllReduce using the coin change algorithm [49]
12: R = CoinChangeMod(N, G)

. Construct the MP sub-topology GMP
13: GMP = {}
14: for i : i<dMP do

. Find a maximum weight matching according to TMP
15: g = BlossomMaximumWeightMatching(TMP)
16: GMP =GMP∪g

. Reduce the amount of demand for each link l in graph g
17: for l∈g do
18: TMP[l] = TMP[l]/ 2

. Combine the AllReduce and MP topologies
19: G = GAllReduce∪GMP

. Compute routes on GMP with shortest path
20: R += ShortestPath(G, TMP)

tend our algorithm to other AllReduce communication col-
lectives. For a ring-AllReduce group with n servers labeled
S0, ..., Sn−1, a straightforward ring-AllReduce permutation
is (S0 → S1 → S2 ··· → Sn−1 → S0). We denote this per-
mutation by a ring generation rule as: Si → S(i+1) mod n.
Since the servers form a ring, the index of the starting server
does not matter. For instance, these two rings are equivalent:
(S0→S1→S2→S3→S0) and (S1→S2→S3→S0→S1). To
reduce the search space of all possible permutations, we find
the ring generation rule for all regular rings; i.e., rings where
the distance between indices of consecutive servers is equal;
i.e., server Si is connected to server S(i+p) mod n. In particular,
we show that all integer numbers p<n, where p is co-prime
with n (i.e. gcd(p,n) = 1), represent a valid ring-AllReduce
permutation (Appendix C). For instance, for n = 12 servers,
our ring generation rule with p = 1,5,7,11 will lead into 4
distinct AllReduce permutations between the servers. In cases
where n is extremely large, we restrict p to prime numbers, thus
reducing the search space to only n

ln n according to the Prime
Number Theorem [62]. The eventual AllReduce sub-topology
is the union of top permutations selected in line 9.

Coin-change routing. Consider servers Si and S j that need
to exchange AllReduce transfers but do not have a direct edge
between them. We use a modified version of the classical coin
change problem [49] to find an efficient routing path (line 12).
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Figure 9: Example of TOPOOPT’s topology and traffic matrix.

In classical coin change, the goal is to find the minimum num-
ber of coins that would sum to a certain total value. Our ring
generation rules enable us to treat the routing problem sim-
ilarly. In particular, the p values of AllReduce permutations
that have been selected in the AllReduce sub-topology are the
coin values, and the difference between server i and j indices
(( j−i)modn) is the target total value that we want to achieve.
The only difference is that our problem runs in modulo n
arithmetic space, as the server IDs wrap around in the ring
structure. Appendix C lists the pseudocode of TotientPerms,
TopPermutations, and CoinChangeMod methods.

Step 3: Construct the MP topology. Given that MP trans-
fers are not permutable, we use the classical Blossom maxi-
mum weight matching algorithm [59] to find the best connec-
tivity between servers with MP transfers (line 15). We repeat
the matching algorithm until we run out of degrees. To increase
the likelihood of more diverse connectivity across server pairs,
we divide the magnitude of TMP for pairs that already have an
edge between them by two (line 18). In general, division by
two can be replaced by a more sophisticated function with a
diminishing return. Appendix D elaborates on this point.

Step 4: Final topology and routing. Finally, we combine
the MP and AllReduce sub-topologies and compute k-shortest
path routes for MP transfers (lines 19 and 20).

Example. We use the DLRM model in Figure 4 distributed
across 16 servers each with six NICs (d = 6) as an exam-
ple. Instead of choosing one of the AllReduce permutations
in Figure 5, TOPOOPT combines the three ring-AllReduce
permutations to load-balance the AllReduce transfers while
providing a short hop-count for MP transfers. Figure 9 illus-
trates TOPOOPT’s topology and traffic matrix, demonstrating
a more balanced traffic matrix than Figure 4.

4 Optical Switching Technologies
Once an optimized topology and parallelization strategy is
found for a given job, we use optical switches in TOPOOPT to
reconfigure the interconnection between the set of servers that
participate in the job. Since our TOPOLOGYFINDER algorithm
takes the server degree d as input, we directly map the output
of the algorithm to a physical topology.

There are many different optical switching technologies
that we can use for TOPOOPT [41, 50, 53, 54, 57, 60, 64, 79, 83,
85,87,88,99,104]. Table 1 lists the key characteristics of these
technologies. In principle, TOPOOPT’s design is compatible
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Technology Port-
count

Reconfig.
latency

Insertion
Loss (dB)

Cost /port

Optical Patch Panels [41] 1008 minutes 0.5 $100
3D MEMS [16, 39] 384 10 ms 1.5–2.7 $520
2D MEMS [53, 99] 300 11.5 µs 10–20 Not commercial
Silicon Photonics [79, 104] 256 900 ns 3.7 Not commercial
Tunable Lasers [50, 57] 128 3.8 ns 7-13 Not commercial
RotorNet [87, 88] 64 10 µs 2 Not commercial

Table 1: Comparison of optical switching technologies.

with any of these technologies. However, most are not com-
mercially available. For an immediate deployment in BIGNET,
this section focuses on optical patch panels [41, 102] and 3D
MEMS circuit switches [16, 39], the only two technologies
that are commercially available today. In our simulations, we
evaluate the performance of fast reconfigurable switches to
provide a perspective on future designs (§5).

Optical patch panels. Fiber optic patch panels are com-
monly used for cable management. Reconfigurable optical
patch panels are a new class of software-controlled patch pan-
els and are already commercialized at scale [102]. For instance,
Telescent offers fully reconfigurable patch panels with 1008
duplex ports and insertion loss less than 0.5 dB for $100K
($100/port) [41, 102]. Reconfiguration is performed using a
robotic arm that grabs a fiber on the transmit side and connects
it to a fiber on the receive side [78]. However, the reconfigura-
tion latency of optical patch panels is several minutes [41].

3D MEMS-based Optical Circuit Switches (OCSs). An
OCS uses tiny mirrors to change the direction of light, thereby
reconfiguring optical links. The largest optical circuit switch on
the market has 384 duplex ports with≈10 ms reconfiguration
latency and is available for $200K ($520/port) [39]. However,
the optical loss of these switches is 1.5–2.7 dB [19]. Compared
to patch panels, OCSs have the following disadvantages: (i)
each port is five times more expensive; (ii) their insertion loss
is higher; and (iii) their port-count is three times lower. The
main advantage of OCSs is that their reconfiguration latency is
four orders of magnitude faster than patch panels.

Impact of reconfiguration latency. Patch panel and OCS
technologies are both applicable to TOPOOPT. The choice of
which technology to use depends on several factors, includ-
ing scale of the cluster, iteration training time of jobs, and
frequency of job arrivals. For instance, OCSs can be used to
reconfigure the topology of a job within training iterations,
whereas patch panels are only suitable when the topology re-
mains intact throughout the entire training. Our evaluations
demonstrate that the reconfiguration latency of today’s OCSs is
too high for some DNNs, leading to sub-optimal performance
when the topology is reconfigured within iterations (§5).

Handling job arrivals. To start a job with k servers,we need
to reconfigure the interconnection between these k servers be-
fore the job starts. This can be done quickly when OCSs are
used, but when patch panels are used, there could be several
minutes of delay before the job can start. To address this chal-
lenge, we use a look-ahead approach to pre-provision the next
topology while current jobs are running. More specifically,

1x2 optical switch
d interfaces

Server1 Server2 Servern

Active port Look-ahead port

Active Lo
ok
-a
he
ad

Patch Panel1 Patch Panel2 Patch Panel2d-1 Patch Panel2d

Ac
tiv
e

Look-ahead

2d Patch Panels

Servern-1

Figure 10: Active & Look-ahead ports when the reconfigu-
ration latency is too high.

we use a simple 1×2 mechanical optical switch [98] at each
server’s interface to choose between Active vs. Look-ahead
ports. These 1×2 switches are inexpensive ($25) and have
0.73 dB optical loss measured in our prototype. We then con-
nect the two ends of each 1×2 switch to different patch panels,
as shown in Figure 10. As a result, a TOPOOPT cluster with n
servers, each with d interfaces, has 2d patch panels where each
interface is split into two parts: Active and Look-ahead. At any
point in time, only one end of each 1×2 switch is participating
in the active topology; the other end is pre-provisioning the
topology for the next job. Once all the servers for the new job
are ready, TOPOOPT immediately flips to the new topology by
reconfiguring the corresponding 1×2 switches.

5 Large-Scale Simulations
This section evaluates the performance of a large-scale
TOPOOPT interconnect. First, we explain our simulation soft-
ware and methodology (§5.1). Then, we provide a cost analysis
of TOPOOPT to inform our simulations when comparing
different interconnects (§5.2). Next, we demonstrate the per-
formance of TOPOOPT when a cluster is dedicated to a single
distributed DNN training job (§5.3). We extend this setting to
a case where a training cluster is shared among multiple DNNs
(§5.4). Finally, we demonstrate the impact of reconfiguration
latency and server degree on TOPOOPT’s performance (§5.5).

5.1 Methodology & Setup

We implement two simulators to evaluate TOPOOPT:
FlexNet simulator. We augment FlexFlow’s simulator [27]

to be network-aware and call it FlexNet. Given a DNN model
architecture and a batch size, FlexFlow’s simulator explores
different parallelization strategies and device placements to
find a strategy that minimizes per-iteration training time. The
output of the FlexFlow simulator is a task graph describing
the set of computation and communication tasks on each GPU
and their dependencies. However, current implementation of
FlexFlow ignores the network topology entirely by assuming
servers are connected in a full-mesh interconnect. Our FlexNet
simulator extends the FlexFlow simulator and enables it to
consider multiple networks, including Fat-trees, TOPOOPT,
and expander networks. Moreover, FlexNet implements our
alternating optimization framework (§3) to find an optimized
network topology and routing rules for TOPOOPT.
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VGG BERT DLRM CANDLE
Batch Batch size/GPU: 16 Batch size/GPU: 128 Batch size/GPU: 256
size/GPU: #Trans. blks: 12 #Dense layer: 8 #Dense layer: 8
64 Hidden layer: 1024 Dense layer size: 2048 Dense layer: 16384

Seq. length: 64 #Dense feat. layer: 16 #Dense feat. layer: 16
#Attn. heads: 16 Feat. layer size: 4096 Feat. layer size: 16384
Embed. size: 512 Embed.: 128×107

#Embed. tables: 64
Batch Batch size/GPU: 16 Batch size/GPU: 256 Batch size/GPU: 256
size/GPU: #Trans. blks: 6 #Dense layer: 8 #Dense layer: 8
64 Hidden layer: 768 Dense layer size: 1024 Dense layer: 4096

Seq. length: 256 #Dense feat. layer: 16 #Dense feat. layer: 16
#Attn. heads: 6 Feat. layer size: 2048 Feat. layer size: 4096
Embed. size: 512 Embed.: 256×107

#Embed. tables: 16

Table 2: DNN models used in our simulations.

FlexNetPacket simulator. We find that FlexFlow’s simu-
lator often underestimates the training iteration time at large
scales because it does not simulate packets traversing through
a network. Extending FlexNet to become a packet-level simu-
lator is not computationally feasible, since FlexFlow generally
requires thousands of MCMC rounds to converge. To faith-
fully simulate per-packet behavior of network switches,buffers,
and multiple jobs sharing the same fabric, we build a second
event-based packet simulator, called FlexNetPacket, on top
of htsim [5]. FlexNetPacket takes the output of FlexNet– that
is, the optimized parallelization strategy, device placement of
each operator, optimized network topology, and routing rules –
and simulates several training iterations. The simulated train-
ing iterating times with FlexNetPacket match those we observe
in BIGNET’s clusters. The per-hop latency in FlexNetPacket
is set to 1 µs to reflect the multi-hop latency of servers that
are not directly connected. These two simulators together are
≈10K lines of code in C++. We will release our codebase and
all related data and scripts online.

Simulated network architectures. We simulate dis-
tributed training clusters with n servers equipped with four
NVIDIA A100 GPUs [37]. We vary n in different experiments
and simulate the following network architectures:
• TOPOOPT-oneshot. A TOPOOPT interconnect where
each server is equipped with d NICs, each with bandwidth B
connected via a flat layer of optical devices. At the beginning
of each job, the topology is reconfigured based on the output
of our alternating optimization framework (§3) and remains
unchanged throughout the entire training job. Both OCS and
patch panels are suitable for this architecture.
• TOPOOPT-reconfig. To study the impact of changing the
network topology within training iterations, we simulate a
reconfigurable TOPOOPT interconnect. We only rely on OCSs
for this design and assume their reconfiguration latency is
10 ms. Given that FlexFlow’s parallelization strategy search is
not aware of dynamically reconfigurable networks, following
prior work [79], we measure the traffic demand every 50 ms
and adjust the circuits based on a heuristic algorithm to satisfy
the current traffic demand as much as possible (Appendix D).
• Ideal Fat-tree. An ideal full bisection bandwidth Fat-tree
where each server has one NIC and the bandwidth of every

Link
band-
width

Transceiver
($)

NIC ($) Electrical
switch
port ($)

Patch
panel
port ($)

OCS
port
($)

1×2
switch
($)

10 Gbps 20 [12] 180 [32] 87 [21] 100 [41] 520 [39] 25 [98]
25 Gbps 39 [13] 185 [33] 144 [23] 100 [41] 520 [39] 25 [98]
40 Gbps 39 [14] 376 [17] 144 [22] 100 [41] 520 [39] 25 [98]
100 Gbps 99 [11] 660 [34] 225 [24] 100 [41] 520 [39] 25 [98]
200 Gbps2 198 [11] 790 [35] 450 [24] 100 [41] 520 [39] 25 [98]

Table 3: Cost of network components.
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Figure 11: Interconnect cost comparison.

link is d×B. This architecture provides an ideal bound for
training iteration times in a cluster where each server has d×B
available network bandwidth.
• Cost-equivalent Fat-tree. To compare the performance of
TOPOOPT with a cost-equivalent architecture, we simulate
a full bisection bandwidth Fat-tree where each server has one
NIC and the bandwidth of each link is d×B′, where B′ is lower
than B and is selected such that this Fat-tree has a similar cost
to TOPOOPT (§5.2).
• Oversub. Fat-tree. This is a 2:1 oversubscribed Fat-tree
interconnect, similar to the one used in Opera [87], where the
bandwidth of each link is d×B but half of the links at the ToR
uplink layer are omitted.
• SiP-ML [79]. SiP-ML is a futuristic DNN training cluster
with several Tbps bandwidth per GPU. While having a
Tbps network is certainly a plus, our goal is to compare the
algorithmic contributions of TOPOOPT and SiP-ML. Hence,
to make an apples-with-apples comparison, we allocate d
wavelengths, each with bandwidth B, to each SiP-ML GPU
and follow its SiP-Ring algorithm to find a topology with a
reconfiguration latency of 25 µs. Appendix E elaborates on
our modifications to SiP-ML.
• Expander [108, 115]. Finally, we simulate a fabric where
each server has d NICs with bandwidth B interconnected via
an Expander topology.

DNN Workloads. We simulate four real-world DNN mod-
els: DLRM [20], CANDLE [3], BERT [58], and VGG [107].
Table 2 summarizes model configurations and batch sizes used
in our simulations. The top and bottom rows correspond to
models used in Sections 5.3 and 5.4, respectively. Batch sizes
are selected based on the common batch sizes used in BIGNET.
Each data point averages 5–20 simulation runs.

Parallelization strategy. We use FlexNet’s topology-
aware parallelization strategy search for Ideal Fat-tree, Cost-
equivalent Fat-tree, Oversub. Fat-tree, SiP-ML, and Expander

2200 G transceivers and switch ports are estimated as 2× 100G cost.
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Figure 12: Dedicated cluster of 128 servers (d = 4).
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Figure 13: Dedicated cluster of 128 servers (d = 8).

networks. For TOPOOPT, we use FlexNet’s alternating opti-
mization framework to find the best parallelization strategy
jointly with topology. We use ring-AllReduce and distributed
parameter server [81] as default AllReduce communication
collectives between servers and within servers, respectively.

5.2 Cost Analysis

We begin our evaluations by comparing the cost of different
network architectures. Table 3 lists the cost of network compo-
nents we use in this section. The cost of transceivers, NICs, and
electrical switch ports is based on the lowest available prices
in official retailer websites. We obtain the cost of patch panel,
OCS, and 1×2 optical switch directly from their suppliers.
Note that the cost of optical components stays constant as
link bandwidth increases, an inherent advantage of optics.
Following prior work, we estimate the cost of fiber optics
cables as 30 cents per meter [64] and select each fiber’s length
from a uniform distribution between 0 and 1000 meters [126].

Figure 11 compares the interconnect cost across various
network architectures as the number of servers is increased.
We calculate the cost of TOPOOPT-oneshot based on 2d patch
panels and 1×2 switches at each link to support its look-ahead
design (§4). TOPOOPT-reconfig’s cost is based on d OCSs
connected to all servers in a flat topology. We make the fol-
lowing observations. First, using OCSs for TOPOOPT is more
expensive (1.33×, on average) than patch panels. Note that
OCSs can be used in both TOPOOPT-oneshot and TOPOOPT-
reconfig interconnects. Second, the cost of TOPOOPT-oneshot
(blue curve) overlaps with the Cost-equivalent Fat-tree (yellow
curve). This is intentional, since having a cost-equivalent archi-
tecture enables us to compare the performance of TOPOOPT
to a cluster at the same price point. Third, TOPOOPT-oneshot
is, on average, 3.4×more cost effective than its Ideal Fat-tree
counterpart. Finally, the most and least expensive fabrics are
SiP-ML and Expander, respectively, and this section shows
that they both perform worse than TOPOOPT.

We acknowledge that estimating the cost of networking hard-
ware is challenging because prices are subject to significant
discounts with bulk orders. However, assuming all components
in this analysis are subject to the same bulk order discounts,
the relative comparison across architectures remains valid.

5.3 Performance Comparison for Dedicated Clusters

Figure 12a demonstrates the training iteration time of CAN-
DLE distributed on a dedicated cluster of 128 servers with
four A100 GPUs where d=4. We vary the link bandwidth (B)
on the x-axis. There are three takeaway points from this figure.
First, Ideal Fat-tree, TOPOOPT-oneshot, TOPOOPT-reconfig,
and SiP-ML architectures all achieve similar performance for
CANDLE. This is because the best parallelization strategy
for CANDLE at this scale is mostly data parallel, with a few
MP transfers, hence the network topology matters less. Recall
that TOPOOPT-oneshot has the lowest cost across these archi-
tectures. Second, the Cost-equivalent Fat-tree architecture has,
on average, 2.8× higher training iteration time than these four
architectures. Third, the Expander architecture has the worst
performance, since it is not optimized for DNN workloads.3,4

The difference between those overlapping architectures
starts to matter for BERT, shown in Figure 12b. In particular,
this time, only three architectures overlap: TOPOOPT-oneshot,
Ideal Fat-tree, and SiP-ML because BERT’s parallelization
strategy includes more MP transfers than CANDLE; hence, the
impact of network topology on training iteration time is more
pronounced. As a result, TOPOOPT-reconfig’s performance
starts to suffer since the reconfiguration latency of OCSs is long
compared to the training iteration time of BERT at this scale.

DLRM’s case is even more interesting, as it has a lot more
MP transfers than the other two DNNs. As shown in Figure 12c,
TOPOOPT-oneshot’s performance remains close to the Ideal
Fat-tree but both SiP-ML and TOPOOPT-reconfig perform
poorly and despite increasing the link bandwidth, their training
iteration time stays flat. This happens because DLRM has a
lot of one-to-many and many-to-one broadcast and incast MP
transfers which require several circuit reconfigurations to meet
the traffic demand, consequently hurting the performance of
both SiP-ML and TOPOOPT-reconfig. In particular, TOPOOPT-
reconfig is performing two orders of magnitude worse than
SiP-ML because its reconfiguration latency is two orders of
magnitude higher (10 ms vs. 25 µs). To verify this conclusion,
we run a series of simulations without reconfiguring TOPOOPT-
reconfig and SiP-ML and observe that their performance

3We note that it might be possible to improve the performance of the Ex-
pander fabric by augmenting Blink’s approach [116] to a cluster-level solution.

4VGG’s results are similar to CANDLE (figures omitted).
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Figure 14: Shared cluster of 432 servers (d = 8, B = 100 Gbps).

matches TOPOOPT-oneshot. Section 5.5 evaluates the impact
of reconfiguration latency on performance and shows that we
need optical switches with faster reconfiguration latency, such
as Sirius [50], to meet the performance of Ideal Fat-tree.

Figure 13 shows the same setting as Figure 12 except that
each server now has eight NICs. The results show a similar
trend: even though per server bandwidth has increased, the
behavior of different network architectures remains consistent.
In summary, across all data points in Figures 12 and 13,
TOPOOPT-oneshot has 2.2× better training iteration time than
its Cost-equivalent Fat-tree counterpart.

5.4 Performance Comparison for Shared Clusters

We now compare the performance of different network
architectures when the cluster is shared across multiple DNN
jobs. Following prior work [86, 100], we run a series of
simulations where 40% of the jobs are DLRM, 30% are BERT,
20% are CANDLE, and 10% are VGG16. We change the
number of active jobs to represent the load on the cluster.

Figure 14 compares the average and 99%-tile iteration time
at different loads for a cluster with 432 servers, where d = 8 and
B = 100 Gbps. SiP-ML does not support multiple jobs, hence
we omit it in this experiment. Moreover, we omit TOPOOPT-
reconfig and Expander networks since they both have a poor
performance in this setting. Instead, we add the Oversub. Fat-
tree interconnect to demonstrate the impact of congestion on
Fat-tree topologies. Figure 14a shows that TOPOOPT-oneshot
improves the average iteration time by 1.7× and 1.16×, com-
pared to Cost-equivalent Fat-tree and Oversub. Fat-tree ar-
chitectures, respectively. Moreover, TOPOOPT improves the
training time of Ideal Fat-tree fabric by 1.07× on average!
Initially, we were surprised by this result since we expected
Ideal Fat-tree would have the lowest possible iteration time.
However, we find two reasons why TOPOOPT out-performs
Ideal Fat-tree: (i) the workload consists of large incast transfers
causing congestion in the network that Fat-tree interconnects
are notoriously vulnerable to, and (ii) TOPOOPT provides bet-
ter latency properties, as most servers are at most three hops
away, whereas for Fat-trees, the maximum hop count is six. We
observe a similar trend for the tail iteration completion times,
depicted in Figure 14b. Averaging across all load values on the
x-axis, TOPOOPT improves the tail training iteration time by
3×, 1.4×, and 1.12×, compared to Cost-equivalent Fat-tree,
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Figure 16: Impact of server degree (d) on performance.

Oversub. Fat-tree, and Ideal Fat-tree architectures, respectively.

5.5 Sensitivity Analysis

Impact of reconfiguration latency. The results presented in
Figures 12 and 13 indicate that reconfiguring the topology
within training iterations can lead to poor performance in some
cases. One way to address this issue is to keep the topology
the same throughout the entire training time (similar to our
TOPOOPT-oneshot design). While our experiments show that
keeping the topology intact achieves training iteration time as
good as the Ideal Fat-tree fabric most of the time, intellectu-
ally, it is important to understand whether there is a suitable
reconfiguration latency for DNN training clusters. Figure 15
shows the training iteration time of BERT and DLRM in the
same setting as in Figure 12 while sweeping the reconfigura-
tion latency of OCSs in TOPOOPT-reconfig from 1 µs to 10 ms.
The horizontal blue line corresponds to TOPOOPT-oneshot’s
iteration time which remains constant as it does not recon-
figure the network topology. The figure shows that when the
reconfiguration latency is lower than 1 µs, the iteration time of
TOPOOPT-reconfig matches that of TOPOOPT-oneshot. Fast
reconfigurable switches are going to be essential in elastic
scenarios where the cluster is shared across multiple jobs and
servers join and leave different jobs unexpectedly. This is
a challenging research problem, and we leave the design of
a joint topology optimization, cluster scheduling, and paral-
lelization strategy to future work. We believe futuristic fast
reconfigurable switches, such as Sirius [50], are well-suited for
this setting but finding a parallelization algorithm that is aware
of reconfigurability in the network topology is a challenging
and exciting future research problem.

Impact of server degree. We next study the impact of server
degree d on TOPOOPT’s performance. Specifically, we vary
the degree of each server in TOPOOPT for two link bandwidths:
40 Gbps and 100 Gbps. Figure 16 shows the trend for different
DNN models. Both DLRM and CANDLE are network-heavy;
therefore, they benefit more from the additional bandwidth
obtained by increasing d. CANDLE’s improvement is almost
linear as degree goes up, as the strategy is closer to data parallel
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and the amount of bandwidth available to AllReduce operation
increases linearly as well. In the case of DLRM, we observe
a super-liner scaling when B = 100 Gbps. This is because
DLRM has one-to-many and many-to-one MP transfers which
require a low hop count in the topology. As we increase d,
TOPOLOGYFINDER is able to find network topologies with
much lower diameter, consequently benefiting the performance
by both increasing bandwidth and reducing hop-count for MP
transfers. Finally, BERT is mostly compute bound at higher
bandwidth; hence, increasing the server degree and bandwidth
per node has marginal impact on its iteration time.

6 Prototype
Testbed setup. We build a prototype to demonstrate the
feasibility of TOPOOPT. Our prototype includes 12 ASUS
ESC4000A-E10 servers and a G4 NMT patch panel [41].
Each server is equipped with one A100 Nvidia GPU [37]
(40 GB of HBM2 memory), one 100 Gbps HP NIC [29], and
one 100 Gbps Mellanox ConnectX5 NIC. Our HP NICs are
capable of supporting 4×25 Gbps interfaces using a PSM4
transceiver with four breakout fibers [7], enabling us to build
a TOPOOPT system with degree d =4 and B=25 Gbps. We
enable DCB [18] and PFC on these interfaces to support a
lossless fabric for RDMA. To compare TOPOOPT’s training
performance with an ideal baseline, we connect the Mellanox
NICs on each server to a 100 Gbps MX480 Juniper switch [30].
We build a completely functional TOPOOPT-oneshot prototype
with our patch panel, including 1×2 optical switches [98] to flip
between active/look-ahead topologies. Figure 17 shows our
prototype. Given that our simulation results suggest the recon-
figuration latency of OCS is too long for TOPOOPT-reconfig,
we only focus on TOPOOPT-oneshot in our prototype.

Distributed training framework. We use FlexFlow’s train-
ing engine [26], based on Legion’s parallel programming
system [31], to train three DNN models: ResNet50 [70],
BERT [58], and CANDLE [3]. Since our prototype is an order
of magnitude smaller scale than our simulation setup, we use
smaller model sizes and batch sizes. Table 4 lists the details of
each model. We ensure all GPUs are fully utilized.

ResNet50 BERT CANDLE
Batch size/GPU: 20 Batch size/GPU: 2 Batch size/GPU: 10
dataset: CIFAR10 #Trans. blks: 4 #Dense layer: 4

Hidden layer sz: 768 Dense layer sz: 4096
Seq. length: 64 #Dense feat. layer: 8
#Attn. heads: 16 Feat. layer size: 4096
Embed. size: 512

Table 4: DNN models used in our testbed.
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Figure 19: Time-to-accuracy
of ResNet50.

Modifications to NCCL. By default, the NCCL com-
munication library [36] assumes all network interfaces are
routable from other interfaces. This assumption is not ideal
for TOPOOPT because we have a specific routing strategy
to optimize training time. We modify NCCL to understand
TOPOOPT’s topology and respect its routing preferences.
Moreover, we integrate our TotientPermsAllReduce permu-
tations into NCCL and enable it to load-balance parameter
synchronization across multiple ring-AllReduce permutations.

RDMA indirect forwarding. To support a multihop
TOPOOPT interconnect, we enable RDMA RoCEv2 indirect
forwarding on all our HP NICs. This is challenging because
packet processing and memory access in RDMA protocol is
offloaded to the NIC. Hence, if a packet’s IP destination ad-
dress does not match the NIC’s IP address, RDMA engine
silently drops the packet. Hence, by default, RDMA does not
support host-level indirect forwarding for a host to act as a
relay for other hosts. To address this issue, we collaborated
with engineers from Marvell, the provider of the ASIC on our
HP NICs, to adjust the NIC firmware and enable supporting in-
direct forwarding functionality. Our approach does not require
proprietary software/firmware and is applicable to commodity
NICs with the same ASIC. We will release our scripts publicly.
At a high-level, we use a feature called NPAR, or network par-
titioning allowing us to split each 25 Gbps physical interface
into two logical interfaces in the hardware level: i f1 and i f2.
Each logical interface has a different MAC address but only
i f1 has an IP address. RDMA is enabled on i f1 but disabled
on i f2. Hence, packets arriving at i f2 are delivered to the host
networking stack. We then establish a set of iproute,arp, and
tc flower rules in Linux to guarantee that a packet is routed
to i f1 logical interface if its destination IP address matches
i f1’s IP address. Otherwise, the packet is handled by i f2, allow-
ing the NIC to give the packet to the Linux kernel for further
processing. Compared to pure point-to-point RDMA, this ap-
proach takes a small performance penalty, but our experiments
show the overhead is negligible. A more performant produc-
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tion implementation can use XDP (eXpress Data Path) [25] to
increase efficiency. Moreover, the future generation of Marvell
ASICs will support hardware offloading of tc flower [28]; this
will further reduce the performance penalty of our approach,
since the NIC can handle indirect forwarding packets.

Training performance. Figure 18 demonstrates that
TOPOOPT achieves a training throughput (samples/second)
similar to that of our ideal baseline. Moreover, Figure 19 shows
that our prototype and baseline have a similar time-to-accuracy
for training ResNet50 on the CIFAR10 dataset [80]. The small
differences between the time-to-accuracy curves are due to
random seed selection.

7 Discussion
Handling scale. A flat TOPOOPT cluster with OCSs can scale
to 384 servers and a TOPOOPT cluster with patch panels can
scale to 1000 servers. Assuming each server has 8 GPUs, these
clusters can host 3,072 and 8,000 GPUs, respectively. Given
that our DNN jobs run on less than 1000 workers (Figure 1a),
there is no immediate need to create a hierarchy of switches. To
further scale a TOPOOPT cluster, we can create a hierarchical
interconnect by placing the servers under ToR switches and
connecting the ToR switches to the optical switch layer, similar
to prior work [50, 67, 68, 88]. Another option is to build a Clos
topology using a hierarchy of optical switches and patch panels.
We leave exploring these options to future work.

Supporting dynamic scheduling and elasticity. Prior
work has demonstrated the benefits of dynamically choosing
the training servers for elastic training jobs [86, 100]. Our tar-
get usecase in BIGNET is to leverage TOPOOPT for the vast
number of long-lasting training jobs that do not change dynam-
ically. In cases where elasticity is required, instead of using
patch panels, we use OCSs (or other fast reconfigurable optical
switches) to change the servers participating in a job quickly.
Note that dynamically changing the set of servers participating
in a job while keeping both the topology and the parallelization
strategy optimal requires augmenting the optimization space
with an additional dimension, hence, making the problem even
more challenging, which we leave to future work.

Handling failures. Unlike SiP-ML’s single ring topol-
ogy [79], our TOPOLOGYFINDER’s technique spreads the
available degree across servers to create topologies with a di-
verse set of AllReduce permutations, which, in turn, increases
the failure resiliency of a TOPOOPT interconnect. In particular,
a TOPOOPT topology does not have a single point of failure.

Supporting multi-tenancy. To support multi-tenancy [122,
123], TOPOOPT can leverage NVIDIA’s MIG [38] to treat one
physical server as multiple logical servers in its topology.

TotientPerms in Fat-trees. Although our TotientPerms
technique is well-suited for reconfigurable optical intercon-
nects, it may be of independent interest for Fat-tree intercon-
nects as well since load-balancing the AllReduce traffic across
multiple permutations can help with network congestion.

8 Related Work

Optimizing DNN training. To address the increasing compu-
tation and network bandwidth requirements of large training
jobs, a plethora of frameworks have been proposed [4,44,55,65,
71,73,76,77,93,96,97,105,109,116,125]. These frameworks
distribute the dataset and/or DNN model across accelerators
while considering the available network bandwidth, but unlike
TOPOOPT, they do not consider the physical layer topology as
an optimization dimension. Specifically,Blink [116] builds fast
collectives for distributed ML, but it needs a physical topology
to generate its spanning trees. Moreover, several methods have
been proposed to quantize and compress the gradients to reduce
the amount of communication data across servers [46,52,124].
While all these approaches are effective, they are designed for
data parallel strategies and do not consider the large amount
of data transfers caused by model parallel training. Wang et
al. [118] compared the performance of Fat-trees and BCube
topologies for distributed training workloads and highlighted
several inefficiencies in Fat-trees. However, unlike TOPOOPT,
their proposed approach does not co-optimize topology and
parallelization strategy.

DNN parallelization strategies. Data and model paral-
lelism have been widely used by today’s DNN frameworks
(e.g., TensorFlow [42], PyTorch [40], MXNet [15]) to par-
allelize training across multiple devices. Recent work has
also proposed automated frameworks (e.g., FlexFlow [76],
ColocRL [89]) that find efficient parallelization strategies by
searching over a comprehensive space of potential strategies.
These frameworks rely on and are optimized for the conven-
tional Fat-tree interconnects. TOPOOPT proposes a new ap-
proach to building DNN training systems by jointly optimizing
network topology and parallelization strategy.

DNN training infrastructures and schedulers. Several
training infrastructures have been proposed recently, including
NVIDIA DGX SuperPOD [9], TPU cluster [8], and super-
computers [1]. All these systems assume non-reconfigurable
network topologies, such as Fat-tree, Torus, and other traffic
oblivious interconnects. TOPOOPT is the first DNN system
that uses commodity reconfigurable interconnects to accel-
erate DNN jobs. Gandiva [120], Themis [86], Tiresias [66],
BytePS [77, 97], and Pollux [100] seek to improve the utiliza-
tion of GPU clusters through scheduling algorithms. These
approaches are complementary to ours, and many of their tech-
niques can be applied to a TOPOOPT cluster.

Optical Interconnects. Several papers demonstrated the
benefits of optically reconfigurable interconnects for datacen-
ters [50, 53, 57, 60, 64, 83–85, 87, 88, 99]. As mentioned in
Section 3.3, these designs lead to sub-optimal topologies for
distributed DNN traffic. Similarly, traffic oblivious intercon-
nects, such as RotorNet [87, 88], are a great fit for datacenter
workloads, but they are not suitable for DNN training jobs
characterized by repetitive AllReduce and MP traffic demands.
Hybrid electrical/optical datacenter proposals [60, 117] can be
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used to route AllReduce traffic through the optical fabric and
MP flows through a standard electrical Fat-tree network. But
hybrid clusters are not cost effective and suffer from many prob-
lems, including TCP ramp-up inefficiencies [91], segregated
routing issues [61], and uncertainty in terms of how to divide
the cluster between electrical and optical fabrics [64, 68].

9 Conclusion
We present TOPOOPT, a novel network interconnect to build
DNN training clusters. We design an alternating optimization
algorithm that explores the large space of Computation ×
Communication× Topology strategies for a DNN workload,
and demonstrate TOPOOPT obtains up to 3× faster training
iteration time than a cost-equivalent Fat-tree.
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Figure 20: DLRM traffic heatmaps with DBT.
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Figure 21: Double binary tree (DBT) permutations.
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Figure 22: CANDLE traffic heatmaps with DBT.

A Tree-AllReduce and other AllReduce per-
mutations

Section 2 established that we can manipulate the traffic of
a ring-AllReduce collective by permuting the labeling of
servers in the AllReduce group. Here, we illustrate how to use
the same technique on another AllReduce algorithm, called
tree-AllReduce.

In the tree-AllReduce algorithm, the servers are connected
logically to form a tree topology. The AllReduce operation
happens by first running a reduce operation to the root node
with recursive halving, followed by a broadcast to the rest of
the cluster with recursive doubling [112].

A common instantiation of tree-AllReduce is the
double binary tree (DBT) algorithm described in [103]. In this
algorithm, the first step is to create a balanced binary tree for
the nodes. The properties of balanced binary trees guarantee
that one half of the nodes will be leaf-nodes, and the other
half will be in-tree; thus, a second binary tree is constructed
by flipping the labeling of the leaf and in-tree nodes. This way,
each node (except the root in both trees) has the same amount
of communication requirement for the AllReduce operation
described in the last paragraph, and bandwidth-optimally is
achieved. Figure 21a shows an example where in the first
binary tree, the in-tree nodes are even, and the leaf nodes are

odd, while the second tree flips the labeling.
Essentially, the DBT itself is an example of permuting

the node labeling to achieve an AllReduce operation with
balanced communication load. We also note that we can
permute the labeling for the entire set of nodes for a pair
of DBT to create a new pair of trees that can perform the
AllReduce operation at the same speed. Figures 21b and 21c
illustrate two other possible double binary trees, and their
corresponding traffic demand matrix for the DLRM and
CANDLE example shown in Section §2 in Figures 20 and 22.
Arbitrary permutations can be used, and to limit the cases, we
could simply consider the cyclic permutations in the modular
space as described in TotientPerms.

In general, all AllReduce operations can be described as a
directed graph G=(V,E)whereV is the set of nodes in the clus-
ter, and E denotes data dependencies. The permutable property
says that every graph G′=(V,E ′) that is isomorphic to G can
perform the AllReduce operation equally well, where the ho-
momorphism between G and G′ is described by the symmetric
group on V (generally denoted Sym(V ) in group theory).

B Size of AllReduce and MP transfers
In most workloads observed in BIGNET, the size of AllReduce
transfers is larger than the size of MP transfers for each
iteration. This is because in most cases it would not be
worthwhile if MP transfers are as large as AllReduce transfers.
Consider the DLRM example in Section 2.2 with 20 GB
embedding tables with double-precision floating parameters.
If we were to distribute this embedding table using data
parallelism, each server would need to send and receive
37.5 GB of data for the AllReduce operation. On a 100 Gbps
fabric this would take 3 seconds by itself, where as if we put
it on one server, it would only need to transfer 32 MB/server
(assume we have a per-server batch size of 8192, then MP
traffic is calculated as 16 servers× 8192 samples/server× 512
activation per sample× 8 bytes per activation / 16 servers =
32 MB). We note that adding pipeline parallelism can increase
the amount of MP traffic as it overlaps forward and backward
passes. Efficient ways to pipeline batches remains an active
research area [71, 93] especially when hybrid parallelism is
employed. Pure model parallelism creates another type of
sparse traffic pattern where only accelerators with inter-layer
dependencies need to communicate. Our TOPOLOGYFINDER
algorithm can support such communication patterns.

On the other hand, conceptually, when the network
bandwidth goes to infinity, other overheads in the system (e.g.
CUDA kernel launch) will dominate the latency. In such cases,
it might be beneficial to choose model parallelism instead of
data parallelism, to reduce the amount of system overheads.
In particular, prior work showed 10 Tbps Silicon Photonics
links enable more aggressive model parallelism where the
size of MP traffic is significant [79]. TOPOOPT’s approach
to distribute the degree between the MP and AllReduce
sub-topologies enables us to accommodate this case as well.
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Algorithm 3 CoinChangeMod pseudocode
1: procedure COINCHANGEMOD(N, G)

. Input N: Total number of nodes

. Input G: Network Topology

. Output R: Routings
. R is the routing result

2: R = {}
. Acquire the set of “coins" from the topology,
. which are the choices of Algorithm 4

3: C = GetCoins(G)
4: for i∈ [1,N−1] do

. curr_dist denotes the “distance" of a value

. (node distance) counted by number of “coins"
5: curr_dist[i] = ∞

. curr_bt record a back-trace of “coins" to

. get to a value (node distance)
6: curr_bt[i] = ∞

7: for c∈C do
8: curr_dist[c] = 0
9: curr_bt[c] = c

10: while curr_dist has at least one ∞ in it do
11: for i∈ [1,N−1] do
12: new_dist[i] = curr_dist[i]
13: new_bt[i] = curr_bt[i]
14: for c∈C do
15: if curr_dist[(i−c) mod N]<new_dist[i] then
16: new_dist[i] = cur_dist[(i−c) mod N]+1
17: new_bt[i] = c
18: curr_dist = new_dist
19: curr_bt = new_bt

. Construct the routing for each node distance from the back-trace
20: R = GetRouteSeq(curr_bt)
21: return R

Algorithm 4 TopPermutations pseudocode
1: procedure TOPPERMUTATIONS(N, dk , Pk , TMP)

. Input N: Total number of nodes

. Input dk: Degree allocated for group this AllReduce group of size k

. Input Pk: Candidate permutations for this AllReduce group of size k

. Input Tmp: Traffic matrix for MP traffic

. Output Gk: Parameter synchronization topology, as a topology matrix
. Initially, Gk is empty

2: Gk = []
3: for k0∈Pk do

. Pick dk candidate permutations evenly from starting from k0
4: ProposedConns = Pick_dk(Pk, k0)

. Assert how much MP traffic this choice can satisfy.

. We want the set of candidates that maximizes the

. demand satisfied for the MP traffic.

. The metric of “satisfied MP" can have many definitions
5: Satis f iedMP = MPSatisfied(Tmp, ProposedConns)
6: Gk += (The ProposedConns that maximizes Satis f iedMP)
7: return Gk

Algorithm 2 TotientPerms pseudocode
1: procedure TOTIENTPERMS(N, k)

. Input N: Total number of nodes

. Input k: AllReduce group size

. Output Pk: Set of permutations for AllReduce group of size k
. Initially, Pk is empty

2: Pk = {}
. This loop runs φ(p) times, where
. φ is the Euler Totient function, φ(p)= |{k< p :gcd(k,p)=1}|
. one can also restrict p to be prime only

3: for p≤k, gcd(p,k)== 1 do
4: one_perm = []
5: for i in 0 to N/k do
6: one_perm += [i+ j×p for j in 0 to k]
7: Pk += one_perm
8: return Pk

C TOPOLOGYFINDER Details
We first provide the mathematical foundation of the ring
permutation rule.

Theorem 1 (Ring Generation). For a cluster of N nodes
V = {S0,S1, ··· ,SN−1}, all integer numbers p < N, where p
is co-prime with N (i.e. gcd(p,N) = 1) represent a unique
ring-AllReduce permutation rule.

Proof. Consider the integer modulo N group with addition
Z+

N ={0,1,···,(N−1)}. Z+
N is a cyclic group. By fundamental

theorem of cyclic groups, p is a generator of Z+
N if and only if

gcd(p,N)=1. Hence we can cover the entireZ+
N by repeatedly

adding p to itself.
Now consider the graph GZ+

N ,p = (VZ+
N
,Ep) where the set

of vertices VZ+
N
=Z+

N and Ep={(a×p,(a+1)×p)∈V 2
Z+

N
, a∈

Z+
N}. The set Ep forms a cycle on GZ+

N ,p. Now denote our
cluster as G = (V,E) where V is defined as above and E
represents a set of directed links. Then GZ+

N ,p is isomorphic
to G, hence following the rule in Ep we can define a valid
ring in G. Furthermore, since ∀pi 6= p j we can guarantee that
(0,pi)∈Epi and (0,p j) /∈Epi , each pi is guaranteed to describe
a unique ring.

Algorithms 2, 3 and 4 list the detailed pseudocodes
of sub-modules in Algorithm 1, namely TotientPerms,
CoinChangeMod and TopPermutations.

To extend our approach to other AllReduce algorithms, one
way is to generalize TotientPerms (Algorithm 2) so that the
Ep described in theorem 1 simply represents a permutation
which we apply to the original node labeling, while keeping
the edge relation, to create an isomorphic graph that describes
the new AllReduce topology.
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Algorithm 5 TOPOOPT-reconfig pseudocode
1: procedure TOPOOPT-RECONFIG(V , T , d, L)

. Input V : Nodes in the network

. Input T : Unsatisfied traffic demand matrix

. Input d: Node degree limit

. Input L: Number of links between ordered node-pair, initially zero

. Output E: Allocated links, initially empty
. Initially, E is empty

2: E = {}
. Initially, each node has d available tx and rx interfaces

3: for v∈V do
4: availabletx[v] = d
5: availablerx[v] = d

. Create new links according to the demand list
6: while ∃i, j< |V | : i 6= j,availabletx[vi]>0,availablerx[v j]>0 do

. allocate a direct connection for the highest demand pair
7: (v1,v2) = node-pair with highest demand in T
8: e = NewLink(v1, v2)
9: E = E∪{e}

. Increment the number of parallel links from v1 to v2
10: L(v1,v2) += 1

. Scale the demand down by the number of links
11: T (v1,v2)×= 1/2

. Update available interfaces
12: for v∈(v1,v2) do
13: availabletx[v1]−= 1
14: availablerx[v2]−= 1

. Stop considering nodes with zero available interfaces
15: if availabletx[v1] == 0 then
16: for u∈V do
17: Remove (v1,u)’s entry from T
18: if availablerx[v2] == 0 then
19: for u∈V do
20: Remove (u,v2)’s entry from T
21: return E

D TOPOOPT-reconfig Heuristic
Algorithm 5 describes the heuristic we use for TOPOOPT-
reconfig. As mentioned in Section 3.3, our goals are: (i) have
enough bandwidth for large transfer demands; (ii) while also
minimize the latency of indirect routing for nodes that do not
have a direct link between them.

To achieve this goal in a reconfigurable interconnect, we
propose a utility function that finds a balance between the
two goals by maximizing the number of parallel links between
high demand nodes but with a diminishing return. More
formally, assume a network topology is represented by graph
G = (V,E) and each node has degree d. We define L(i, j) to

be the number of parallel links between node-pair (i, j). Let
T (i, j) be the amount of unsatisfied traffic demand, we define
a topology G’s utility function as follows:

Utility(G)= ∑
{i, j}∈E

T (i, j)×Discount(L(i, j)) (1)

The Discount function can be defined in different ways; in
Algorithm 5 as well as Algorithm 1’s MP construction, we use

Discount(l)=
l

∑
x=1

2−x (2)

to reduce the utility of additional links exponentially. One can
also explore other discount scaling, such as linear or factorial
functions.

When the fabric is reconfigurable (as in TOPOOPT-
reconfig), we collect the unsatisfied traffic demand every 50 ms
and run Algorithm 5 to decide the new network topology.
After the new topology is computed, we pause all the flows
for 10 ms representing the reconfiguration delay of the OCS,
apply the new topology, and then resume the flows that has one
or more corresponding physical links across the flow source
and destination.

E Modifications to SiP-ML
Since SiP-ML’s SiP-Ring proposal is based on a physical ring
topology, its reconfiguration algorithm has several constraints
about wavelength allocation for adjacent nodes. Given that
TOPOOPT’s physical topology is not a ring, directly applying
SiP-Ring’s optimization using their original C++ code have
resulted SiP-ML to perform extremely poorly in our setup. To
give SiP-ML a leg up, we observe that its formulation tries to
optimize a utility function very similar to Equation 1 without
the Discount part (i.e. Discount=1), but with an ILP. While an
ILP gives the optimal solution, its runtime makes it prohibitive
for the amount of simulation parameters we explore. Therefore,
we substitute the ILP with Algorithm 5 with Discount = 1
which is a heuristic that tries to achieve a similar goal.

Note that SiP-ML paper has another design called SiP-OCS,
which is more similar architecturally to TOPOOPT. In
the SiP-ML paper, SiP-OCS is proposed as a one-shot
reconfiguration approach due to the long reconfiguration
latency of 3D-MEMS based OCSs.
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