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SPECIALIZING A PLANET’S
COMPUTATION: ASIC CLOUDS

.................................................................................................................................................................................................................

ASIC CLOUDS, A NATURAL EVOLUTION TO CPU- AND GPU-BASED CLOUDS, ARE

PURPOSE-BUILT DATACENTERS FILLED WITH ASIC ACCELERATORS. ASIC CLOUDS MAY

SEEM IMPROBABLE DUE TO HIGH NON-RECURRING ENGINEERING (NRE) COSTS AND ASIC

INFLEXIBILITY, BUT LARGE-SCALE BITCOIN ASIC CLOUDS ALREADY EXIST. THIS ARTICLE

DISTILLS LESSONS FROM THESE PRIMORDIAL ASIC CLOUDS AND PROPOSES NEW

PLANET-SCALE YOUTUBE-STYLE VIDEO-TRANSCODING AND DEEP LEARNING ASIC CLOUDS,

SHOWING SUPERIOR TOTAL COST OF OWNERSHIP. ASIC CLOUD NRE AND ECONOMICS

ARE ALSO EXAMINED.

......In the past 10 years, two parallel
phase changes in the computational landscape
have emerged. The first change is the bifurca-
tion of computation into two sectors—cloud
and mobile. The second change is the rise of
dark silicon and dark-silicon-aware design
techniques, such as specialization and near-
threshold computation.1 Recently, researchers
and industry have started to examine the con-
junction of these two phase changes. Baidu
has developed GPU-based clouds for distrib-
uted neural network accelerators, and Micro-
soft has deployed clouds based on field-
programmable gate arrays (FPGAs) for Bing.

At a single-node level, we know that appli-
cation-specific integrated circuits (ASICs) can
offer order-of-magnitude improvements in
energy efficiency and cost performance over
CPU, GPU, and FPGA by specializing silicon
for a particular computation. Our research
proposes ASIC Clouds,2 which are purpose-

built datacenters comprising large arrays of
ASIC accelerators. ASIC Clouds are not
ASIC supercomputers that scale up problem
sizes for a single tightly coupled computation;
rather, they target workloads comprising
many independent but similar jobs.

As more and more services are built
around the Cloud model, we see the emer-
gence of planet-scale workloads in which
datacenters are performing the same compu-
tation across many users. For example, con-
sider Facebook’s face recognition of uploaded
pictures, or Apple’s Siri voice recognition, or
the Internal Revenue Service performing tax
audits with neural nets. Such scale-out work-
loads can easily leverage racks of ASIC servers
containing arrays of chips that in turn con-
nect arrays of replicated compute accelera-
tors (RCAs) on an on-chip network. The
large scale of these workloads creates the eco-
nomic justification to pay the non-recurring
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engineering (NRE) costs of ASIC develop-
ment and deployment. As a workload grows,
the ASIC Cloud can be scaled in the datacen-
ter by adding more ASIC servers, unlike accel-
erators in, say, a mobile phone population,3 in
which the accelerator/processor mix is fixed at
tape out.

Our research examines ASIC Clouds in
the context of four key applications that
show great potential for ASIC Clouds,
including YouTube-style video transcoding,
Bitcoin and Litecoin mining, and deep learn-
ing. ASICs achieve large reductions in silicon
area and energy consumption versus CPUs,
GPUs, and FPGAs. We specialize the ASIC
server to maximize efficiency, employing
optimized ASICs, a customized printed cir-
cuit board (PCB), custom-designed cooling
systems and specialized power delivery sys-
tems, and tailored DRAM and I/O subsys-
tems. ASIC voltages are customized to tweak
energy efficiency and minimize total cost of
ownership (TCO). The datacenter itself can
also be specialized, optimizing rack-level and
datacenter-level thermals and power delivery
to exploit the knowledge of the computation.
We developed tools that consider all aspects
of ASIC Cloud design in a bottom-up way,
and methodologies that reveal how the
designers of these novel systems can optimize
TCO in real-world ASIC Clouds. Finally, we

propose a new rule that explains when it
makes sense to design and deploy an ASIC
Cloud, considering NRE.

ASIC Cloud Architecture
At the heart of any ASIC Cloud is an energy-
efficient, high-performance, specialized RCA
that is multiplied up by having multiple cop-
ies per ASIC, multiple ASICs per server,
multiple servers per rack, and multiple racks
per datacenter (see Figure 1). Work requests
from outside the datacenter will be distrib-
uted across these RCAs in a scale-out fashion.
All system components can be customized
for the application to minimize TCO.

Each ASIC interconnects its RCAs using a
customized on-chip network. The ASIC’s con-
trol plane unit also connects to this network
and schedules incoming work from the ASIC’s
off-chip router onto the RCAs. Next, the pack-
aged ASICs are arranged in lanes on a custom-
ized PCB and connected to a controller that
bridges to the off-PCB interface (1 to 100 Gig-
abit Ethernet, Remote Direct Memory Access,
and PCI Express). In some cases, DRAMs can
connect directly to the ASICs. The controller
can be implemented by an FPGA, a microcon-
troller, or a Xeon processor. It schedules
remote procedure calls (RPCs) that come
from the off-PCB interface on to the ASICs.
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Figure 1. High-level abstract architecture of an ASIC Cloud. Specialized replicated compute accelerators (RCAs) are multiplied

up by having multiple copies per application-specific integrated circuit (ASIC), multiple ASICs per server, multiple servers per

rack, and multiple racks per datacenter. Server controller can be a field-programmable gate array (FPGA), microcontroller, or a

Xeon processor. The power delivery and cooling system are customized based on ASIC needs. If required, there would be

DRAMs on the printed circuit board (PCB) as well. (PSU: power supply unit.)
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Depending on the application, it can imple-
ment the non-acceleratable part of the work-
load or perform UDP/TCP-IP offload.

Each lane is enclosed by a duct and has a
dedicated fan blowing air through it across
the ASIC heatsinks. Our simulations indicate

using ducts results in better cooling perform-
ance compared to conventional or staggered
layout. The PCB, fans, and power supply
are enclosed in a 1U server, which is then
assembled into racks in a datacenter. Based
on ASIC needs, the power supply unit (PSU)
and DC/DC converters are customized for
each server.

The “Evaluating an ASIC Server Config-
uration” sidebar shows our automated meth-
odology for designing a complete ASIC Cloud
system.

Application Case Study
To explore ASIC Clouds across a range of
accelerator properties, we examined four
applications that span a diverse range of
properties—namely, Bitcoin mining, Lite-
coin mining, video transcoding, and deep
learning (see Figure 2).

Perhaps the most mature  of these applica-
tions is Bitcoin mining. Our inspiration for
ASIC Clouds came from our intensive study
of Bitcoin mining clouds,4 which are one of
the first known instances of a real-life ASIC
Cloud. Figure 3 shows the massive scale out
of the Bitcoin-mining workload, which is
now operating at the performance of 3.2 bil-
lion GPUs. Bitcoin clouds have undergone a
rapid ramp from CPU to GPU to FPGA to
the most advanced ASIC technology avail-
able today. Bitcoin is a logic-intensive design
that has high power density and no need for
static RAM (SRAM) or external DRAM.

Litecoin is another popular cryptocur-
rency mining system that has been deployed
into clouds. Unlike Bitcoin, it is an SRAM-
intensive application with low power density.

Video transcoding, which converts from
one video format to another, currently takes
almost 30 high-end Xeon servers to do in
real time. Because every cell phone and
Internet of Things device can easily be a
video source, it has the potential to be an
unimaginably large planet-scale computation.
Video transcoding is an external memory-
intensive application that needs DRAMs
next to each ASIC. It also requires high off-
PCB bandwidth.

Finally, deep learning is extremely com-
putationally intensive and is likely to be
used by every human on the planet. It is often
latency sensitive, so our Deep Learning neural
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Figure 2. Accelerator properties. We explore applications with diverse

requirements.
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Figure 3. Evolution of specialization: Bitcoin cryptocurrency mining clouds.

Numbers are ASIC nodes, in nanometers, which annotate the first date of

release of a miner on that technology. Difficulty is the ratio of the total Bitcoin

hash throughput of the world, relative to the initial mining network throughput,

which was 7.15 MH per second. In the six-year period preceding November

2015, the throughput increased by a factor of 50 billion times, corresponding to a

world hash rate of approximately 575 million GH per second.
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net accelerator has a tight low-latency service-
level agreement.

For our Bitcoin and Litecoin studies, we
developed the RCA and got the required
parameters such as gate count from placed-

and-routed designs in UMC 28 nm using
Synopsys IC compiler and analysis tools
(such as PrimeTime). For deep learning and
video transcoding, we extracted properties
from accelerators in the research literature.

Evaluating an ASIC Server Configuration
Our ASIC Cloud server configuration evaluator, shown in Figure

A1, starts with a Verilog implementation of an accelerator, or a

detailed evaluation of the accelerator’s properties from the

research literature. In the design of an ASIC server, we must

decide how many chips should be placed on the printed circuit

board (PCB) and how large, in mm2 of silicon, each chip should be.

The size of each chip determines how many replicated compute

accelerators (RCAs) will be on each chip. In each duct-enclosed

lane of ASIC chips, each chip receives around the same amount of

airflow from the intake fans, but the most downstream chip

receives the hottest air, which includes the waste heat from the

other chips. Therefore, the thermally bottlenecking ASIC is the

one in the back, shown in our detailed computational fluid

dynamics (CFD) simulations in Figure A2. Our simulations show

that breaking a fixed heat source into smaller ones with the same

total heat output improves the mixing of warm and cold areas,

resulting in lower temperatures. Using thermal optimization tech-

niques, we established a fundamental connection between an

RCA’s properties, the number of RCAs placed in an ASIC, and how

many ASICs go on a PCB in a server. Given these properties, our

heat sink solver determines the optimal heat sink configuration.

Results are validated with the CFD simulator. In the “Design

Space Evaluation” sidebar, we show how we apply this evaluation

flow across the design space to determine TCO and Pareto-

optimal points that trade off cost per operation per second (ops/s)

and watts per ops/s.
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Figure A. ASIC server evaluation flow. (1) The server cost, per server hash rate, and the energy efficiency are evaluated

using replicated compute accelerator (RCA) properties and a flow that optimizes server heatsinks, die size, voltage, and

power density. (2) Thermal verification of an ASIC Cloud server using Computational Fluid Dynamics tools to validate

the flow results. The farthest ASIC from the fan has the highest temperature and is the bottleneck for power per ASIC

at a fixed voltage and energy efficiency.
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Results
Table 1 gives details of optimal server config-
urations for energy-, TCO-, and cost-optimal
designs for each application. The “Design
Space Exploration” sidebar explains how these
optimal configurations are determined.

For example, for video transcoding, the
cost-optimal server packs the maximum
number of DRAMs per lane, 36, which max-
imizes performance. However, increasing the
number of DRAMs per ASIC requires higher
logic voltage (1.34 V) and corresponding fre-
quencies to attain performance within the
maximum die area constraint, resulting in
less-energy-efficient designs. Hence, the
energy-optimal design has fewer DRAMs per
ASIC and per lane (24), but it gains back
some performance by increasing ASICs per
lane, which is possible due to lower power
density at 0.54 V. The TCO-optimal design

increases DRAMs per lane, 30, to improve
performance, but is still close to the optimal
energy efficiency at 0.75 V, resulting in a die
size and frequency between the other two
optimal points.

Figure 4 compares the performance of
CPU Clouds, GPU Clouds, and ASIC Clouds
for the four applications that we presented.
ASIC Clouds outperform CPU Clouds’ TCO
per operations per second (ops/s) by 6,270,
704, and 8,695 times for Bitcoin, Litecoin,
and video transcoding, respectively. ASIC
Clouds outperform GPU Clouds’ TCO per
ops/s by 1,057, 155, and 199 times for Bit-
coin, Litecoin, and deep learning, respectively.

ASIC Cloud Feasibility: The Two-for-Two
Rule
When does it make sense to design and
deploy an ASIC Cloud? The key barrier is

Design Space Exploration
After all thermal constraints were in place, we optimized ASIC

server design targeting two conventional key metrics—namely,

cost per ops/s and power per ops/s—and then applied TCO analy-

sis. TCO analysis incorporates the datacenter-level constraints,

including the cost of power delivery inside the datacenter, land,

depreciation, interest, and the cost of energy itself. With these

tools, we can correctly weight these two metrics and find the over-

all optimal point (TCO-optimal) for the ASIC Cloud.

Design-space exploration is application dependent, and there are

frequently additional constraints. For example, for the video trans-

coding application, we model the PCB real estate occupied by these

DRAMs, which are placed on either side of the ASIC they connect to,

perpendicular to airflow. As the number of DRAMs increases, the

number of ASICs placed in a lane decreases for space reasons. We

model the more expensive PCBs required by DRAM, with more layers

and better signal/power integrity. We employ two 10-Gigabit Ether-

net ports as the off-PCB interface for network-intensive clouds, and

we model the area and power of the memory controllers.

Our ASIC Cloud infrastructure explores a comprehensive

design space, including DRAMs per ASIC, logic voltage, area per

ASIC, and number of chips. DRAM cost and power overhead are

significant, and so the Pareto-optimal video transcoding designs

ensure DRAM bandwidth is saturated, and link chip performance

to DRAM count. As voltage and frequency are lowered, area

increases to meet the performance requirement. Figure B shows

the video transcoding Pareto curve for five ASICs per lane and dif-

ferent numbers of DRAMs per ASIC. The tool comprises two tiers.

The top tier uses brute force to explore all possible configurations

to find the energy-optimal, cost-optimal, and TCO-optimal points

based on the Pareto results. The leaf tier comprises various expert

solvers that compute the optimal properties of the server compo-

nents—for example, CFD simulations for heat sinks, DC-DC con-

verter allocation, circuit area/delay/voltage/energy estimators,

and DRAM property simulation. In many cases, these solvers

export their data as large tables of memoized numbers for every

component.
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Figure B. Pareto curve example for video transcoding.
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Table 1. ASIC Cloud optimization results for four applications: (a) Bitcoin, (b) Litecoin, (c) video transcoding,

and (d) deep learning.

Property Energy optimal server TCO optimal server Cost optimal server

ASICs per server 120 72 24

Logic voltage (V) 0.400 0.459 0.594

Clock frequency (MHz) 71 149 435

Die area (mm2) 599 540 240

GH per second (GH/s) per server 7,292 8,223 3,451

W per server 2,645 3,736 2,513

Cost ($) per server 12,454 8,176 2,458

W per GH/s 0.363 0.454 0.728

Cost ($) per GH/s 1.708 0.994 0.712

Total cost of ownership (TCO) per GH/s 3.344 2.912 3.686

(a)

ASICs per server 120 120 72

Logic voltage (V) 0.459 0.656 0.866

Clock frequency (MHz) 152 576 823

Die area (mm2) 600 540 420

MH/s per server 405 1,384 916

W per server 783 3,662 3,766

$ per server 10,971 11,156 6,050

W per MH/s 1.934 2.645 4.113

$ per MH/s 27.09 8.059 6.607

TCO per MH/s 37.87 19.49 23.70

(b)

DRAMs per ASIC 3 6 9

ASICs per server 64 40 32

Logic voltage (V) 0.538 0.754 1.339

Clock frequency (MHz) 183 429 600

Die area (mm2) 564 498 543

Kilo frames per second (Kfps) per server 126 158 189

W per server 1,146 1,633 3,101

$ per server 7,289 5,300 5,591

W per Kfps 9.073 10.34 16.37

$ per Kfps 57.68 33.56 29.52

TCO per Kfps 100.3 78.46 97.91

(c)

Chip type 4� 2 2� 2 2� 1

ASICs per server 32 64 96

Logic voltage (V) 0.900 0.900 0.900

Clock frequency (MHz) 606 606 606

Tera-operations per second (Tops/s) per server 470 470 353

W per server 3,278 3,493 2,971

$ per server 7,809 6,228 4,146

W per Tops/s per server 6.975 7.431 8.416

$ per Tops/s per server 16.62 13.25 11.74

TCO per Tops/s per server 46.22 44.28 46.51

(d) ...................................................................................................................................

*Energy-optimal server uses lower voltage to increase the energy efficiency. Cost-optimal server uses higher voltage to
increase silicon efficiency. TCO-optimal server has a voltage between these two and balances energy versus silicon cost.
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the cost of developing the ASIC server,
which includes both the mask costs (about
$1.5 million for the 28-nm node we con-
sider here), and the ASIC design costs, which
collectively comprise the NRE expense. To
understand this tradeoff, we proposed the
two-for-two rule. If the cost per year (that is,
the TCO) for running the computation on
an existing cloud exceeds the NRE by two
times, and you can get at least a two-times
TCO improvement per ops/s, then building
an ASIC Cloud is likely to save money.

Figure 5 shows a wider range of break-even
points. Essentially, as the TCO exceeds the

NRE by more and more, the required speedup
to break even declines. As a result, almost any
accelerator proposed in the literature, no mat-
ter how modest the speedup, is a candidate for
ASIC Cloud, depending on the scale of the
computation. Our research makes the key
contribution of noting that, in the deploy-
ment of ASIC Clouds, NRE and scale can be
more determinative than the absolute speedup
of the accelerator. The main barrier for ASIC
Clouds is to reign in NRE costs so they are
appropriate for the scale of the computation.
In many research accelerators, TCO improve-
ments are extreme (such as in Figure 4), but
authors often unnecessarily target expensive,
latest-generation process nodes because they
are more cutting-edge. This tendency raises
the NRE exponentially, reducing economic
feasibility. A better strategy is to target the
older nodes that still attain sufficient TCO
improvements. Our most recent work sug-
gests that a better strategy is to lower NRE
cost by targeting older nodes that still have
sufficient TCO per ops/s benefit.5

O ur research generalizes primordial Bit-
coin ASIC Clouds into an architec-

tural template that can apply across a range
of planet-scale applications. Joint knowledge
and control over datacenter and hardware
design allows for ASIC Cloud designers to
select the optimal design that optimizes energy
and cost proportionally to optimize TCO.
Looking to the future, our work suggests that
both Cloud providers and silicon foundries
would benefit by investing in technologies
that reduce the NRE of ASIC design, includ-
ing open source IP such as RISC-V, in new
labor-saving development methodologies for
hardware and in open source back-end CAD
tools. With time, mask costs fall by them-
selves, but older nodes such as 65 nm and
40 nm may provide suitable TCO per ops/s
reduction, with one-third to half the mask
cost and only a small difference in perform-
ance and energy efficiency from 28 nm.
This is a major shift from the conventional
wisdom in architecture research, which
often chooses the best process even though
it exponentially increases NRE. Foundries
also should take interest in ASIC Cloud’s low-
voltage scale-out design patterns because they
lead to greater silicon wafer consumption
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than CPUs within fixed environmental
energy limits.

With the coming explosive growth of
planet-scale computation, we must work to
contain the exponentially growing environ-
mental impact of datacenters across the
world. ASIC Clouds promise to help address
this problem. By specializing the datacenter,
they can do greater amounts of computation
under environmentally determined energy
limits. The future is planet-scale, and special-
ized ASICs will be everywhere. MICRO
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