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ABSTRACT
We present SparSDR, a resource-efficient architecture for software-
defined radios whose backhaul bandwidth and compute power
requirements scale in inverse proportion to the sparsity (in time
and frequency) of the signals received. SparSDR requires dramat-
ically fewer resources than existing approaches to process many
popular protocols while retaining both flexibility and fidelity. We
demonstrate that our approach has negligible impact on signal
quality, receiver sensitivity, and processing latency.

The SparSDR architecture makes it possible to capture signals
across bandwidths far wider than the capacity of a radio’s back-
haul through the addition of lightweight frontend processing and
corresponding backend reconstruction to restore the signals to
their original sample rate. We employ SparSDR to develop two
wideband applications running on a USRP N210 and a Raspberry
Pi 3+: an IoT sniffer that scans 100 MHz of bandwidth and decodes
received BLE packets, and a wideband Cloud SDR receiver that
requires only residential-class Internet uplink capacity. We show
that our SparSDR implementation fits in the constrained resources
of popular low-cost SDR platforms, such as the AD Pluto.

CCS CONCEPTS
• Hardware → Digital signal processing; Hardware acceler-
ators; • Networks → Wireless access points, base stations and
infrastructure.
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1 INTRODUCTION
Software-defined radios (SDRs) have long promised extreme flexi-
bility: in principle, they can capture, decode, and analyze a variety
of signals across arbitrary frequency ranges. SDRs derive their ver-
satility from the decoupling of the radio frontend—including analog
RF components and digitizers—from the signal processing backend,
which is typically deployed on general-purpose computing devices
like CPUs [31], GPUs [19], or re-programmable DSPs [3]. When
equipped with wideband analog-to-digital converters (ADCs), SDRs
can capture a broad range of frequencies, and support for new pro-
tocols can be added by implementing the requisite signal processing
in software [24, 32].

The universality of the SDR architecture, however, comes at a
price: raw samples need to be backhauled between the frontend and
the signal-processing backend. Most existing SDR implementations
are inefficient in that they require backhaul capacity and processing
performance in proportion to the SDR’s sampling frequency, irre-
spective of the (typically far more limited) bandwidth of the signal
being captured. As a result, wideband (e.g., 100-MHz) SDR fron-
tends often “throw away” information via digital downsampling in
order to reduce the datarate of the backhaul stream.

For example, the popular USRP N210 frontend captures 14-bit I/Q
samples at 100 Msps, but must perform 4× digital downsampling
to 25 Msps in order to operate within the capacity of its 1-Gbps
backhaul link. Even at this reduced bandwidth, signal processing
requires desktop-class compute performance, foreclosing the possi-
bility of using embedded processors (e.g., the CPU on a Raspberry
Pi). Unfortunately, this limitation renders the N210 impractical
for infrastructure deployments. For instance, a general-purpose
IoT gateway needs to support frequency-hopping protocols such
as Bluetooth and ZigBee that span 80 MHz of bandwidth (Fig. 1
left). Such an application requires 2.5 Gbps of backhaul capacity
and server-class processing capability. (Although a single transmit-
ter could be aliased into a narrower bandwidth, the full 80-MHz
bandwidth is required to support simultaneous transmissions.)

However, it is well known that the RF spectrum is sparsely oc-
cupied across both time and frequency [17, 23, 28]. We present
SparSDR, a sparsity-proportional architecture for wideband SDRs
that takes advantage of this fact. In SparSDR, we propose a signal-
processing extension for existing SDRs whose backhaul and com-
pute requirements scale in proportion to the bandwidth of the
captured signal, not the RF spectrum sampled (Fig. 1 right). We
demonstrate that for many commonly used bands, SparSDR sig-
nificantly reduces backhaul and compute requirements. Because
SparSDR preserves the raw samples of the captured signal, it does
not sacrifice the flexibility or protocol independence of SDR.

The added processing in SparSDR must satisfy the following
requirements: (1) it must not significantly reduce overall signal
quality, (2) it must allow for signals that have low SNR, such as

https://doi.org/10.1145/3307334.3326088
https://doi.org/10.1145/3307334.3326088


Full-capture SDR Sparsity-proportional SDR

100 MHz

20 MHz 2 MHz (each) 100 MHz

WiFi
Ch 1

BT
Ch 15 

ZB
Ch 26 

Freq/time selective capture

Figure 1: SparSDR’s goal is to make SDRs capture primary trans-
missions rather than entire channels.

below-the-noise transmissions from IoT protocols, and (3) it must
fit in the unused processing resources of existing SDR compute
platforms. We satisfy all three of these constraints by repurposing
a classic signal analysis technique, short-time Fourier transform
(STFT) [13, 33]. STFT is traditionally used for power-spectrum
analysis: observing the primary frequency components that exist in
a signal, and how they change over time. The key property of STFT
that makes it possible to achieve sparsity proportionality is that
only the primary frequency components need to be backhauled to
reverse the transform and recover the raw samples.

Although STFT is reversible, existing algorithms generally recre-
ate the entire raw sample stream—hence, while the backhaul re-
quirements may be reduced, the signal processing task remains
proportional to the original sample rate, not the bandwidth of
primary signals in the capture. In SparSDR, we introduce a sparsity-
proportional reconstruction algorithm that recovers only a portion
of the captured signal. Specifically, it reverses only part of the STFT,
effectively using STFT itself to identify and isolate the primary
signals. The algorithm also corrects for the phase and frequency
offsets introduced by STFT-based downsampling.

In this paper, we evaluate the tradeoffs in the parametrization
of STFT-based downsampling; the size of the FFT and the type
of window used can both significantly impact the downsampling
size, signal quality, and latency. We find that by applying a simple
threshold to detect primary signals, it is possible to detect signals
below the noise floor. We also demonstrate that STFT fits in the un-
used processing resources of current SDR frontends. Therefore, by
replacing the downsampling found in existing SDRs with STFT, we
can backhaul and process signals with bandwidth and performance
requirements inversely proportional to the sparsity of the signals.

Using SparSDR, we demonstrate that a USRP N210 can can con-
tinuously capture 100 MHz while sending 14-bit I/Q samples—4×
its backhaul capacity. Specifically, we show that it is possible to
simultaneously receive 450 Bluetooth Low Energy (BLE) transmis-
sions per second across the full 2.4-GHz band using a Raspberry Pi
3+ connected to a SparSDR-enabled USRP N210 operating at its full
100-MHz bandwidth. We also show that SparSDR makes it possible
to build a Cloud SDR platform out of low-end wideband SDRs (e.g.,
an Analog Devices Pluto), residential-class backhaul, and inexpen-
sive computing platforms (i.e., the Raspberry Pi 3+). The limited

backhaul bandwidth in residential networks has traditionally forced
crowd-sourced SDRs to operate with only narrowband (3.2-MHz)
USB SDR dongles [25, 29]. Finally, we demonstrate that battery-
powered wideband SDRs have sufficient processing resources to
incorporate SparSDR’s additional stages, including the USRP E310
and USB-powered SDRs such as the AD Pluto and USRP B210.

In summary, our contributions are as follows:
(1) We describe how the STFT can be employed as a lightweight

frequency/time-selective downsampling algorithm that pro-
duces protocol-independent raw samples that requires back-
haul proportional to the bandwidth of the captured signal.
We also present a lightweight time-domain reconstruction
algorithm which uses partial STFTs to downsample to the
primary signals in a capture (Section 3).

(2) We evaluate the tradeoffs associated with STFT-based down-
sampling and demonstrate that the resource-constrained
USRP N210—and even the ∼$100 AD Pluto—have sufficient
unused resources to support SparSDR (Section 4).

(3) We evaluate SparSDR in two case studies: an IoT gateway
built using a USRP N210 connected to a Raspberry Pi, and a
wideband Cloud SDR that operates over residential Internet-
class backhaul links (Section 6).

SparSDR is open source. We have developed a SparSDR module
for GNU Radio, making it easy to drop into existing projects. The
hardware implementation is parametrized to enable porting to new
SDR platforms (Section 5); we provide example hardware imple-
mentations for the USRP N210 and AD Pluto. The hardware and
software source can be found at:

https://github.com/ucsdsysnet/sparsdr

2 MOTIVATION
In this section, wemotivate the need for frequency and time sparsity-
proportional SDRs. First, we provide an example of how wideband
SDR captures are sparse in frequency and time. Then, we describe
how simple downsampling in today’s SDRs selects only one contigu-
ous band at a time—indiscriminately throwing away signals—and
leaves many spare processing resources.

2.1 Popular bands are sparsely occupied
The motivation for SparSDR comes from the observation that there
is a mismatch between the sparsity of spectrum usage and the full-
capture design of SDRs. Commodity SDR RF frontends are often
built with wide-band ADCs that can capture more than 50 MHz,
making it possible for them to capture many channels and protocols
simultaneously. In the following experiment, we demonstrate that
the popular 100-MHz wide 2.4-GHz ISM band is sparsely occupied—
even though it is shared by a variety of protocols such asWiFi (three
orthogonal 20-MHz channels), Bluetooth (79 1-MHz channels), and
ZigBee (sixteen 2-MHz channels).

We use the OneRadio1 wideband SDR to capture a 45-second
125-MHz bandwidth snapshot of the entire 2.4-GHz band in an of-
fice building during business hours. Fig. 2 shows a 150-millisecond
portion of the capture. Even in this short period, it is evident that
although the 2.4-GHz band is active (there are WiFi packets being

1http://www.oneradiocorp.com/oneradio-receiver/technology
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Figure 2: A snapshot of the 2.4-GHz band collected by a OneRa-
dio wideband (125-MHz) SDR shows that even popular unlicensed
bands are sparsely occupied.

transmitted), its usage is sparse in frequency and time. Fig. 3 shows
the distribution of instantaneous bandwidth occupancy every 10 mi-
croseconds across the entire 45-second capture. This figure shows
that the wide-band (125-MHz) capture is sparse: the band is unoc-
cupied for almost 40% of the time and the occupancy is less than
18 MHz (approximately one WiFi channel) 85% of the time.

2.2 SDRs need smarter downsampling
SDR frontends often downsample to reduce the capture bandwidth
to allow for the use of inexpensive and widely available backhaul
links. These inexpensive links limit the capture bandwidth: the
USRP N210 can only capture 25 Msps on its gigabit-Ethernet back-
haul, and the AD Pluto can only achieve ∼5 Msps over its USB 2.0
backhaul (with four bytes per I/Q sample). Downsampling is also
necessary to operate within the compute resources available. For
instance, processing a 100-Msps capture on a desktop-class 3-GHz
CPU only allows for 30 cycles per sample and is simply infeasi-
ble on an inexpensive embedded processor like that found on the
Raspberry Pi.

This is an unfortunate state of affairs, because many signals
are indiscriminately thrown away during downsampling. However,
the fact that the downsampling logic is often implemented on an
FPGA at the SDR frontend presents an opportunity to modify the
frontend to downsample more intelligently. Many SDR frontends
have additional processing resources intended to support smarter
downsampling, the implementation must be compact in order to fit
into the FPGAs of existing SDRs.

3 DESIGN
SparSDR is an add-on for existing software-defined radios, shown
in Fig. 4, that makes them sparsity-proportional: they only require
backhaul capacity and compute resources in inverse proportion to
the sparsity of the signals they receive. The primary component of
SparSDR is a frequency-and-time selective downsampling step that
replaces the basic downsampling logic in the SDR frontend. With
this modification, the SDR frontend only backhauls samples at fre-
quencies that have active signals. To support frequency-and-time
selective downsampling, SparSDR also inserts an extra processing
step to reconstruct the raw time-domain samples at the backend
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Figure 3: Distribution of occupied bandwidth over 10 microsecond
intervals at 2.4 GHz.We use a relative power threshold of 5 dB above
the maximum observed noise floor to determine if a frequency is
occupied.

compute platform (e.g., CPU, GPU, or DSP). We introduce an ef-
ficient reconstruction algorithm that recreates the time-domain
signals while maintaining the same level of sparsity. Unlike com-
pressed sensing, SparSDR does not require new frontend hardware
(i.e., random sampling ADCs), nor any assumptions regarding the
sparsity of the captured signal, and the reconstruction algorithm
can operate within the constrained performance of embedded plat-
forms (e.g., Raspberry Pi).

Here we focus exclusively on making the receiver side of SDRs
sparsity-proportional. SDR receivers are are more computationally
intensive than transmitters: receivers produce a constant stream of
samples that must be processed in real time. We note, however, that
SparSDR can be modified to operate on the transmit side of SDRs by
reversing its steps: The frequency-and-time selective downsampling
algorithm can be reversed to construct a signal that is sparse in the
frequency domain, and upsample it to the full bandwidth of the
transmit front-end (e.g., DACs). A potential application could be to
efficiently transmit multiple, concurrent BLE packets (2 Msps) at
varying frequencies in the 80-MHz ISM band.

3.1 Frequency-and-time downsampling
We begin by describing SparSDR’s downsampling algorithm that
generates a sample stream whose bandwidth is inversely propor-
tional to the signal sparsity in the captured spectrum. To retain
the flexibility and protocol independence of SDR, SparSDR’s down-
sampling must be general: it cannot be specific to a particular
communication protocol.

We draw inspiration from a popular spectrum analysis measure-
ment: power spectral density. Typically observed with a spectrum
analyzer, the power spectrum reveals the frequency and magnitude
of received signals. A common tool for performing power spectral
analysis is the Short-Time Fourier Transform (STFT) [33]. STFT
divides the sample stream into overlapping shorter windows of
equal length and then computes the Fourier transform on each
shorter window. This process reveals the frequencies of the signals
that are active in that short window of time. For instance, we use
the STFT to generate Fig. 2, showing sparse usage of the 2.4-GHz
spectrum.
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Figure 4: (a) Full-capture SDRs require backhaul and compute resources that are equal to the bandwidth of the downsampled ADC capture.
(b) SparSDR introduces new blocks that make resource usage proportional to the sparsity of the captured signals.

Our key insight is that the STFT algorithm can be repurposed
to downsample an SDR frontend’s ADC capture in frequency and
time. We can then detect the frequency bins which are active and
backhaul only those bins. The resulting downsampling is propor-
tional to the activity in spectrum. For example, for the capture
shown in Fig. 2 we would backhaul just the few active frequency
and time components during the transmissions. Importantly, STFT
is invertible and protocol independent. Even when backhauling
only the active frequency and time components, we can reconstruct
the active signals accurately.

A natural question is then: Can we compute STFT-based down-
sampling in real time on SDR frontends? The STFT transform is
computed by repeatedly performing an FFT operation on short win-
dows of a capture. The use of FFTs means the STFT computation
can be hardware-accelerated to operate in real time. Specifically,
we rely on pipelined streaming FFT hardware implementations that
take in one time-domain sample and output one FFT frequency bin
per clock cycle. Efficiency improves with increasing FFT (capture-
window) length, but it also increases decoding latency (detailed in
Section 5.1). Additional latency may be problematic if a transmitter
needs to respond quickly after receiving a packet (e.g., by sending
an acknowledgment).

An effective STFT-based downsampling approach must address
several complexities, however, that we discuss below in turn: (1)
the FFT must be parameterized to produce a sparse frequency-
domain representation of each signal contained in the capture; (2)
a detection algorithm is needed to select the active frequency bins
to be backhauled; and (3) the frequency bins must be efficiently
reconstructed back into raw samples. We discuss each of these
issues in turn in the remainder of this section.

3.2 Sparse representation of signals with STFT
We first describe how we parameterize the STFT in SparSDR to
produce a sparse frequency-domain representation of a capture
without harming signal quality. In particular, we select an STFT
windowing function and determine the overlap between windows.

A naive approach, commonly called rectangular windowing,
would be to use no windowing function and divide the capture
into non-overlapping short windows of samples. However, rectan-
gular windowing does not produce a sparse representation in the
frequency domain. Fig. 5 shows the frequency response curves of
the rectangular window compared to other common STFT window
functions. The rectangular window leaks energy into adjacent bins
with its main lobe at -13db. Due to the sharp transitions at the edges
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Figure 5: Frequency response of common window functions

of the rectangular window, the leakage does not degrade rapidly,
even at bins that are far from the center. This leakage negates the
benefits of STFT-based downsampling because the signal’s energy
is spread over many frequency bins, each of which would need
to be backhauled in SparSDR. Moreover, leakage poses a problem
for signals that are close in frequency which would therefore be
mapped to the same STFT bins.

In contrast to the rectangular window, generalized cosine win-
dows attenuate the amplitude of the samples at the edges of the
STFT. Fig. 5 plots the frequency response of two common cosine
windows, Hanning and Hamming. The figure shows that cosine
windows can provide sparse representation of signals in the fre-
quency domain by reducing energy leakage into adjacent frequency
bins. These window functions are preferable for SparSDR because
they reduce the number of bins that must be backhauled to recon-
struct the signal [27, Ch. 7, p. 468]. For example, Fig. 5 suggests that
SparSDR need only backhaul a few bins adjacent to the signal if
Hamming or Hanning windowing functions are employed.

Unfortunately, there is a complication with the direct application
of cosine windows: they significantly attenuate the time-domain
samples at the edges of each window. Simply inverting the window
only amplifies the noise (quantization) at the edges of each window.
We observe, however, that samples at the edges of a cosine window
can be perfectly recovered by overlapping sequential windows by
half of the window length (the overlapped region of the sinusoids
adds up to one). While overlapping windows by 50% introduces a
bandwidth and computation overhead of 2× compared to a non-
overlapping rectangular window, we demonstrate in Section 4.1 the
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Figure 6: An example of SparSDR’s threshold-based energy detector
applied to an STFT of a Bluetooth signal. Thresholding a Bluetooth
signal results in backhauling at most 10 bins (0.5%) of a 2048-bin
STFT for a 100 MHz capture.

tradeoff is worthwhile for SparSDR: overlapping cosine windows
provide more than a 2× reduction in backhaul bandwidth.

Compared to the gradual decline in frequency response of the
Hamming window, we find the Hanning window’s steep decline is
better-suited for SparSDR. Although the Hamming window has a
lower first sidelobe, Hanning requires backhauling fewer bins be-
cause the energy is concentrated in the closest few bins. Therefore,
we select the Hanning window as the default window function for
SparSDR. If custom windowing is desired, SparSDR’s software can
load new windowing coefficients into the SparSDR frontend FPGA.

3.3 Universal signal detection for STFT
Next we describe how SparSDR selects the frequency bins in an
STFT that contain signals of interest. A typical approach to de-
tect a signal is to use time-domain correlation, namely searching
for a protocol-specific synchronization sequence (e.g., a pream-
ble) [25]. We eschew time-domain correlation in SparSDR precisely
because it requires protocol-specific processing, which would un-
dermine the flexibility of SDR frontends. Time-domain correlations
are not universal: they requires the knowledge of the correlation
sequence for each protocol. Said differently, it can only detect sig-
nals whose correlation sequences are known a priori. Furthermore,
time-domain correlation requires per-protocol processing, making
real-time multi-protocol frontends hard to implement.

Instead, SparSDR uses a threshold-based energy detector, an
efficient and universal method of detecting signals. It is univer-
sal because it does not depend on any signal-specific patterns,
and efficient because it does not require per-protocol computation.
SparSDR compares the magnitude of each FFT bin with a thresh-
old. If the magnitude is above the threshold, the bin is backhauled,
otherwise the bin is dropped.

Fig. 6 shows an example of what SparSDR’s energy-based thresh-
olding looks like for a 1-MHz Bluetooth signal. In this example, we
simulated capturing the Bluetooth with 100 MHz of bandwidth and
a 2048-bin STFT. Notice that SparSDR does not need to backhaul the
entire 1 MHz Bluetooth signal (∼20 bins). The reason is, Bluetooth
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Figure 7: Compute-efficient reconstruction with partial IFFT

is frequency modulated, so each STFT only contains a few symbols.
Therefore, SparSDR only needs to backhaul the main lobe and the
side lobes for those symbols, which together only occupy only half
of the Bluetooth bandwidth (10 bins).

While energy-based signal detection can miss decodable signals
that are below the noise—such as distant ZigBee transmissions—we
observe that this is mitigated by the natural oversampling SparSDR
provides by performing the STFT on the full capture bandwidth.
STFT bins are averaged over many time-domain samples (e.g., 2048)
captured at a high sample rate (e.g., 100 Msps) that is several times
faster than required for ZigBee. We evaluate the benefits of over-
sampling for energy-based detection in Section 4.3.

The thresholds for energy-based signal detection must be set
carefully to avoid detecting spurious signals. A receiver may have
non-uniform noise in the frequency domain, and harmonics from
out-of-band transmitters may alias into the capture bandwidth. To
address this issue, SparSDR provides a configurable threshold for
each FFT bin that can be updated constantly as conditions change.

To help select bin thresholds, SparSDR monitors the average
energy of each bin. The monitoring is implemented on the SDR
frontend’s FPGA as an exponentially weighted moving average
(EWMA). The benefit of using a weighted average is that it has
a streaming implementation that requires only limited FPGA re-
sources. When a new FFT value is available for bin n, the FPGA
updates the bin average using the following formula:

Avд (n)new = α · Avд (n)old + (1 − α ) ·Value (n) .

The length of the averaging window (α ) is configurable at the
SDR backend. A short window is useful for monitoring the noise
floor of a bin that has dynamic transmissions. Such monitoring is
useful in ISM bands, where the noise floor must be distinguished
from signals originating frommany transmitters that are received at
different energy levels. A longer window is effective for determining
if a bin is occupied by a constant transmitter (e.g., TV and radio
broadcasts). Such constant transmissions consume a large amount
of backhaul resources and might not be of interest for a particular
application of SparSDR. To make it possible to ignore these signals,
we support a bin-masking feature: masking acts like a notch filter
to avoid backhauling specific signals that are not of interest.

3.4 Efficient reconstruction of partial STFTs
The final component of SparSDR is the efficient reconstruction of
time-domain signals from the frequency-domain STFT bins that
are backhauled to the processing backend. These time-domain
signals need to be recovered at their original sample rate (e.g.,
2 Msps for BLE) in order to prepare them for decoding or other
application-specific signal processing. To achieve our vision of



Figure 8: Downconverting the frequency-domain bins results in a discontinuity in the time domain.

sparsity-proportional compute, this reconstruction step must be
efficient: the compute resources required should be proportional to
the data rate of the partial STFTs that are being backhauled.

A straightforward approach to reconstruction would be to per-
form an IFFT that is the same length as the FFT executed on the
SDR frontend. This would require performing a full-length IFFT
on the bins backhauled from the SDR frontend, with other bins set
to zero (Fig. 7 left). The time-domain samples output by this full-
length IFFT must be downconverted to baseband by multiplying
by a sinusoid, and then downsampled from the full capture rate
to the signal’s sample rate. Clearly, the amount of processing is
independent of the number of bins backhauled.

A more efficient system would directly reconstruct the time-
domain samples at (or close to) the desired signal sample rate by
performing an IFFT with a length equal to the number of back-
hauled frequency-domain bins from an STFT. This approach results
in a sparsity-proportional reconstruction process as well, where
the computation required is proportional to the number of active
bins. As shown in the right-hand side of Fig. 7, SparSDR, performs
an IFFT on only part of the full window length, simultaneously
downconverting the center frequency of the signal to baseband and
downsampling to an appropriate sample rate.2

3.5 Phase offset compensation
Indeed, a partial IFFT can reconstruct the time-domain signal. How-
ever, it also introduces a time-domain discontinuity in the signal.
The reason is that taking the partial IFFT implicitly downconverts
the signal to baseband. This change in center frequency creates
phase discontinuities at the boundaries of the time-domain win-
dows. To better understand this artifact, consider the example de-
picted in Fig. 8. A sinusoid at frequency fc is converted to the
frequency domain by an STFT across three windows (top left). The
time-domain signal after an IFFT is a perfect sinusoid (top right). If
we perform a simple downconversion by shifting the bins to the
center frequency (lower left), changing the frequency introduces a
phase discontinuity at each window boundary (lower right).

The discontinuity in phase is due to the windowing effects of
the STFT. Downconverting a signal in the time domain involves
multiplying the signal by a sinusoid e (−j2π fc ) at the signal’s center
frequency fc . In the frequency domain, this operation is equivalent
to shifting the frequency axis by fc as follows:

X ( f − fc ) ↔ x (t ) e−j2π fc t .

2If the frequency offset and sample rate are not an integer multiple of the frequency bin
spacing, the time-domain samples must be corrected with additional downconversion
and downsampling. Fortunately, these corrections do not add significant computational
overhead because they are performed after the initial STFT-based downsampling.

In a windowed FFT, the start time of each segment increments for
each subsequent segment. Therefore, each segment has an addi-
tional phase term which is proportional to the time at which the
segment was captured tstar t and the shift in frequency fc . For each
segment xk (t ) = x (tstar t + (0 : N−1

fs
)), the downconversion can

be computed as:

Xk ( f − fc ) ↔ xk (t ) e
−j2π fc

(
0: N−1fs

)
= x

(
tstar t + (0 :

N − 1
fs

)

)
e
−j2π fc

(
0: N−1fs

)
.

When taking an IFFT of part of a full-length FFT window, this in-
troduces a downconversion that is equivalent to multiplying each
windowwith a sinusoid of zero initial phase e j2π fc (0:(l−1)

/
fs ) , where

l is the length of the partial IFFT. In other words, taking a partial
IFFT is equivalent to multiplying the signal in the time domain
with a sinusoid at fc whose phase begins at zero at the start of
each window—independent of the time at which the window was
captured. Therefore, SparSDR can compensate for the phase discon-
tinuity by introducing an additional phase offset of e−j2π fc tstar t .
The result extends to the overlapped STFT windows that are needed
to faithfully reconstruct signals; the phase correction must be ap-
plied before overlapping the windows.

4 EVALUATION
In this section we evaluate how the parameterization of SparSDR
affects the efficiency of downsampling in terms of backhaul through-
put. We evaluate three parameters: STFTwindow type, STFT length,
and threshold value. This investigation reveals the tradeoffs that
must be made between efficiency and reconstruction accuracy.

4.1 STFT window function
In the first experiment, we evaluate how the selection of a window
function affects SparSDR’s ability to backhaul only the bins needed
to faithfully reconstruct a signal. For each window function, we
observe the decrease in the reconstruction error of a sinusoid as we
increase the number of bins used for reconstruction. For all window
functions, we use a fixed STFT length of 2048, and for the cosine
windows we add 50% overlap. We measure the reconstruction error
as the Error Vector Magnitude (EVM) [11, Chapter 5.1.3] of the
ideal sinusoid compared to the reconstructed signal.

Fig. 9 shows the results of this experiment. As more bins are
used, the rectangular and Hamming windowed STFT do not provide
a significant reduction in error. However, the Hanning window
provides a significant drop in reconstruction error with each new
bin that is added: backhauling 30 bins for every 2048 time-domain
samples results in an extremely low reconstruction error (-60 dB).
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Figure 10: Longer STFTs result in improved backhaul efficiency
without degrading reconstruction fidelity.

(Two bins must be backhauled for each STFT bin due to the required
50% overlap.)

4.2 STFT length
Next we evaluate how the STFT length affects the fraction of the
STFT bins that need to be backhauled to faithfully reconstruct the
signal. The benefit of using a longer STFT is that it increases the
STFT’s frequency precision: each frequency bin represents a smaller
frequency band. Although longer STFTs require backhauling more
bins to represent a fixed bandwidth, these bins also represent an
equally longer period of time. Therefore, the backhaul bandwidth
is proportional to the fraction of the STFT bins, regardless of the
STFT length.

We expect that increasing STFT length will reduce the fraction
of bins that need to be backhauled. The reason is that the number of
bins into which a signal falls depends mainly on the window type.
For example, Hanning window’s main lobe primary leaks into two
adjacent bins for STFT lengths below 2048. Therefore, a signal that
spans n bins would require backhauling two additional bins on each
side. This results in an overhead of 4/(n + 4). As the STFT length
decreases, the number of bins needed for a signal also decreases,
yielding an increase in the relative overhead.
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Figure 11: Average fraction of STFT bins that were above the thresh-
old to achieve BER of less than 10−5 for different SNR values. Evalu-
ated signal is IEEE 802.15.4 (ZigBee) PHY with 2 MHz of bandwidth.

To compare the performance of different STFT lengths, we gen-
erate a 1-MHz Bluetooth signal at 100 Msps using MATLAB. This
is a realistic signal that requires backhauling multiple bins to re-
construct with high fidelity. Fig. 10 plots the results of capturing
this signal using four STFT lengths (64, 128, 512, 2048) with a 50%-
overlapped Hanning window. We reconstruct the signal with an
increasing fraction of the STFT length, and compute the reconstruc-
tion error. Fig. 10 shows the results of this experiment. As expected,
larger STFTs achieve a lower reconstruction error rate for any given
fraction of bins, and achieve very low error with a small fraction of
bins (-23 dB while using only half a percent in this instance).

4.3 Threshold value
Finally, we evaluate how the energy threshold valuewe select affects
the fidelity of the reconstructed signals. Lowering the threshold to
a level close to noise increases the rate of spuriously backhauled
bins. Increasing the threshold significantly above the noise may
reduce the sensitivity to weak signals.

Detecting signals in SparSDR is made easier because the SDR
frontend oversamples (captures at a sample rate higher than the
required for the signal). Performing an STFT on oversampled signals
introduces averaging gain in the frequency domain, effectively
lowering the noise floor. This separates weak signals from the
noise floor, making them easier to detect. To be precise, there is
10·log10

(
capturebw/signalbw

)
averaging gain added by performing

an STFT. Hence, if the capture bandwidth is wide enough, below-the-
noise signals, such as weak ZigBee transmissions, can be detected.

In the following experiment, we evaluate the effectiveness of
thresholding to detect below-the-noise signals (i.e., negative SNR).
We generated IEEE 802.15.4 (ZigBee) signals and added noise that
was equal to or higher power than the signal. We detected the
signals with threshold values in steps of 1 dB for each SNR, recon-
structed the signals with only these bins, and decoded the signals
to measure their BER. We found the maximum threshold that re-
sulted in a Bit Error Rate (BER) of less than 10−5: we call this the
“maximum decodable threshold”. Building on the results of the
prior experiments in this section, these experiments are run with
a Hanning-windowed 2048-bin STFT. The 2 Msps ZigBee samples



Figure 12: Overview of SparSDR’s FPGA-based downsampling
pipeline. The time-domain downsampling module is replaced by
the frequency-domain SparSDR downsampling module.

were then upsampled to the full capture bandwidth of 100 Msps
before applying the STFT.

In this experiment, the averaging gain results in an increase
of 10 · log10 (50) = 17 dB in SNR, effectively separating the signal
from background noise. As described in Sec. 3.3, the bandwidth of
the signal is 2% of the full capture bandwidth, so we expect 2% or
fewer of the bins to be above the threshold.

Fig. 11 presents the average fraction of the STFT bins that were
above the maximum decodable threshold for SNRs ranging from -15
to 0 dB. At -12 dB SNR and above, the minimum decodable threshold
selects at most 2% of the bins. Between -12 dB and -15 dB SNR,
there is a rapid increase in the number of bins above the minimum
decodable threshold. For SNR -15 dB and below, backhauling all
the bins is not sufficient to capture a decodable signal.

5 IMPLEMENTATION
In this section, we describe how to add SparSDR to an SDR’s FPGA-
based frontend and backend software stack. The frontend modifi-
cation replaces the existing downsampling modules in the FPGA
with SparSDR hardware modules, and backend reconstruction is
performed on the host within GNU Radio. Specifically, we detail
the downsampling hardware design, backhaul packet format, and
backend reconstruction software. We demonstrate that SparSDR
fits in the resources of typical SDRs, and that the design is portable
to many different SDR platforms.

5.1 SparSDR’s downsampling hardware
We begin by describing how SparSDR’s frontend architecture can
downsample the full capture bandwidth in real time using the
limited resources of an SDR frontend’s FPGA. Our implementation
fits into the spare resources of two resource-limited SDRs: the
classic USRP N210 and low-end AD Pluto. Further, we describe how
the SparSDR implementation is portable to other SDR platforms
because of its parametrized design, as well as being lightweight
enough to fit in their spare resources. Finally, we describe how STFT
length and other parameters affect the FPGA resource requirements.

Architecture. Fig. 12 shows the overall architecture of the SparSDR
downsampler for the USRP N210. The first step is to transform the
time-domain samples captured by the ADC into the frequency do-
main. The challenge is that the N210’s FPGA runs at the same

clock frequency as the full-capture sample rate; therefore the de-
sign needs to be fully pipelined so that at every clock cycle a new
time sample is accepted, and an output frequency sample is passed
through the SparSDR downsampling filter.

To address this challenge, we use the streaming version of the
Xilinx FFT core. Since SparSDR requires overlapping windows by
50%, we instantiate two of these FFT modules and set their start
triggers to fire half a window size apart. We store the parameters of
SparSDR locally in block RAMs. These include constant values such
as the Hanning-window coefficients, per-bin threshold values, and
bin masks.We implement windowing in a streamingmanner as well
by reading two coefficients half a window apart and multiplying
them by the time-domain samples before they are input into the
FFT. The outputs of the two FFT modules are also half a window
apart. Each output bin is individually compared to the threshold
value and mask. If the magnitude of the bin is above the threshold
and the bin is not masked, then that bin is sent to the network
module so it can be backhauled to the SDR host.

Due to the sparsity of SparSDR downsampling, it is not possible
to predict when a bin will be above the threshold or which of the
two overlapped FFTs will have an above-threshold bin. To resolve
this problem and make reconstruction more straightforward, we
include an arbiter module that sends all the active bins from one FFT
window before switching to the next overlapped window generated
by the other FFT module. On top of that, the periodic FFT bin
magnitude averages have higher priority than FFT bin values. The
arbiter orchestrates the order which data is sent to the networking
module. This reordering and interruption by average samples, as
well as potential network bottlenecks, requires FIFOs for the FFT
outputs and also the averaging module.

Backhaul packet format. Next, we describe the format for back-
hauling STFT bins from the SDR frontend to the host. The informa-
tion needed to reconstruct the signal from the frequency domain
bins is as follows: alongside the I/Q value of the FFT bin, we need
to send the STFT bin index and the timestamp of the STFT. The I/Q
data for an FFT bin is 4 bytes, and we we use an additional 4 bytes
per FFT bin for the metadata. The maximum FFT size we support in
the USRP N210 implementation of SparSDR is 2048, so 11 bits are
used for the FFT index, 1 bit is used to distinguish an FFT sample
from an average, and 20 bits remain for the timestamp. To make
it possible for the host to distinguish between the two overlapped
FFTs, the timestamp includes the start time of each half window.

To make the timestamp range as large as possible, we synchro-
nize the FFT bin 0 output to occur when the USRP N210’s internal
timer lower bits are zero. Hence, the timestamp of each half window
has trailing zeros that can be dropped. For an FFT of size 2048, this
process results in a total timestamp size of 30 bits—20 bits of meta-
data and 10 bits from the zeros for each half window—sufficient for
10.7 seconds at the 10-ns sample clock interval of the USRP N210.

Portability. Tomake SparSDR portable to other popular SDRs that
have different resource constraints, we parameterize the hardware
code. There are three design parameters that can be passed to the
SparSDR modules: the maximum length of the FFT that an imple-
mentation should support (fixed at synthesis time to a power of
two), the size of the FIFO buffer for sending FFT samples, and the



Use CLB Logic Use XtremeDSP Slices
MAX FFT size 256 512 1024 2048 256 512 1024 2048
DSP 12 16 16 20 30 38 40 48
Block RAM 1 3 4 7 1 3 4 7

Table 1: FPGA resource requirements for different maximum FFT
window sizes.

Module Slice LUT LUT BRAM DSP48A Instances
Reg RAM

SparSDR Top 623 1022 128 0 16 1
FFT 4006 4121 1191 7 20 2
Thresholds Mem 0 0 0 4 0 1
Averages Mem 0 0 0 2 0 2
Masks mem 0 0 0 1 0 1
FFT Samples FIFO 23 61 0 4 0 2
Avg. Samples FIFO 25 67 0 7 0 1
Backhaul send FIFO 29 71 0 34 0 1

Table 2: Resource utilization for different modules in our
USRP N210 implementation.

size of the FIFO buffer for sending average samples. These parame-
ters are governed by the maximum sample rate of the SDR frontend,
as well as the spare resources available on the FPGA (see below).
In addition, to achieve timer and FFT output synchronization, FFT
module latency values (shown in Table 4) need to be updated in a
specific Verilog file. These latencies can be different for different
FPGAs.

The primary challenge of porting SparSDR to a new platform is
understanding the top module of the new platform and how the
samples are backhauled. For example, porting from the USRP N210
to the AD Pluto took about two weeks. Most of the time was spent
understanding the hardware design and software stack of the Pluto,
followed by developing an FFT wrapper for the AXI-Stream version
of the Xilinx FFT core. Additional hardware development effort
would be required to use an FFT module other than the legacy or
AXI-Stream versions of the Xilinx FFT module.

Resource utilization. Driven by our evaluation that demonstrates
that longer FFTs producemore efficient backhaul usage (Section 4.2),
we tried to fit the largest FFT length possible into the remaining
FPGA resources. As shown in Table 1, the maximum FFT length
dictates the resources needed for the FFT module. Furthermore,
changing the length proportionally changes the required memory
for thresholds, masking, and averaging (Table 2) because these
units use Block RAMs to hold the constant coefficients or values
for each bin. Finally, the FIFO sizes determine how well the system
can tolerate bursts of data for FFT output and running averages.

Satisfying these constraints resulted in a length-2048 FFT for the
USRP N210 and length-1024 FFT for the AD Pluto. In addition to
the scalable FFT-related modules, the top module requires a fixed
amount of resources for a command decoder as well as windowing
and average calculations which require DSP blocks. The sampling
rates of the N210 and Pluto platforms are 100 Msps and 61.44 Msps
respectively. The top of Table 3 shows the resource utilization of
SparSDR on these platforms compared to their baseline implemen-
tations. The bottom of Table 3 shows available FPGA resources of
some popular SDR modules. Our lightweight implementation can
easily fit into high-end FPGAs like the one in the USRP X310.

Implementation Slice LUT BRAM DSP Price
/ SDR module registers ($)
Baseline N210 20287 31248 41 x 18Kb 31 x 18b*18b -
N210 + SparSDR 29066 39935 115 x 18Kb 87 x 18b*18b -
Baseline Pluto 14365 7801 4 x 18Kb 56 x 18b*25b -
Pluto + SparSDR 23103 13682 33 x 18Kb 74 x 18b*25b -
AD Pluto 32500 17600 120 x 18Kb 80 x 18b*25b 150
USRP N210 47744 47744 126 x 18Kb 126 x 18b*18b 2000
USRP E310 106400 53200 280 x 18Kb 220 x 18b*25b 3050
USRP B210 184304 92152 268 x 18Kb 180 x 18b*18b 1200
USRP X310 508400 254200 1540 x 18Kb 1590 x 18b*25b 5400

Table 3: Resource requirements for our SparSDR implementations,
and available FPGA resources of various popular SDR models.

FFT size 8 16 32 64 128 256 512 1024 2048
Latency (cycles) 49 105 137 215 343 613 1125 2162 4210

Table 4: Latency of the FFT module for different window sizes.

Latency. Table 4 shows the latency, for different window sizes,
added by the FFT module with a maximum FFT window size of
2048. Windowing and thresholding add another 5 cycles to these
FFT latencies. The monitoring module calculates and updates the
running average per bin, but it is not on the signal latency path.
Since the arbiter orders the windows, there is a half window delay
for sending the second half of the previous window before starting
the new window. The other source of delay is periodic transmission
of full average window values. As such, the primary parameter to
adjust the latency added by SparSDR’s downsampling hardware is
FFT length. In addition, FFT and average sample FIFOs add some
delay, but these delays are negligible compared to the latency intro-
duced by the network module. For instance, the network module
may not transmit a packet to the host until it is filled, and there are
kernel latencies on the host side.

5.2 SparSDR’s host-based reconstruction
The software implementation of SparSDR reconstruction can pro-
vide real-time performance even on an embedded processor, and
is integrated into GNU Radio. We designed a custom GNU Radio
block that performs SparSDR’s reconstruction. The SparSDR block
produces reconstructed I/Q samples that can be passed to existing
signal processing software (e.g., decoders).

SparSDR’s host software can send commands to the SDR fron-
tend to update SparSDR’s parameters without resynthesizing the
hardware. These parameters include FFT length, threshold and
mask values, windowing coefficients, averaging weight, and inter-
val between average samples. The software can also disable output
of FFT samples or average samples. This allows each application
to tailor these parameters in real time based on the performance
tradeoffs described earlier in this section.

The software also provides error reporting. Namely, if the SDR
frontend tries to send bins faster than the network and software
can handle, the software detects the overflow. If the user desires,
the software can configure the parameters to avoid overflow and
resume the capture.



Figure 13: SparSDR reconstructs 100-MHz captures in near real time
on a Raspberry Pi.

6 CASE STUDIES
In this section we demonstrate the power of SparSDR with two case
studies: an SDR-based IoT gateway and a Cloud SDR for the VHF
and UHF bands. We select these applications because they both
involve processing sparse signals across wide capture bandwidth
on platforms with limited resources. Specifically, the IoT gateway
has constrained compute resources, while the Cloud SDR has con-
strained backhaul bandwidth. A summary of the benefits of using
SparSDR instead of a full-capture SDR for these applications is as
follows:
• IoT Gateway: Using SparSDR, Bluetooth signal processing
can be performed on an SDR host with compute resources
proportional to the activity rather than the 80-MHz band-
width of Bluetooth. We demonstrate that reconstruction pro-
cessing is so lightweight that a Raspberry Pi 3+ can process
450 BLE packets per second from channels spread across the
entire 80-MHz spectrum.
• Cloud SDR: With SparSDR, we perform an over-the-air
experiment that demonstrates that most VHF and UHF bands
(≤ 10MHz) are sparse, and therefore only require residential-
class Internet uplink speeds to backhaul the signals to the
cloud for processing.

6.1 IoT gateway
For many IoT applications, sensors intermittently upload data to
an IoT gateway [2]. Monitoring all of the transmissions in the
100-MHz ISM band from Bluetooth [4], BLE [10], and ZigBee [34]
simultaneously creates new capabilities. For instance, such a system
could reduce the energy wasted by sensors channel hopping to find
a channel in common with the IoT gateway. It also makes it possible
to build a universal IoT gateway that is compatible with the myriad
current and future IoT protocols [1, 26].

Today the only SDR platform that could achieve this would
be a wideband SDR frontend with at least 10 Gbps of backhaul
capacity, such as the USRP X310. Processing this sample stream
would require a desktop-class processor. We demonstrate that the
sparsity-proportional compute enabled by SparSDR makes it possi-
ble to monitor all of the popular IoT frequencies, and even decode
signals, with the embedded-class processor of a Raspberry Pi 3+.

To demonstrate the benefits of SparSDR as an IoT gateway, we
perform three controlled experiments on the following testbed: We
connect a USRP N210 with the SparSDR module to a Raspberry
Pi 3+ as shown in Fig. 13. We use the SBX-120-MHz RF frontend
on the USRP N210 operating at full bandwidth and full (100-Msps)

Figure 14: IoT transmissions are sparse in time and frequency. For
both BLE modes of operation (advertising and connected) SparSDR
only backhauls active FFT bins—about 45 bins—of a 2048 length FFT
capturing 100 MHz.

Figure 15: Added latency from reconstruction is significantly less
than decode latency.

sampling rate. Our “sensors” are up to three ESP32 modules that we
use to transmit BLE packets. First, we evaluate SparSDR’s ability to
receive BLE’s wideband frequency-hopping transmissions. Then,
we demonstrate how lightweight the reconstruction processing is
and how much delay it adds to the system. Finally, we stress-test
SparSDR’s backhaul and processing capabilities.

Receivingwideband frequency-hopping transmissions. First
we demonstrate that SparSDR is able to continuously monitor the
full 80-MHz band for BLE packets with embedded-class compute.
We set up one ESP32 as a BLE sensor that advertises a GATT service.
Another ESP32 connects to the first and exchanges data. Fig. 14
shows the STFT bins that are backhauled to the SDR host during
this experiment. SparSDR only backhauls bins during the short ad-
vertisement packets across all three advertising channels. It works
similarly during the frequency-hopping exchange across all 40 BLE
channels. BLE transmissions are ideal for SparSDR because they
are sparse in both time and frequency. A single BLE transmitter
uses at most 2 MHz of bandwidth at a time, or about 45 active FFT
bins, which translates to a peak backhaul throughput of 280 Mbps.
This is amortized over time due to the bursty nature of BLE signals.

Lightweight reconstruction and induced latency. To evaluate
the latency introduced by reconstruction in SparSDR, we transmit
BLE packets to SparSDR from an ESP32 on a fixed band. We then
decode the BLE packets on the host with gr-bluetooth. We measure
two different latencies: first, the time from the first bin backhauled
for a packet to when that sample is reconstructed, and second to
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Figure 17: SparSDR’s backhaul and compute scale linearly with the
rate of received BLE advertising packets.

when the packet is fully decoded. Fig.15 shows the distribution of
SparSDR’s reconstruction latency. The reconstruction latency is
∼200 µs for 80% of the packets, while decoding latency is between
10 ms to 100 ms for 80% of the packets. This demonstrates that
the reconstruction latency is negligible compared to the Bluetooth
decode latency.

Backhaul and processing requirements on RPi. Next we eval-
uate how efficiently SparSDR reduces backhaul and processing
requirements. We set up three ESP32s to advertise on the three
BLE advertising channels. With just a Raspberry Pi, we monitor
100 MHz of bandwidth and decode up to 450 BLE advertisement
packets per second. Fig. 17 shows the CPU utilization and required
backhaul data rate as the BLE packet rate increases from the three
transmitters. The reconstruction and decoding processes use all
four CPU cores and do not fully saturate the CPU until the packet

rate reaches 450 packets per second. We verify that the decoder was
operating without errors. It is important to note that the Raspberry
Pi 3+ has a 1-Gbps network interface, but it is connected using
USB 2.0 so it can only achieve 224 Mbps.

We acknowledge that the current system is not a full IoTGateway.
In these experiments we only focus on the receive side, and do not
implement a multi-protocol scheduler. For multi-protocol decoding,
there is a need to either run a process for each protocol or operate
a scheduler that distributes packets among a limited number of
decoders. Designing such a system is beyond the scope of this
paper, but may be a potential area for future work.

6.2 Cloud SDR
The next case study shows that SparSDR makes it possible to ex-
pand Cloud SDR deployments to wideband SDRs. We demonstrate
that SparSDR significantly reduces the backhaul bandwidth require-
ments of a Cloud SDR: specifically, backhauling the VHF and UHF
bands only requires residential-class Internet uplink speeds.

We set up a USRP N210-based SparSDR receiver to measure
the backhaul data rate required to capture real-world over-the-air
signals from a roof-mounted antenna. We mount the antennas on
a building in a populated area near waterways, an airport, and a
large military base. We use a dipole VHF antenna with a WBX-40-
MHz frontend to capture signals below 400 MHz, and wideband
discone antenna with an SBX-120 MHz for the UHF frequencies.
We measure the backhaul data rate for each of the 10-MHz bands
from 50 MHz to 1 GHz.

Fig. 16 shows the observed distributions of the per-second back-
haul data rate computed over a period of one minute. For each
10-MHz band, the box plot shows the 0%, 25%, 50% and 75%, and
100% quartiles of the data rate. The y axes plots the SparSDR back-
haul rate relative to the full-capture data rate (320 Mbps). The plot
also shows how the backhaul data rate compares to the bandwidth



of a typical U.S. residential internet connection uplink (32.88Mbps)3.
We break the frequency range into 10-MHz bands because that is
the approximate allocation size of the different uses of the VHF and
UHF bands (shown on the bottom of the figure). Fig. 16 also shows
the absolute power threshold value that we employ for each band.
These thresholds are selected by finding the minimum threshold
value that does not cause overflow due to noise. We determine the
absolute power by calibrating the USRP power measurements with
a signal generator.

The primary result of this case study is that SparSDR’s back-
haul data rate is often significantly below the backhaul bandwidth
required for backhauling a single 10-MHz band, or even several
adjacent 10-MHz bands. The “Mobile” and “ISM” bands are the best
use cases for SparSDR because they contain dynamic transmissions.
For many of these bands, the entire distribution of throughput
measurements are well below the typical residential uplink speed.

As expected, the bands that have constant broadcasters (e.g., FM)
do not benefit much from sparsity-proportional downsampling.
This is also why we do not present the bands between 500 MHz
and 900 MHz because they are occupied by constant LTE downlink
channels and broadcast TV stations.

7 RELATEDWORK
While SparSDR is the first work that demonstrates a lightweight and
near-real-time SDR implementation whose backhaul bandwidth
and computation resource requirements vary with signal sparsity,
SDR architectures have been investigated extensively. We survey a
few of the most relevant pieces of related work below.

SDRs exploiting frequency-time sparsity. Weacknowledge that
compressed sensing [7, 8] has a similar goal to SparSDR; however,
it requires a priori knowledge of how sparse the signal is, so it is not
adaptable to dynamic conditions. Furthermore, compressed sensing
requires random-sampling-based ADCs which are hard to create
and require computationally intensive algorithms to reconstruct the
original signal [22]. Compressed sensing has therefore been very
costly and difficult to realize in real time. Similarly, while sparse
FFT [14] can be used in place of STFTs in SparSDR, they require
strict sparsity assumptions. In general, there is no way to ensure a
priori that the captured spectrum will meet the sparsity constraints.

There has been priorwork that detected signals to take advantage
of sparsity. For example, Narayanan and Kumar detect narrowband
signals are over time by correlating the received samples with a pre-
defined preamble sequence common to various protocols in [25].
Their work is complementary to SparSDR in that they can detect
all signals in a given narrowband in the time domain, whereas
SparSDR detects signals in the frequency domain.

In contrast to SparSDR, BigBand [15] uses a complementary
approach to wideband spectrum sensing and decoding. Hassanieh
et al. alias multiple RF signals into a capture band, and reconstruct
the individual signals within the aliased capture. BigBand could
use SparSDR to reduce its backhaul and computation requirements
at arbitrary capture bandwidths.

Crowdsourced Cloud SDRs and IoT SDRs. Cloud SDR systems
such as ElectroSense [29] and RadioHound [21] have emerged from

3https://www.speedtest.net/reports/united-states/2018/fixed

the development of low-cost SDRs such as the RTL-SDR4 and low-
cost hosts such as the Raspberry Pi [20]. Researchers have also
made the case for a universal IoT SDR built on such low-cost plat-
forms [9, 25]. Research on crowdsourced SDR infrastructure has
focused on giving inexpensive SDRs the capabilities of premium
SDRs such as the USRP, namely full-spectrum tuning range [21, 29]
and accurate frequency measurement [6]. With crowdsourced SDR
infrastructure, researchers have demonstrated that by combining
information from many networked SDRs they can estimate the oc-
cupancy of the spectrum [18], reveal anomalous transmissions [30],
and even jointly decode wideband signals received from many nar-
rowband sensors [5]. Existing implementations of these applications
require making a tradeoff: Either the low-cost SDRs do a significant
fraction of the processing locally—only allowing a wideband SDR
to be used for one application at a time—or the SDRs must backhaul
raw I/Q samples, limiting their deployments to locations with well-
provisioned backhaul (i.e., universities and businesses). SparSDR
significantly reduces the backhaul requirements of wideband SDRs
so they can operate across residential-class access links as well.

C-RAN. There are several proposals for compressing the backhaul
of cellular networks from SDR-like basestations that send raw I/Q
samples to the cloud for centralized processing. These captures are
not sparse: the entirely of the basestation’s bandwidth is occupied
by the LTE signal. Also, the compression algorithm is running
on carrier-grade equipment that is well-provisioned compared to
popular SDRs [12, 16].

8 CONCLUSION
SparSDR presents an ideal architecture for upcoming applications
like Cloud SDR and IoT gateways. It can be implemented on many
SDR frontend FPGAs to make their backhaul capacity requirements
inversely proportional to the sparsity—both in time and frequency—
of the signal in any part of the RF spectrum, instead of the full ADC
capture bandwidth. Further, SparSDR employs a reconstruction
process whose computational requirements also scale in response to
the sparsity. Hence, it significantly decreases processing demands—
so much so that many applications can be run on an embedded
processor. These two features are key to enabling a scalable, low-
cost SDR solution. SparSDR delivers near-real-time performance
without sacrificing signal quality or flexibility. We have released
SparSDR under an open source license to enable others to develop
new applications on top of it.
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