
Algorithmic Aspects of Machine Learning:
Problem Set # 1

Instructor: Ankur Moitra

Due: October 9

You can work with other students, but you must write-up your solutions by yourself
and indicate at the top who you worked with!

Recall that rank+(M) is the smallest r such that there are entry-wise nonnegative
matrices A and W with inner-dimension r, satisfying M = AW .

Problem 1

Which of the following are equivalent definitions of nonnegative rank? For each, give
a proof or a counter-example.

(a) the smallest r such that M can be written as the sum of r rank one, nonnegative
matrices

(b) the smallest r such that there are r nonnegative vectors v1, v2, ..., vr such that
the cone generated by them contains all the columns of M

(c) the largest r such that there are r columns of M , M1,M2, ...,Mr such that no
column in set is contained in the cone generated by the remaining r−1 columns

Problem 2

Let M ∈ Rn×n where Mi,j = (i− j)2. Prove that rank(M) = 3 and that rank+(M) ≥
log2 n. Hint: To prove a lower bound on rank+(M) it suffices to consider just where
it is zero and where it is non-zero.

Problem 3

(a) [Papadimitriou et al. ’97] considered the following document model: M = AW
and each column of W has only one non-zero and the support of each column
of A is disjoint. Prove that the left singular vectors of M are the columns of A
(after rescaling). You may assume that all the non-zero singular values of M
are distinct. Hint: MMT is block diagonal, after applying a permutation π to
its rows and columns.
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(b) Let M be n×m with rows corresponding to terms and columns corresponding
to documents. For each document j, let column j of M sum to 1, representing
a probability distribution πj over terms. Let document j consist of N terms
(not necessarily distinct), each drawn independently from πj. Let

M̂ij =
1

N
[# occurrences of term i in document j]

be the matrix of observed term frequencies. Give a bound t = t(n,m,N, δ) such
that with probability ≥ 1−δ we have that every entry i, j satisfies |Mij−M̂ij| ≤
t. Use Hoeffding’s inequality:

Theorem (Hoeffding). If X1, . . . , Xn are independent random variables with
Xi ∈ [0, 1] then P

(∣∣ 1
n

∑n
i=1(Xi − E[Xi])

∣∣ ≥ t
)
≤ 2 exp(−2nt2).

(c) We have the following perturbation bound for singular subspaces:

Theorem (Papadimitriou et al. ’97). Let M be an n×m matrix with singular
value decomposition M = UΣV >. Suppose that, for some k, the singular values
satisfy 21/20 ≥ σ1 ≥ · · · ≥ σk ≥ 19/20 and 1/20 ≥ σk+1 ≥ · · · . Let E
be an arbitrary n × m matrix with Frobenius norm ‖E‖F ≤ ε ≤ 1/20. Let
M ′ = M + E and let U ′Σ′V ′> be its singular value decomposition. Let Uk and
U ′k be n× k matrices consisting of the first k columns of U and U ′ respectively.
Then, U ′k = UkR+G for some k×k orthogonal matrix R and some n×k matrix
G with ‖G‖F ≤ 9ε.

Let M = AW as in part (a), and let M̂ be the observed word frequencies from
part (b). Suppose the non-zero singular values of M satisfy 19c/20 ≤ σi ≤
21c/20 for some c. State a precise bound (in terms of n,m,N, δ, c) showing that
given M̂ , we can approximately recover the span of the columns of A. (Your
bound should be an upper bound on ‖G‖F as above.)

Problem 4

Greedy Anchorwords

1. Set S = ∅
2. Add the row of M with the largest `2 norm to S

3. For i = 2 to r

4. Project the rows of M orthogonal to the span of vectors in S

5. Add the row with the largest `2 norm to S

6. End
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Let M = AW where A is separable and the rows of M , A and W are normalized to
sum to one. Also assume W has full row rank. Prove that Greedy Anchorwords
finds all the anchor words and nothing else. Hint: the `2 norm is strictly convex —
i.e. for any x 6= y and t ∈ (0, 1), ‖tx+ (1− t)y‖2 < t‖x‖2 + (1− t)‖y‖2.

Problem 5

In the multi-reference alignment problem (considered by e.g. [Perry et al. ’17]) we
observe many noisy copies of the same unknown signal x ∈ Rd, but each copy has
been circularly shifted by a random offset (as pictured).

Figure: Three shifted copies of the true signal x are shown in gray. Noisy
samples yi are shown in red. (Figure credit: [Bandeira et al. ’17])

Formally, for i = 1, 2, . . . , n we observe

yi = R`ix+ ξi

where: the `i are drawn uniformly and independently from {0, 1, . . . , d − 1}; R` is
the operator that circularly shifts a vector by ` indices; ξi ∼ N (0, σ2Id×d) with {ξi}i
independent; and σ > 0 is a known constant. Think of d, x and σ as fixed while
n→∞. The goal is to recover x (or a circular shift of x).

(a) Consider the tensor T (x) = 1
d

∑d−1
`=0 (R`x)⊗ (R`x)⊗ (R`x). Show how to use the

samples yi to estimate T (with error tending to zero as n → ∞). Take extra
care with the entries that have repeated indices (e.g. Taab, Taaa).

(b) Given T (x), prove that Jennrich’s algorithm can be used to recover x (up to
circular shift). Assume that x is generic in the following sense: let x′ ∈ Rd

be arbitrary and let x be obtained from x′ by adding a small perturbation
δ ∼ N (0, ε) to the first entry. Hint: form a matrix with rows {R`x}0≤`<d,
arranged so that the diagonal entries are all x1.
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