Algorithmic Aspects of Machine Learning: Problem Set # 1

Instructor: Ankur Moitra

Due: October 9

You can work with other students, but you must write-up your solutions by yourself and indicate at the top who you worked with!

Recall that rank⁺(M) is the smallest r such that there are entry-wise nonnegative matrices A and W with inner-dimension r, satisfying M = AW.

Problem 1

Which of the following are equivalent definitions of nonnegative rank? For each, give a proof or a counter-example.

- (a) the smallest r such that M can be written as the sum of r rank one, nonnegative matrices
- (b) the smallest r such that there are r nonnegative vectors $v_1, v_2, ..., v_r$ such that the cone generated by them contains all the columns of M
- (c) the largest r such that there are r columns of $M, M_1, M_2, ..., M_r$ such that no column in set is contained in the cone generated by the remaining r-1 columns

Problem 2

Let $M \in \mathbb{R}^{n \times n}$ where $M_{i,j} = (i-j)^2$. Prove that $\operatorname{rank}(M) = 3$ and that $\operatorname{rank}^+(M) \ge \log_2 n$. *Hint:* To prove a lower bound on $\operatorname{rank}^+(M)$ it suffices to consider just where it is zero and where it is non-zero.

Problem 3

(a) [Papadimitriou et al. '97] considered the following document model: M = AWand each column of W has only one non-zero and the support of each column of A is disjoint. Prove that the left singular vectors of M are the columns of A(after rescaling). You may assume that all the non-zero singular values of Mare distinct. *Hint:* MM^T is block diagonal, after applying a permutation π to its rows and columns. (b) Let M be $n \times m$ with rows corresponding to terms and columns corresponding to documents. For each document j, let column j of M sum to 1, representing a probability distribution π_j over terms. Let document j consist of N terms (not necessarily distinct), each drawn independently from π_j . Let

$$\hat{M}_{ij} = \frac{1}{N} [\# \text{ occurrences of term } i \text{ in document } j]$$

be the matrix of observed term frequencies. Give a bound $t = t(n, m, N, \delta)$ such that with probability $\geq 1-\delta$ we have that **every** entry i, j satisfies $|M_{ij} - \hat{M}_{ij}| \leq t$. Use Hoeffding's inequality:

Theorem (Hoeffding). If X_1, \ldots, X_n are independent random variables with $X_i \in [0, 1]$ then $\mathbb{P}\left(\left|\frac{1}{n}\sum_{i=1}^n (X_i - \mathbb{E}[X_i])\right| \ge t\right) \le 2\exp(-2nt^2).$

(c) We have the following perturbation bound for singular subspaces:

Theorem (Papadimitriou et al. '97). Let M be an $n \times m$ matrix with singular value decomposition $M = U\Sigma V^{\top}$. Suppose that, for some k, the singular values satisfy $21/20 \ge \sigma_1 \ge \cdots \ge \sigma_k \ge 19/20$ and $1/20 \ge \sigma_{k+1} \ge \cdots$. Let Ebe an arbitrary $n \times m$ matrix with Frobenius norm $||E||_F \le \epsilon \le 1/20$. Let M' = M + E and let $U'\Sigma'V'^{\top}$ be its singular value decomposition. Let U_k and U'_k be $n \times k$ matrices consisting of the first k columns of U and U' respectively. Then, $U'_k = U_k R + G$ for some $k \times k$ orthogonal matrix R and some $n \times k$ matrix G with $||G||_F \le 9\epsilon$.

Let M = AW as in part (a), and let \hat{M} be the observed word frequencies from part (b). Suppose the non-zero singular values of M satisfy $19c/20 \leq \sigma_i \leq 21c/20$ for some c. State a precise bound (in terms of n, m, N, δ, c) showing that given \hat{M} , we can approximately recover the span of the columns of A. (Your bound should be an upper bound on $||G||_F$ as above.)

Problem 4

GREEDY ANCHORWORDS

- 1. Set $S = \emptyset$
- 2. Add the row of M with the largest ℓ_2 norm to S
- 3. For i = 2 to r
- 4. Project the rows of M orthogonal to the span of vectors in S
- 5. Add the row with the largest ℓ_2 norm to S
- 6. End

Let M = AW where A is separable and the rows of M, A and W are normalized to sum to one. Also assume W has full row rank. Prove that GREEDY ANCHORWORDS finds all the anchor words and nothing else. *Hint:* the ℓ_2 norm is strictly convex i.e. for any $x \neq y$ and $t \in (0, 1)$, $||tx + (1 - t)y||_2 < t||x||_2 + (1 - t)||y||_2$.

Problem 5

In the *multi-reference alignment* problem (considered by e.g. [Perry et al. '17]) we observe many noisy copies of the same unknown signal $x \in \mathbb{R}^d$, but each copy has been circularly shifted by a random offset (as pictured).

Figure: Three shifted copies of the true signal x are shown in gray. Noisy samples y_i are shown in red. (Figure credit: [Bandeira et al. '17])

Formally, for $i = 1, 2, \ldots, n$ we observe

$$y_i = R_{\ell_i} x + \xi_i$$

where: the ℓ_i are drawn uniformly and independently from $\{0, 1, \ldots, d-1\}$; R_ℓ is the operator that circularly shifts a vector by ℓ indices; $\xi_i \sim \mathcal{N}(0, \sigma^2 I_{d \times d})$ with $\{\xi_i\}_i$ independent; and $\sigma > 0$ is a known constant. Think of d, x and σ as fixed while $n \to \infty$. The goal is to recover x (or a circular shift of x).

- (a) Consider the tensor $T(x) = \frac{1}{d} \sum_{\ell=0}^{d-1} (R_{\ell}x) \otimes (R_{\ell}x) \otimes (R_{\ell}x)$. Show how to use the samples y_i to estimate T (with error tending to zero as $n \to \infty$). Take extra care with the entries that have repeated indices (e.g. T_{aab}, T_{aaa}).
- (b) Given T(x), prove that Jennrich's algorithm can be used to recover x (up to circular shift). Assume that x is generic in the following sense: let $x' \in \mathbb{R}^d$ be arbitrary and let x be obtained from x' by adding a small perturbation $\delta \sim \mathcal{N}(0, \epsilon)$ to the first entry. *Hint:* form a matrix with rows $\{R_{\ell}x\}_{0 \leq \ell < d}$, arranged so that the diagonal entries are all x_1 .