Algorithmic Aspects of Machine Learning:
Problem Set # 1

Instructor: Ankur Moitra

Due: October 9

You can work with other students, but you must write-up your solutions by yourself
and indicate at the top who you worked with!

Recall that rank™ (M) is the smallest r such that there are entry-wise nonnegative
matrices A and W with inner-dimension r, satisfying M = AW,

Problem 1

Which of the following are equivalent definitions of nonnegative rank? For each, give
a proof or a counter-example.

(a) the smallest r such that M can be written as the sum of r rank one, nonnegative
matrices

(b) the smallest 7 such that there are r nonnegative vectors vy, v, ..., v, such that
the cone generated by them contains all the columns of M

(c) the largest r such that there are r columns of M, My, M, ..., M, such that no
column in set is contained in the cone generated by the remaining » — 1 columns

Problem 2

Let M € R™™ where M; ; = (i — j). Prove that rank(M) = 3 and that rank™ (M) >
log, n. Hint: To prove a lower bound on rank™ (M) it suffices to consider just where
it is zero and where it is non-zero.

Problem 3

(a) [Papadimitriou et al. '97] considered the following document model: M = AW
and each column of W has only one non-zero and the support of each column
of A is disjoint. Prove that the left singular vectors of M are the columns of A
(after rescaling). You may assume that all the non-zero singular values of M
are distinct. Hint: M M7 is block diagonal, after applying a permutation 7 to
its rows and columns.
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(b) Let M be n x m with rows corresponding to terms and columns corresponding

to documents. For each document j, let column j of M sum to 1, representing
a probability distribution m; over terms. Let document j consist of N terms
(not necessarily distinct), each drawn independently from ;. Let

~

1
M;; = N[# occurrences of term ¢ in document j]

be the matrix of observed term frequencies. Give a bound t = t(n, m, N, 52 such
that with probability > 1—¢ we have that every entry i, j satisfies |M,; —M;;| <
t. Use Hoeffding’s inequality:

Theorem (Hoeffding). If Xi,..., X, are independent random variables with
X; €[0,1] then P (|2 37 (X; — E[X,])| > t) < 2exp(—2nt?).

(c) We have the following perturbation bound for singular subspaces:

Theorem (Papadimitriou et al. 97). Let M be an n x m matriz with singular
value decomposition M = ULV T. Suppose that, for some k, the singular values
satisfy 21/20 > o1 > -+ > o > 19/20 and 1/20 > o441 > ---. Let E
be an arbitrary n x m matriz with Frobenius norm ||E|r < e < 1/20. Let
M' = M + E and let U'S'V'T be its singular value decomposition. Let Uy, and
U], be n x k matrices consisting of the first k columns of U and U’ respectively.
Then, U, = U,R+G for some k x k orthogonal matriz R and some n x k matrix
G with ||G||r < 9e.

Let M = AW as in part (a), and let M be the observed word frequencies from
part (b). Suppose the non-zero singular values of M satisfy 19¢/20 < o; <
21¢/20 for some c. State a precise bound (in terms of n, m, N, §, ¢) showing that
given M, we can approximately recover the span of the columns of A. (Your
bound should be an upper bound on ||G||r as above.)

Problem 4

GREEDY ANCHORWORDS
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. Set S=10
. Add the row of M with the largest ¢5 norm to S
. Fori=2tor

Project the rows of M orthogonal to the span of vectors in S
Add the row with the largest ¢2 norm to S
. End
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Let M = AW where A is separable and the rows of M, A and W are normalized to
sum to one. Also assume W has full row rank. Prove that GREEDY ANCHORWORDS
finds all the anchor words and nothing else. Hint: the f5 norm is strictly convex —
i.e. for any z # y and t € (0,1), ||tz + (1 — t)y|l2 < t||z]2 + (1 = t)||yl|2-

Problem 5

In the multi-reference alignment problem (considered by e.g. [Perry et al. "17]) we
observe many noisy copies of the same unknown signal € R%, but each copy has
been circularly shifted by a random offset (as pictured).

Figure: Three shifted copies of the true signal x are shown in gray. Noisy
samples y; are shown in red. (Figure credit: [Bandeira et al. ’17])

Formally, for ¢ = 1,2,...,n we observe
yi = Rpx + &

where: the ¢; are drawn uniformly and independently from {0,1,...,d — 1}; Ry is
the operator that circularly shifts a vector by ¢ indices; & ~ N (0,02 14x4) with {&}
independent; and ¢ > 0 is a known constant. Think of d, x and o as fixed while
n — 0o. The goal is to recover = (or a circular shift of x).

(a) Consider the tensor T'(z) = % ?;é(RgfL‘) ® (Ryx) ® (Rez). Show how to use the
samples y; to estimate T (with error tending to zero as n — o0). Take extra
care with the entries that have repeated indices (e.g. Tuap, Thaa)-

(b) Given T'(x), prove that Jennrich’s algorithm can be used to recover x (up to
circular shift). Assume that x is generic in the following sense: let 2’/ € RY
be arbitrary and let x be obtained from z’ by adding a small perturbation
§ ~ N(0,¢) to the first entry. Hint: form a matrix with rows {Rz}o<i<d,
arranged so that the diagonal entries are all ;.
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