
Algorithmic Aspects of Machine Learning:
Problem Set # 2

Instructor: Ankur Moitra

Due: November 6

You can work with other students, but you must write-up your solutions by yourself
and indicate at the top who you worked with!

Problem 1

(a) Suppose we want to solve the linear system Ax = b (where A ∈ Rn×n is square
and invertible) but we are only given access to a noisy vector b̃ satisfying

‖b− b̃‖
‖b‖

≤ ε

and a noisy matrix Ã satisfying ‖A− Ã‖ ≤ δ (in operator norm). Let x̃ be the
solution to Ãx̃ = b̃. Show that

‖x− x̃‖
‖x‖

≤ ε σmax(A) + δ

σmin(A)− δ

provided δ < σmin(A).

(b) Now suppose we know A exactly, but A may be badly conditioned or even
singular. We want to show that it may still be possible to recover a specific
coordinate xj of x. Let x̃ be any solution to Ax̃ = b̃ and let ai denote column i
of A. Show that

|xj − x̃j| ≤
‖b− b̃‖
Cj

where Cj is the norm of the projection of aj onto the orthogonal complement
of span({ai}i 6=j).

Problem 4 2

Problem 2

Recall that u�v denotes the Khatri-Rao product between two vectors, and if u ∈ Rm

and v ∈ Rn then u � v ∈ Rmn and corresponds to flattening the matrix uvT into a
vector, column by column. Also recall that the Kruskal rank k-rank of a collection of
vectors u1, u2, ..., um ∈ Rn is the largest k such that every set of k vectors are linearly
independent.

In this problem, we will explore properties of the Khatri-Rao product and use it
to design algorithms for decomposing higher-order tensors.

(a) Let ku and kv be the k-rank of u1, u2, ..., um and v1, v2, ..., vm respectively. Prove
that the k-rank of u1 � v1, u2 � v2, ..., um � vm is at least min(ku + kv − 1,m).

(b) Construct an example where the k-rank of u1�u1, u2�u2, ..., um�um is exactly
2ku− 1, and not any larger. To make this non-trivial, you must use an example
where m > 2ku − 1. Hint: You could use my favorite overcomplete dictionary,
from class.

Further Clarification: Here I would like you to construct a family of examples, so
that the inequality you proved in (a) is tight is infinitely often tight. Moreover all of
the vectors in your example should be distinct.

(c) Given an n× n× n× n× n fifth order tensor T =
∑r

i=1 a
⊗5
i give an algorithm

for finding its factors that works for r = 2n − 1, under appropriate conditions
on the factors a1, a2, ..., ar. Hint: Reduce to the third-order case.

In fact for random or perturbed vectors, the Khatri-Rao product has a much stronger
effect of multiplying their Kruskal rank. These types of properties can be used to
obtain algorithms for decomposing higher-order tensors in the highly overcomplete
case where r is some polynomial in n.

Problem 3

In class we saw how to solve ICA using non-convex optimization. In this problem
we will see how to solve ICA using tensor decomposition. Suppose we observe many
samples of the form y = Ax where A is an unknown non-singular square matrix and
each coordinate of x is independent and satisfies E[xj] = 0 and E[x4j] 6= 3E[x2j]

2. The
distribution of xj is unknown and might not be the same for all j.

(a) Write down expressions for E[y⊗4] and (E[y⊗2])
⊗2

in terms of A and the moments
of x. (You should not have any A’s inside the expectation.)

(b) Using part (a), show how to use the moments of y to produce a tensor of the
form

∑
j cja

⊗4
j where aj denotes column j of A and the cj are nonzero scalars.

(c) Show how to recover the columns of A (up to permutation and scalar multiple)
using Jennrich’s algorithm.

Algorithmic Aspects of Machine Learning PS # 2

Problem 4 3

Problem 4

In the planted clique model, we start with a random graph G(n, 1/2) (i.e. there are n
vertices and every possible edge exists independently with probability 1/2) and then
plant a clique on a random vertex-subset S ⊆ V of size |S| = k (i.e. connect every
vertex in S to every other vertex in S). Given the graph (and k), the goal is to
exactly find the clique with high probability (i.e. probability tending to 1 as n→∞).
Consider the regime where k = k(n) satisfies

√
n log n� k(n)� n (where e.g. k � n

means k = o(n), i.e. k/n→ 0 as n→∞).

(a) Give a simple algorithm (based on counting the degree of each vertex) and prove
that it finds the clique with high probability. Use Hoeffding’s inequality:

Theorem (Hoeffding). Let X1, . . . , Xn be independent random variables with
Xi ∈ [0, 1] and let X̄ = 1

n

∑n
i=1Xi. Then for any t > 0,

P
(
|X̄ − E[X̄]| ≥ t

)
≤ 2 exp(−2nt2).

(b) Now consider the following semirandom model. First we generate a random
graph G̃ with a planted clique as above. Then an adversary is allowed to delete
any number of edges that are not in the clique (i.e. edges that do not have both
endpoints in S), producing a graph G. Show that the algorithm from part (a)
fails in the semirandom model.

(c) Consider the optimization problem from [Feige–Krauthgamer ’99]:

max
d,{ui}

∑
i∈V

〈d, ui〉2

where d ∈ Rn is a unit vector and {ui} is an orthogonal representation of the
graph, i.e. a unit vector ui ∈ Rn is assigned to each vertex i ∈ V such that
if (i, j) are non-adjacent then 〈ui, uj〉 = 0. This optimization problem can be
solved efficiently using semidefinite programming. The intended form of the
solution is ui = d for all i ∈ S and ui ⊥ d for all i /∈ S. Show that this
procedure is robust to the semirandom model in the following sense. Suppose
that G̃ has the property that every optimal d, {ui} takes the intended form.
Show that G also has this property, regardless of the adversary’s actions.

Algorithmic Aspects of Machine Learning PS # 2

