Algorithmic Aspects of Machine Learning:
Problem Set # 3

Instructor: Ankur Moitra

Due: December 4 at 11:59 p.m.

You can work with other students, but you must write-up your solutions by yourself
and indicate at the top who you worked with!

Problem 1

Let T be a k-sparse vector in n-dimensions. Let w be the nth root of unity. Suppose
we are given vy = 7, z;w for £ = 0,1,...,2k — 1. Let A, B € R*** be defined so
that Ai,j = Vjtj—2 and Bi,j = Vitj—-1-

(a) Express both A and B in the form A = VD,VT and B = VDgVT where V is
a Vandermonde matrix, and Dy, D are diagonal.

(b) Prove that the solutions to the generalized eigenvalue problem Az = ABz can
be used to recover the locations of the non-zeros in .

(c) Given the locations of the non-zeros in z, and vy, vy, ..., vx_1, given an algorithm
to recover the values of the non-zero coefficients in 7.

This is called the matrix pencil method. If you squint, it looks like a topic we
didn’t cover called Prony’s method (Section 4.4) and has similar guarantees. Both are
(somewhat) robust to noise if and only if the Vandermonde matrix is well-conditioned,
and when exactly that happens is a longer story...

Problem 2

In the angular synchronization problem we observe

Y = éxx* + LVV
n Vi
Here the true signal x € C™ has each entry drawn uniformly at random from the unit
circle in C (so |x;] = 1). The n X n noise matrix W is Hermitian with W;; ~ N(0, 1),
Wi; ~ CN(0,1) := N(0,1/2) + N(0,1/2)i (with real and imaginary components
independent) and {W;;},<; independent. The parameter A > 0 is the signal-to-
noise ratio. One can think of each x; (which is a unit-norm complex number) as an
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angle and of Yj; as a noisy measurement of the relative angle x;7;. The goal is to
(approximately) recover xz*, i.e. recover x up to a global rotation.
Consider the iterative algorithm

v+ Y f(v)

where f(v) projects each entry of v € C" onto the unit circle in C via z — z/|z] (i.e.
set the magnitude to 1 while leaving the phase unchanged). The initialization should
be a random vector.

(a) Give a heuristic analysis of this algorithm by deriving the state evolution equa-
tions as follows. Suppose v = px + og with 1 € R, 0 € R>(, and each entry of
g distributed independently as CA(0,1). Write down a recurrence for how
and o evolve after one iteration, in the limit n — co. Assume that g and W are
independent (i.e. assume that we’re running the algorithm with an appropriate
Onsager term).

(b) Predict the exact threshold for A\ above which the algorithm achieves non-trivial
correlation with the truth (in the n — oo limit). You may either numerically
(using a computer) or analytically analyze the recurrence from (a).

The above algorithm was first proposed by [Boumal 16]. For large values of \ it
has near-optimal performance but it is sub-optimal for small A. The optimal threshold
for non-trivial recovery is A = 1, which is achieved by PCA (top eigenvector) or AMP.

Problem 3

Consider the sparse coding model y = Az where A is a fixed n X n matrix with
orthonormal columns a;, and = has i.i.d. coordinates drawn from the distribution

+1 with probability a/2,
r; =< —1 with probability a/2,
0  with probability 1 — a.
The goal is to recover the columns of A (up to sign and permutation) given many
independent samples y. Construct the matrix

M =E,[(y™, 9)(y®, v)yy "]

where y) = Az and y® = Az® are two fixed samples from the sparse coding
model, and the expectation is over a third sample y from the sparse coding model.
Let Z be the (unit-norm) eigenvector of M corresponding to the largest (in absolute
value) eigenvalue.

(a) Write an expression for M in terms of o, 2V, 2?) {a,}.

(b) Assume for simplicity that 2" and () each have support size exactly an and
that their supports intersect at a single coordinate i*. Show that (2, a;)? >
1 — O(a?n) in the limit a — 0.

This method can be used to find a good starting point for alternating minimization.
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