
Algorithmic Aspects of Machine Learning:
Problem Set # 3

Instructor: Ankur Moitra

Due: December 4 at 11:59 p.m.

You can work with other students, but you must write-up your solutions by yourself
and indicate at the top who you worked with!

Problem 1

Let x̂ be a k-sparse vector in n-dimensions. Let ω be the nth root of unity. Suppose
we are given v` =

∑n
j=1 x̂jω

`j for ` = 0, 1, ..., 2k − 1. Let A,B ∈ Rk×k be defined so
that Ai,j = vi+j−2 and Bi,j = vi+j−1.

(a) Express both A and B in the form A = V DAV
T and B = V DBV

T where V is
a Vandermonde matrix, and DA, DB are diagonal.

(b) Prove that the solutions to the generalized eigenvalue problem Ax = λBx can
be used to recover the locations of the non-zeros in x̂.

(c) Given the locations of the non-zeros in x̂, and v0, v1, ..., vk−1, given an algorithm
to recover the values of the non-zero coefficients in x̂.

This is called the matrix pencil method. If you squint, it looks like a topic we
didn’t cover called Prony’s method (Section 4.4) and has similar guarantees. Both are
(somewhat) robust to noise if and only if the Vandermonde matrix is well-conditioned,
and when exactly that happens is a longer story...

Problem 2

In the angular synchronization problem we observe

Y =
λ

n
xx∗ +

1√
n
W.

Here the true signal x ∈ Cn has each entry drawn uniformly at random from the unit
circle in C (so |xi| = 1). The n× n noise matrix W is Hermitian with Wii ∼ N (0, 1),
Wij ∼ CN (0, 1) := N (0, 1/2) + N (0, 1/2)i (with real and imaginary components
independent) and {Wij}i≤j independent. The parameter λ ≥ 0 is the signal-to-
noise ratio. One can think of each xi (which is a unit-norm complex number) as an
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angle and of Yij as a noisy measurement of the relative angle xixj. The goal is to
(approximately) recover xx∗, i.e. recover x up to a global rotation.

Consider the iterative algorithm

v ← Y f(v)

where f(v) projects each entry of v ∈ Cn onto the unit circle in C via z 7→ z/|z| (i.e.
set the magnitude to 1 while leaving the phase unchanged). The initialization should
be a random vector.

(a) Give a heuristic analysis of this algorithm by deriving the state evolution equa-
tions as follows. Suppose v = µx+ σg with µ ∈ R, σ ∈ R≥0, and each entry of
g distributed independently as CN (0, 1). Write down a recurrence for how µ
and σ evolve after one iteration, in the limit n→∞. Assume that g and W are
independent (i.e. assume that we’re running the algorithm with an appropriate
Onsager term).

(b) Predict the exact threshold for λ above which the algorithm achieves non-trivial
correlation with the truth (in the n → ∞ limit). You may either numerically
(using a computer) or analytically analyze the recurrence from (a).

The above algorithm was first proposed by [Boumal ’16]. For large values of λ it
has near-optimal performance but it is sub-optimal for small λ. The optimal threshold
for non-trivial recovery is λ = 1, which is achieved by PCA (top eigenvector) or AMP.

Problem 3

Consider the sparse coding model y = Ax where A is a fixed n × n matrix with
orthonormal columns ai, and x has i.i.d. coordinates drawn from the distribution

xi =


+1 with probability α/2,
−1 with probability α/2,
0 with probability 1− α.

The goal is to recover the columns of A (up to sign and permutation) given many
independent samples y. Construct the matrix

M = Ey[〈y(1), y〉〈y(2), y〉yy>]

where y(1) = Ax(1) and y(2) = Ax(2) are two fixed samples from the sparse coding
model, and the expectation is over a third sample y from the sparse coding model.
Let ẑ be the (unit-norm) eigenvector of M corresponding to the largest (in absolute
value) eigenvalue.

(a) Write an expression for M in terms of α, x(1), x(2), {ai}.

(b) Assume for simplicity that x(1) and x(2) each have support size exactly αn and
that their supports intersect at a single coordinate i∗. Show that 〈ẑ, ai∗〉2 ≥
1−O(α2n) in the limit α→ 0.

This method can be used to find a good starting point for alternating minimization.
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