
Algorithmic Aspects of Machine Learning:
Problem Set # 2

Instructor: Ankur Moitra

Due: April 23rd

You can work with other students, but you must write-up your solutions by yourself
and indicate at the top who you worked with!

Recall that u � v denotes the Khatri-Rao product between two vectors, and if
u ∈ Rm and v ∈ Rn then u � v ∈ Rmn and corresponds to flattening the matrix
uvT into a vector, column by column. Also recall that the Kruskal rank k-rank of a
collection of vectors u1, u2, ..., um ∈ Rn is the largest k such that every set of k vectors
are linearly independent.

Problem 1

In this problem, we will explore properties of the Khatri-Rao product and use it to
design algorithms for decomposing higher-order tensors.

(a) Let ku and kv be the k-rank of u1, u2, ..., um and v1, v2, ..., vm respectively. Prove
that the k-rank of u1 � v1, u2 � v2, ..., um � vm is at least min(ku + kv − 1,m).

(b) Construct an example where the k-rank of u1�u1, u2�u2, ..., um�um is exactly
2ku− 1, and not any larger. To make this non-trivial, you must use an example
where m > 2ku − 1. Hint: You could use my favorite overcomplete dictionary,
from class.

Further Clarification: Here I would like you to construct a family of examples, so
that the inequality you proved in (a) is tight is infinitely often tight. Moreover all of
the vectors in your example should be distinct.

(c) Given an n× n× n× n× n fifth order tensor T =
∑r

i=1 a
⊗5
i give an algorithm

for finding its factors that works for r = 2n − 1, under appropriate conditions
on the factors a1, a2, ..., ar. Hint: Reduce to the third-order case.

In fact for random or perturbed vectors, the Khatri-Rao product has a much stronger
effect of multiplying their Kruskal rank. These types of properties can be used to
obtain algorithms for decomposing higher-order tensors in the highly overcomplete
case where r is some polynomial in n.



Problem 4 2

This question concerns the stochastic block model, where we generate a graph
G = (V,E) as follows. Each node u ∈ V is mapped to one of k communities according
to π : V → [k] and the probability of an edge (u, v) is q if π(u) = π(v) and otherwise
is p, for q > p. Our goal is to recover the underlying community structure, using
tensor methods.

Problem 2

Given a partition of V into A,B,C and X, for each a, b, c in A,B,C respectively,
consider the statistic

T̃a,b,c =
|{x ∈ X|(x, a), (x, b), (x, c) ∈ E}|

|X|

(a) Prove that E[T̃ ] is a low rank tensor. Here the expectation is over the random
choices of which edges to put in G and which to leave out, with everything else
(such as the community structure π) fixed.

(b) Sketch an algorithm for recovering the community structure (i.e. π up to a
relabeling of which community is which) that works provided each community
makes up a large enough fraction of V , and provided that q is large enough
compared to p.

Problem 3

In this question, we will explore uniqueness conditions for sparse recovery, and con-
ditions under which `1-minimization provable works.

(a) Let Ax̂ = b and suppose A has n columns. Further suppose 2k ≤ m. Prove
that for every x̂ with ‖x̂‖0 ≤ k, x̂ is the uniquely sparsest solution to the linear
system if and only if the k-rank of the columns of A is at least 2k.

(b) Let U = kernel(A), and that U ⊂ Rn. Suppose that for each non-zero x ∈ U ,
and for any set S ⊂ [n] with |S| ≤ k that

‖xS‖1 <
1

2
‖x‖1

where xS denotes the restriction of x to the coordinates in S. Prove that

(P1) min ‖x‖1 s.t. Ax = b

recovers x = x̂, provided that Ax̂ = b and ‖x̂‖0 ≤ k.

(c) Bonus Can you construct a subspace U ⊂ Rn of dimension Ω(n) that has the
property that every non-zero x ∈ U has at least Ω(n) non-zero coordinates?
Hint: Use an expander.
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Problem 4 3

Problem 4

Let x̂ be a k-sparse vector in n-dimensions. Let ω be the nth root of unity. Suppose
we are given v` =

∑n
j=1 x̂jω

`j for ` = 0, 1, ..., 2k − 1. Let A,B ∈ Rk×k be defined so
that Ai,j = vi+j−2 and Bi,j = vi+j−1.

(a) Express both A and B in the form A = V DAV
T and B = V DBV

T where V is
a Vandermonde matrix, and DA, DB are diagonal.

(b) Prove that the solutions to the generalized eigenvalue problem Ax = λBx can
be used to recover the locations of the non-zeros in x̂.

(c) Given the locations of the non-zeros in x̂, and v0, v1, ..., vk−1, given an algorithm
to recover the values of the non-zero coefficients in x̂.

This is called the matrix pencil method. If you squint, it looks like Prony’s method
(Section 4.4) and has similar guarantees. Both are (somewhat) robust to noise if and
only if the Vandermonde matrix is well-conditioned, and when exactly that happens
is a longer story...
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