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Abstract

Given data drawn from a mixture of multivariate Gaussians, a basic problem is to accurately estimate the
mixture parameters. We provide a polynomial-time algorithm for this problem for the case of two Gaussians
in n dimensions (even if they overlap), with provably minimal assumptions on the Gaussians, and polynomial
data requirements. In statistical terms, our estimator converges at an inverse polynomial rate, and no such
estimator (even exponential time) was known for this problem (even in one dimension). Our algorithm
reduces the n-dimensional problem to the one-dimensional problem, where the method of moments is applied.
The main technical challenge is proving that noisy estimates of the first six moments of a univariate mixture
suffice to recover accurate estimates of the mixture parameters, as conjectured by Pearson (1894), and in fact
these estimates converge at an inverse polynomial rate.

As a corollary, we can efficiently perform near-optimal clustering: in the case where the overlap between
the Gaussians is small, one can accurately cluster the data, and when the Gaussians have partial overlap, one
can still accurately cluster those data points which are not in the overlap region. A second consequence is a
polynomial-time density estimation algorithm for arbitrary mixtures of two Gaussians, generalizing previous
work on axis-aligned Gaussians (Feldman et al, 2006).
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1 Introduction

The problem of estimating the parameters of a mixture of Gaussians has a rich history of study in statistics and
more recently, computer science. This natural problem has applications across a number of fields, including
agriculture, economics, medicine, and genetics [27, 21]. Consider a mixture of two different multinormal
distributions, each with mean µi ∈ Rn, covariance matrix Σi ∈ Rn×n, and weight wi > 0. With probability
w1 a sample is chosen from N (µ1,Σ1), and with probability w2 = 1−w1, a sample is chosen from N (µ2,Σ2).
The mixture is referred to as a Gaussian Mixture Model (GMM), and if the two multinormal densities are
F1, F2, then the GMM density is,

F = w1F1 + w2F2.

The problem of identifying the mixture is that of estimating ŵi, µ̂i, and Σ̂i from m independent random
samples drawn from the GMM.

In this paper, we prove that the parameters can be estimated at an inverse polynomial rate. In particular,
we give an algorithm and polynomial bounds on the number of samples and runtime required under provably
minimal assumptions, namely that w1, w2 and the statistical distance between the Gaussians are all bounded
away from 0 (Theorem 1). No such bounds were previously known, even in one dimension. Our algorithm
for accurately identifying the mixture parameters can also be leveraged to yield the first provably efficient
algorithms for near-optimal clustering and density estimation (Theorems 3 and 2). We start with a brief
history, then give our main results and approach.

1.1 Brief history

In one of the earliest GMM studies, Pearson [23] fit a mixture of two univariate Gaussians to data (see
Figure 1) using the method of moments. In particular, he computed empirical estimates of the first six (raw)
moments E[xi] ≈ 1

m

∑m
j=1 x

i
j , for i = 1, 2, . . . , 6 from sample points x1, . . . , xm ∈ R. Using on the first five

moments, he solved a cleverly constructed ninth-degree polynomial, by hand, from which he derived a set of
candidate mixture parameters. Finally, he heuristically chose the candidate among them whose sixth moment
most closely agreed with the empirical estimate.

Later work showed that “identifiability” is theoretically possible – every two different mixtures of different
Gaussians (up to a permutation on the Gaussian labels, of course) have different probability distributions
[26]. However, this work shed little light on convergence rates as they were based on differences in the density
tails which would require enormous amounts of data to distinguish. In particular, to ε-approximate the
Gaussian parameters in the sense that we will soon describe, previous work left open the possibility that it
might require an amount of data that grows exponentially in 1/ε.

The problem of clustering is that of partitioning the points into two sets, with the hope that the points
in each set are drawn from different Gaussians. Starting with Dasgupta [5], a line of computer scientists
designed polynomial time algorithms for identifying and clustering in high dimensions [2, 7, 30, 14, 1, 4, 31].
This work generally required the Gaussians to have little overlap (statistical distance near 1); in many such
cases they were able to find computationally efficient algorithms for GMMs of more than two Gaussians.
Recently, a polynomial-time density estimation1 algorithm was given for axis-aligned GMMs, without any
nonoverlap assumption [10].

There is a vast literature that we have not touched upon (see, e.g., [27, 21]), including the popular EM
and K-means algorithms.

1.2 Main results

In identifying a GMM F = w1F1 + w2F2, three limitations are immediately apparent:

1. Since permuting the two Gaussians does not change the resulting density, one cannot distinguish per-
muted mixtures. Hence, at best one hopes to estimate the parameter set, {(w1, µ1,Σ1), (w2, µ2,Σ2)}.

2. If wi = 0, then one cannot hope to estimate Fi because no samples will be drawn from it. And, in
general, at least Ω(1/min{w1, w2}) samples will be required for estimation.

3. If F1 = F2 (i.e., µ1 = µ2 and Σ1 = Σ2) then it is impossible to estimate wi. If the statistical distance
between the two Gaussians is ∆, then at least Ω(1/∆) samples will be required.

1Density estimation refers to the easier problem of approximating the overall density without necessarily well-approximating
individual Gaussians, and axis-aligned Gaussians are those whose principal axes are parallel to the coordinate axes.
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Figure 1: A fit of a mixture of two univariate
Gaussians to the Pearson’s data on Naples crabs
[23]. The hypothesis was that the data was in
fact a mixture of two different species of crabs.
Although the empirical data histogram is single-
peaked, the two constituent Gaussian parameters
may be estimated. This density plot was created
by Peter Macdonald using R [20].

Hence, the number of examples required will depend on the smallest of w1, w2, and the statistical distance
between F1 and F2 denoted by D(F1, F2) (see Section 2 for a precise definition).

Our goal is, given m independently drawn samples from a GMM F , to construct an estimate GMM
F̂ = ŵ1F̂1 + ŵ2F̂2. We will say that F̂ is accurate to within ε if |ŵi − wi| ≤ ε and D(Fi, F̂i) ≤ ε for each
i = 1, 2. This latter condition is affine invariant and more appealing than bounds on the difference between
the estimated and true parameters. In fact for arbitrary Gaussians, estimating parameters, such as the mean
µ, to any given additive error ε is impossible without further assumptions since scaling the data by a factor
of s will scale the error ‖µ − µ̂‖ by s. Second, we would like the algorithm to succeed in this goal using
polynomially many samples. Lastly, we would like the algorithm itself to be computationally efficient, i.e., a
polynomial-time algorithm.

Our main theorem is the following.

Theorem 1. For any n ≥ 1, ε, δ > 0, and any n-dimensional GMM F = w1F1 +w2F2, using m independent
samples from F , Algorithm 5 outputs GMM F̂ = ŵ1F̂1 + ŵ2F̂2 such that, with probability ≥ 1 − δ (over the
samples and randomization of the algorithm), there is a permutation π : {1, 2} → {1, 2} such that,

D(F̂i, Fπ(i)) ≤ ε and |ŵi − wπ(i)| ≤ ε, for each i = 1, 2.

And the runtime (in the Real RAM model) and number of samples drawn by Algorithm 1 is at most
poly(n, 1

ε ,
1
δ ,

1
w1
, 1
w2
, 1
D(F1,F2) )

Our primary goal is to understand the statistical and computational complexities of this basic problem,
and the distinction between polynomial and exponential is a natural step. While the order of the polynomial
in our analysis is quite large, to the best of our knowledge these are the first bounds on the convergence rate
for the problem in this general context. In some cases, we have favored clarity of presentation over optimality
of bounds. The challenge of achieving optimal bounds (optimal rate) is very interesting, and will most likely
require further insights and understanding.

As mentioned, our approximation bounds are in terms of the statistical distance between the estimated
and true Gaussians. To demonstrate the utility of this type of bound, we note the following corollaries. For
both problems, no assumptions are necessary on the underlying mixture. The first problem is simply that of
approximating the density F itself.

Corollary 2. For any n ≥ 1, ε, δ > 0 and any n-dimensional GMM F = w1F1 +w2F2, using m independent
samples from F , there is an algorithm that outputs a GMM F̂ = ŵ1F̂1 + ŵ2F̂2 such that with probability
≥ 1− δ (over the samples and randomization of the algorithm)

D(F, F̂ ) ≤ ε

And the runtime (in the Real RAM model) and number of samples drawn from the oracle is at most
poly(n, 1

ε ,
1
δ ).

The second problem is that of clustering the m data points. In particular, suppose that during the data
generation process, for each point x ∈ Rn, a secret label yi ∈ {1, 2} (called ground truth) is generated based
upon which Gaussian was used for sampling. A clustering algorithm takes as input m points and outputs a
classifier C : Rn → {1, 2}. The error of a classifier is minimum, over all label permutations, of the probability
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Figure 2: Mixtures of two multinormal distri-
butions, with varying amounts of overlap. In (c),
the Gaussians are nearly separable by a hyper-
plane, and the algorithm of Brubaker and Vem-
pala [4] can cluster and learn them. In (d), the
Gaussians are nearly separable but not by any
hyperplane. Our algorithm will learn the param-
eters in all cases, and hence be able to cluster
when possible.

that the the label of the classifier agrees with ground truth. Of course, achieving a low error is impossible
in general. For example, suppose the Gaussians have equal weight and statistical distance 1/2. Then, even
armed with the correct mixture parameters, one could not identify with average accuracy greater than 3/4,
the label of a random point. However, it is not difficult to show that, given the correct mixture parameters,
the optimal clustering algorithm (minimizing expected errors) simply clusters points based on the Gaussian
with larger posterior probability. We are able to achieve near optimal clustering without a priori knowledge
of the distribution parameters. See Appendix C for precise details.

Corollary 3. For any n ≥ 1, ε, δ > 0 and any n-dimensional GMM F = w1F1 +w2F2, using m independent
samples from F , there is an algorithm that outputs a classifier CF̂ such that with probability ≥ 1 − δ (over
the samples and randomization of the algorithm), the error of CF̂ is at most ε larger than the error of any
classifier, C ′ : Rn → {1, 2}. And the runtime (in the Real RAM model) and number of samples drawn from
the oracle is at most poly(n, 1

ε ,
1
δ )

In a recent extension of Principal Component Analysis, Brubaker and Vempala give a polynomial-time
clustering algorithm that will succeed, with high probability, whenever the Gaussians are nearly separated
by any hyperplane. (See 2c for an example.) This algorithm inspired the present work, and our algorithm
follows theirs in that both are invariant to affine transformations of the data. Figure 2d illustrates a mixture
where clustering is possible although the two Gaussians are not separable by a hyperplane.

1.3 Outline of Algorithm and Analysis

The problem of identifying Gaussians in high dimensions is surprising in that much of the difficulty seems
to be present in the one-dimensional problem. We first briefly explain our reduction from n to 1 dimensions,
based upon the fact that the projection of a multivariate GMM is a univariate GMM to which we apply a
one-dimensional algorithm.

When the data is projected down to a line, each (mean, variance) pair recovered in this direction gives
direct information about the corresponding (mean, variance) pair in n dimensions. Lemma 13 states that
for a suitably chosen random direction2, two different Gaussians (statistical distance bounded away from
0) will project down to two reasonably distinct one-dimensional Gaussians, with high probability. For a
single Gaussian, the projected mean and variance in O(n2) different directions is enough to approximate
the Gaussian. The remaining challenge is identifying which Gaussian in one projection corresponds to which
Gaussian in another projection; one must correctly match up the many pairs of Gaussians yielded by each one-
dimensional problem. In practice, the mixing weights may be somewhat different, i.e., |w1 − w2| is bounded
from 0. Then matching would be quite easy because each one-dimensional problem should have one Gaussian
with weight close to the true w1. In the general case, however, we must do something more sophisticated.
The solution we employ is simple but certainly not the most efficient – we project to O(n2) directions which
are all very close to each other, so that with high probability the means and variances change very little and
are easy to match up. The idea of using random projection for this problem has been used in a variety of
theoretical and practical contexts. Independently, Belkin and Sinha considered using random projections to
one dimension for the problem of learning a mixture of multiple identical spherical Gaussians [3].

2The random direction is not uniform but is chosen in accordance with shape (covariance matrix) of the data, making the
algorithm affine invariant.
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We now proceed to describe how to identify univariate GMMs. Like many one-dimensional problems, it
is algorithmically easy as simple brute-force algorithms (like that of [10]) will work. The surprising difficulty
is proving that an algorithm approximates the constituent Gaussians well. What if there were two mixtures
where all four Gaussians were at least ε-different in statistical distance, yet the resulting mixtures were
exponentially close in statistical distance? Ruling out this possibility is in fact the bulk of our work.

We appeal to the old method of moments. In particular, the key fact is that Gaussians are polynomially
robustly identifiable–that is, if two mixtures have parameter sets differing by ε then one of the low-order
moments will differ. Formally,

∣∣Ex∼F [xi]− Ex∼F ′ [xi]
∣∣ will be at least poly(ε) for some i ≤ 6.

Polynomially Robust Identifiability (Informal version of Theorem 4): Consider two
one-dimensional mixtures of two Gaussians, F, F ′, where F ’s mean is 0 and variance is 1. If the
parameter sets differ by ε, then at least one of the first six raw moments of F will differ from that
of F ′ by poly(ε).

Using this theorem, one algorithm which then works is the following. First normalize the data so that it has
mean 0 and variance 1 (called isotropic position). Then perform a brute-force search over mixture parameters,
choosing the one whose moments best fit the empirical moments. We now describe the proof of Theorem
4. Two ideas are relating the statistical distance of two mixtures to the discrepancy in the moments, and
deconvolving.

1.3.1 Relating statistical distance and discrepancy in moments

If two (bounded or almost bounded) distributions are statistically close, then there low-order moments must
be close. However, the converse is not true in general. For example, consider the uniform distribution over
[0, 1] and the distribution whose density is proportional to | sin(Nx)| over x ∈ [0, 1], for very large N . Crucial
to this example is that the difference in the two densities “go up and down” many times, which cannot happen
for mixtures of two univariate Gaussians. Lemma 9 shows that if two univariate GMMs have non-negligible
statistical distance, then they must have a nonnegligible difference in one of the first six moments. Hence
statistical distance and moment discrepancy are closely related.

We very briefly describe the proof of Lemma 9. Denote the difference in the two probability density
functions by f(x); by assumption,

∫
|f(x)|dx is nonnegligible. We first argue that f(x) has at most six

zero-crossings (using a general fact about the effect of convolution by a Gaussian on the number of zeros of
a function), from which it follows that there is a degree-six polynomial whose sign always matches that of
f(x). Call this polynomial p. Intuitively, E[p(x)] should be different under the two distributions; namely∫
R
p(x)f(x)dx should be bounded from 0 (provided we address the issues of bounding the coefficients of p(x),

and making sure that the mass of f(x) is not too concentrated near any zero). This finally implies E[xi]
differs under the two distributions, for some i ≤ 6.

1.3.2 Deconvolving Gaussians

The convolution of two Gaussians is a Gaussian, just as the sum of two normal random variables is normal.
Hence, we can also consider the deconvolution of the mixture by a Gaussian of variance, say, α – this is a
simple operation which subtracts α from the variance of the two Gaussians. In fact, it affects all the moments
in a simple, predictable fashion, and we show that a discrepancy in the low-order moments of two mixtures
is roughly preserved by convolution. (See Lemma 6).

If we choose α close to the smallest variance of the four Gaussians that comprise the two mixtures, then
one of the mixtures has a Gaussian component that is very skinny – nearly a Dirac Delta function. When
one of the four Gaussians is very skinny, it is intuitively clear that unless this skinny Gaussian is closely
matched by a similar skinny Gaussian in the other mixture, the two will have large statistical distance. A
more elaborate case analysis shows that the two GMMs have nonnegligible statistical distance when one of
the Gaussians is skinny. (See Lemma 5).

The proof of Theorem 4 then follows: (1) after deconvolution, at least one of the four Gaussians is very
skinny; (2) combining this with the fact that the parameters of the two GMMs are slightly different, the
deconvolved GMMs have nonnegligible statistical distance; (Lemma 5) (3) nonnegligible statistical distance
implies nonnegligible moment discrepancy (Lemma 9); and (4) if there is a discrepancy in one the low-order
moments of two GMMs, then after convolution by a Gaussian, there will still be a discrepancy in some
low-order moment (Lemma 6).
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2 Notation and Preliminaries

Let N (µ,Σ) denote the multinormal distribution with mean µ ∈ Rn and n × n covariance matrix Σ, with
density

N (µ,Σ, x) = (2π)−n/2|Σ|−1/2e−
1
2 (x−µ)TΣ−1(x−µ).

For probability distribution F , define the mean µ(F ) = Ex∼F [x] and covariance matrix var(F ) =
Ex∼F [xxT ]−µ(F )(µ(F ))T . A distribution is isotropic or in isotropic position if the mean and the covariance
matrix is the identity matrix.

For distributions F and G with densities f and g, define the `1 distance ‖F −G‖1 =
∫
Rn |f(x)− g(x)|dx.

Define the statistical distance or variation distance by D(F,G) = 1
2‖F − G‖1 = F (S) − G(S), where S =

{x|f(x) ≥ g(x)}.
For vector v ∈ Rn, Let Pv be the projection onto v, i.e., Pv(w) = v · w, for vector w ∈ Rn. For

probability distribution F over Rn, Pv(F ) denotes the marginal probability distribution over R, i.e., the
distribution of x · v, where x is drawn from F . For Gaussian G, we have that µ(Pv(G)) = v · µ(G) and
var(Pv(G)) = vTvar(G)v.

Let Sn−1 = {x ∈ Rn : ‖x‖ = 1}. We write Pru∈Sn−1 over u chosen uniformly at random from the unit
sphere. For probability distribution F , we define an sample oracle SA(F ) to be an oracle that, each time
invoked, returns an independent sample drawn according to F . Note that given SA(F ) and a vector v ∈ Rn,
we can efficiently simulate SA(Pv(F )) by invoking SA(F ) to get sample x, and then returning v · x.

For probability distribution F over R, define Mi(F ) = Ex∼F [xi] to be the ith (raw) moment.

3 The One-Dimensional (Univariate) Problem

In this section, we will show that one can efficiently learn one-dimensional mixtures of two Gaussians. To
be most useful in the reduction from n to 1 dimensions, Theorem 10 will be stated in terms of achieving
estimated parameters that are off by a small additive error (and will assume the true mixture is in isotropic
position).

The main technical hurdle in this result is showing the polynomially robust identifiability of these mixtures:
that is, given two such mixtures with parameter sets that differ by ε, showing that one of the first six raw
moments will differ by at least poly(ε). Given this result, it will be relatively easy to show that by performing
essentially a brute-force search over a sufficiently fine (but still polynomial-sized) mesh of the set of possible
parameters, one will be able to efficiently learn the 1-d mixture.

Throughout this section, we will make use of a variety of inequalities and concentration bounds for
Gaussians which are included in Appendix K.

3.1 Polynomially Robust Identifiability

Throughout this section, we will consider two mixtures of one-dimensional Gaussians:

F (x) =
2∑
i=1

wiN (µi, σ2
i , x), and F ′(x) =

2∑
i=1

w′iN (µ′i, σ
′2
i , x).

Definition 1. We will call the pair F, F ′ ε-standard if σ2
i , σ
′2
i ≤ 1 and if ε satisfies:

1. ≤ wi, w′i ∈ [ε, 1]
2. |µi|, |µ′i| ≤ 1

ε

3. |µ1 − µ2|+ |σ2
1 − σ2

2 | ≥ ε and |µ′1 − µ′2|+ |σ′21 − σ′22 | ≥ ε
4. ε ≤ minπ

∑
i

(
|wi − w′π(i)|+ |µi − µ

′
π(i)|+ |σ

2
i − σ′2π(i)|

)
,

where the minimization is taken over all permutations π of {1, 2}.

Theorem 4. There is a constant c > 0 such that, for any ε-standard F, F ′ and any ε < c,

max
i≤6
|Mi(F )−Mi(F ′)| ≥ ε67
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In order to prove this theorem, we rely on ’deconvolving’ by a Gaussian with an appropriately chosen
variance (this corresponds to running the heat equation in reverse for a suitable amount of time). We define
the operation of deconvolving by a Gaussian of variance α as Fα; applying this operator to a mixture of
Gaussians has a particularly simple effect: subtract α from the variance of each Gaussian in the mixture
(assuming that each constituent Gaussian has variance at least α).

Definition 2. Let F (x) =
∑n
i=1 wiN (µi, σ2

i , x) be the probability density function of a mixture of Gaussian
distributions, and for any α < mini σ2

i , define

Fα(F )(x) =
n∑
i=1

wiN (µi, σ2
i − α, x).

Consider any two mixtures of Gaussians that are ε-standard. Ideally, we would like to prove that these
two mixtures have statistical distance at least poly(ε). We settle instead for proving that there is some α for
which the resulting mixtures (after applying the operation Fα) have large statistical distance. Intuitively,
this deconvolution operation allows us to isolate Gaussians in each mixture and then we can reason about
the statistical distance between the two mixtures locally, without worrying about the other Gaussian in the
mixture. We now show that we can always choose an α so as to yield a large `1 distance between Fα(F ) and
Fα(F ′).

Lemma 5. Suppose F, F ′ are ε-standard. There is some α such that

D(Fα(F ),Fα(F ′)) ≥ Ω(ε4),

and such an α can be chosen so that the smallest variance of any constituent Gaussian in Fα(F ) and Fα(F ′)
is at least ε12.

The proof of the above lemma will be by an analysis of several cases. Assume without loss of generality
that the first constituent Gaussian of mixture F has the minimal variance among all Gaussians in F and
F ′. Consider the difference between the two density functions. We lower-bound the `1 norm of this function
on R. The first case to consider is when both Gaussians in F ′ either have variance significantly larger than
σ2

1 , or means far from µ1. In this case, we can pick α so as to show that there is Ω(ε4) `1 norm in a small
interval around µ1 in Fα(F ) − Fα(F ′). In the second case, if one Gaussians in F ′ has parameters that very
closely match σ1, µ1, then if the weights do not match very closely, we can use a similar approach as to the
previous case. If the weights do match, then we choose an α very, very close to σ2

1 , to essentially make one of
the Gaussians in each mixture nearly vanish, except on some tiny interval. We conclude that the parameters
σ2, µ2 must not be closely matched by parameters of F ′, and demonstrate an Ω(ε4) `1 norm coming from
the mismatch in the second Gaussian components in Fα(F ) and Fα(F ′). The details are laborious, and are
deferred to the Appendix D.

Unfortunately, the transformation Fα does not preserve the statistical distance between two distributions.
However, we show that it, at least roughly, preserves the disparity in low-order moments of the distributions.
Specifically, we show that if there is an i ≤ 6 such that the ith raw moment of Fα(F ) is at least poly(ε)
different than the ith raw moment of Fα(F ′) then there is a j ≤ 6 such that the jth raw moment of F is at
least poly(ε) different than the jth raw moment of F ′.

Lemma 6. Suppose that each constituent Gaussian in F or F ′ has variances in the interval [α, 1]. Then

k∑
i=1

|Mi (Fα(F ))−Mi (Fα(F ′)) | ≤ (k + 1)!
bk/2c!

k∑
i=1

|Mi(F )−Mi(F ′)|,

The key observation here is that the moments of F and Fα(F ) are related by a simple linear transformation;
and this can also be viewed as a recurrence relation for Hermite polynomials. We defer a proof to Appendix
D.

To complete the proof of the theorem, we must show that the poly(ε) statistical distance between Fα(F )
and Fα(F ′) gives rise to a poly(ε) disparity in one of the first six raw moments of the distributions. To
accomplish this, we show that there are at most 6 zero-crossings of the difference in densities, f = Fα(F )−
Fα(F ′), using properties of the evolution of the heat equation, and construct a degree six polynomial p(x)
that always has the same sign as f(x), and when integrated against f(x) is at least poly(ε). We construct
this polynomial so that the coefficients are bounded, and this implies that there is some raw moment i (at
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most the degree of the polynomial) for which the difference between the ith raw moment of Fα(F ) and of
Fα(F ′) is large.

Our first step is to show that Fα(D)(x)−Fα(D′)(x) has a constant number of zeros.

Proposition 7. Given f(x) =
∑k
i=1 aiN (µi, σ2

i , x), the linear combination of k one-dimensional Gaussian
probability density functions, such that σ2

i 6= σ2
j for i 6= j, assuming that not all the ai’s are zero, the number

of solutions to f(x) = 0 is at most 2(k − 1). Furthermore, this bound is tight.

Using only the facts that quotients of Gaussians are Gaussian and that the number of zeros of a function
is at most one more than the number of zeros of its derivative, one can prove that linear combinations k
Gaussians have at most 2k zeros. However, since the number of zeros dictates the number of moments that we
must match in our univariate estimation problem, we will use more powerful machinery to prove the tighter
bound of 2(k − 1) zeros. Our proof of Proposition 7 will hinge upon the following Theorem, due to Hummel
and Gidas [13], and we defer the details to Appendix D.

Theorem 8 (Thm 2.1 in [13]). Given f(x) : R→ R, that is analytic and has n zeros, then for any σ2 > 0,
the function g(x) = f(x) ◦ N (0, σ2, x) has at most n zeros.

We are now equipped to complete our proof of Theorem 4. Let f(x) = Fα(F )(x) − Fα(F ′)(x), where α
is chosen according to Lemma 5 so that

∫
x
|f(x)|dx = Ω(ε4).

Lemma 9. There is some i ≤ 6 such that∣∣∣ ∫
x

xif(x)dx
∣∣∣ = |Mi(Fα(F ))−Mi(Fα(F ′))| = Ω(ε66)

A sketch of the proof of the above lemma is as follows: Let x1, x2, . . . , xk be the zeros of f(x) which have
|xi| ≤ 2

ε . Using Proposition 7, the number of such zeros is at most the total number of zeros of f(x) which
is bounded by 6. (Although Proposition 7 only applies to linear combinations of Gaussians in which each
Gaussian has a distinct variance, we can always perturb the Gaussians of f(x) by negligibly small amounts
so as to be able to apply the proposition.) We prove that there is some i ≤ 6 for which |Mi(Fα(F )) −
Mi(Fα(F ′))| = Ω(poly(ε)) by constructing a degree 6 polynomial (with bounded coefficients) p(x) for which
|
∫
x
f(x)p(x)dx| = Ω(poly(ε)) Then if the coefficients of p(x) can be bounded by some polynomial in 1

ε we can
conclude that there is some i ≤ 6 for which the ith moment of F is different from the ith moment of F̂ by at
least Ω(poly(ε)). So we choose p(x) = ±

∏k
i=1(x−xi) and we choose the sign of p(x) so that p(x) has the same

sign as f(x) on the interval I = [−2
ε ,

2
ε ]. Lemma 5 together with tail bounds imply that

∫
I
|f(x)|dx ≥ Ω(ε4).

To finish the proof, we show that
∫
I
p(x)f(x)dx is large, and that

∫
R\I p(x)f(x)dx is negligibly small. The

full proof is in Appendix D.

3.2 The Univariate Algorithm

We now leverage the robust identifiability shown in Theorem 4 to prove that we can efficiently learn the
parameters of 1-d GMM via a brute-force search over a set of candidate parameter sets. Roughly, the
algorithm will take a polynomial number of samples, compute the first 6 sample moments, and compare
those with the first 6 moments of each of the candidate parameter sets. The algorithm then returns the
parameter set whose moments most closely match the sample moments. Theorem 4 guarantees that if the
first 6 sample moments closely match those of the chosen parameter set, then the parameter set must be
nearly accurate. To conclude the proof, we argue that a polynomial-sized set of candidate parameters suffices
to guarantee that at least one set of parameters will yield moments sufficiently close to the sample moments.
We state the theorem below, and defer the details of the algorithm, and the proof of its correctness to
Appendix D.1.

Theorem 10. Suppose we are given access to independent samples from any isotropic mixture F = w1F1 +
w2F2, where w1 + w2 = 1, wi ≥ ε, and each Fi is a univariate Gaussian with mean µi and variance σ2

i ,
satisfying |µ1−µ2|+ |σ2

1−σ2
2 | ≥ ε,. Then Algorithm 3 will use poly( 1

ε ,
1
δ ) samples and with probability at least

1− δ will output mixture parameters ŵ1, ŵ2, µ̂1, µ̂2, σ̂1
2, σ̂2

2, so that there is a permutation π : {1, 2} → {1, 2}
and

|wi − ŵπ(i)| ≤ ε, |µi − µ̂π(i)| ≤ ε, |σ2
i − σ̂2

π(i)| ≤ ε for each i = 1, 2

7



The brute-force search in the univariate algorithm is rather inefficient – we presented it for clarity of
intuition, and ease of description and proof. Alternatively, we could have proceeded along the lines of
Pearson’s work [23]: using the first five sample moments, one generates a ninth degree polynomial whose
solutions yield a small set of candidate parameter sets (which, one can argue, includes one set whose sixth
moment closely matches the sixth sample moment). After picking the parameters whose sixth moment most
closely matches the sample moment, we can use Theorem 4 to prove that the parameters have the desired
accuracy.

4 The n-dimensional parameter-learning algorithm

In this section, via a series of projections and applications of the univariate parameter learning algorithm
of the previous section, we show how to efficiently learn the mixture parameters of an n-dimensional GMM.
Let ε > 0 be our target error accuracy. Let δ > 0 be our target failure probability. For this section, we will
suppose further that w1, w2 ≥ ε and D(F1, F2) ≥ ε.

We first analyze our algorithm in the case where the GMM F is in isotropic position. This means
that Ex∼F [x] = 0 and, Ex∼F [xxT ] = In. The above condition on the co-variance matrix is equivalent to
∀u ∈ Sn−1 Ex∼F [(u ·x)2] = 1. In Appendix L we explain the general case which involves first using a number
of samples to put the distribution in (approximately) isotropic position.

Given a mixture in isotropic position, we first argue that we can get ε-close additive approximations
to the weights, means and variances of the Gaussians. This does not suffice to upper-bound D(Fi, F̂i)
in the case where Fi has small variance along one dimension. For example, consider a univariate GMM
F = w1N (0, 2 − ε′) + w2N (0, ε′), where ε′ � ε is arbitrarily small (even possibly 0 – the Gaussian is a
point mass). Note that an additive error of ε, say σ2 = ε′ + ε leads to a variation distance near w2. In high
dimensions, this problem can occur in any direction in which one Gaussian has small variance. In this case,
however, D(F̂1, F̂2) must be very close to 1, i.e., the Gaussians nearly do not overlap.3 The solution is to use
the additive approximation to the Gaussians to then cluster the data. From clustered data, the problem is
simply one of estimating a single Gaussian from random samples, which is easy to do in polynomial time.

4.1 Additive approximation

The algorithm for this case is given in Figures 3 and 4.

Lemma 11. For any n ≥ 1, ε, δ > 0, for any any isotropic GMM mixture F = w1F1 + w2F2, where
w1 + w2 = 1, wi ≥ ε, and each Fi is a Gaussian in Rn with D(F1, F2) ≥ ε, with probability ≥ 1 − δ, (over
the samples and randomization of the algorithm), Algorithm 1 will output GMM F̂ = ŵ1F̂1 + ŵ2F̂2 such that
there exists a permutation π : [2]→ [2] with,

‖µ̂i − µπ(i)‖ ≤ ε, ‖Σ̂i − Σπ(i)‖F ≤ ε, and |ŵi − wπ(i)| ≤ ε, for each i = 1, 2.

And the runtime and number of samples drawn by Algorithm 1 is at most poly(n, 1
ε ,

1
δ ).

The rest of this section gives an outline of the proof of this lemma. We first state two geometric lemmas
(Lemmas 12 and 13) that are independent of the algorithm.

Lemma 12. For any µ1, µ2 ∈ Rn, δ > 0, over uniformly random unit vectors u,

Pru∈Sn−1

[
|u · µ1 − u · µ2| ≤ δ‖µ1 − µ2‖/

√
n
]
≤ δ.

Proof. If µ1 = µ2, the lemma is trivial. Otherwise, let v = (µ1 − µ2)/‖µ1 − µ2‖. The lemma is equivalent to
claiming that

Pr
u∈Sn−1

[|u · v| ≤ t] ≤ t
√
n.

This is a standard fact about random unit vectors (see, e.g., Lemma 1 of [6]).

We next prove that, given a random unit vector r, with high probability either the projected means onto r
or the projected variances onto r of F1, F2 must be different by at least poly(ε, 1

n ). A qualitative argument as
to why this lemma is true is roughly: suppose that for most directions r, the projected means rTµ1 and rTµ2

3We are indebted to Santosh Vempala for suggesting this idea, namely, that if one of the Gaussians is very thin, then they must
be almost non-overlapping and therefore clustering may be applied.
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Algorithm 1. High-dimensional isotropic additive approximation
Input: Integers n ≥ 1, reals ε, δ > 0, sample oracle SA(F ).
Output: For i = 1, 2, (ŵi, µ̂i, Σ̂i) ∈ R×Rn ×Rn×n.

1. Let ε4 = εδ
100n

, and εi = ε10i+1, for i = 3, 2, 1.

2. Choose uniformly random orthonormal basis B = (b1, . . . , bn) ∈ Rn×n.

Let r =
Pn
i=1 bi/

√
n. Let rij = r + ε2bi + ε2bj for each i, j ∈ [n].

3. Run Univariate
`
ε1,

δ
3n2 ,SA(Pr(F ))

´
to get a univariate mixture of Gaussians

ŵ1G
0
1 + ŵ2G

0
2.

4. If min{ŵ1, ŵ2} < ε3 or max
˘
|µ(G0

1) − µ(G0
2)|, |var(G0

1) − var(G0
2)|
¯
< ε3, then halt and

output ‘‘FAIL.’’ ELSE:

5. If |µ(G0
1)− µ(G0

2)| > ε3, then:

• Permute G0
1, G

0
2 (and ŵ1, ŵ2) as necessary so that µ(G0

1) < µ(G0
2).

ELSE

• Permute G0
1, G

0
2 (and ŵ1, ŵ2) as necessary so var(G0

1) < var(G0
2).

6. For each i, j ∈ [n]:

• Run Univariate
`
ε1,

δ
3n2 ,SA(Prij (F ))

´
to get estimates of a univariate mixture

of two Gaussians, Gij1 , G
ij
2 . (* We ignore the weights returned by the

algorithm. *)

• If µ(G0
2)− µ(G0

1) > ε3, then:

– Permute Gij1 , G
ij
2 as necessary so that µ(Gij1 ) < µ(Gij2 ).

ELSE

– Permute Gij1 , G
ij
2 as necessary so that var(Gij1 ) < var(Gij2 ).

7. Output ŵ1, ŵ2, and for ` ∈ {1, 2}, and output

(µ̂`, Σ̂`) = Solve

„
n, ε2, B, µ(G0

`), var(G0
`),
D
µ(Gij` ), var(Gij` )

E
i,j∈[n]

«

Figure 3: A dimension reduction algorithm. Although ε4 is not used by the algorithm, it is helpful to define it for
the analysis. We choose such ridiculously small parameters to make it clear that our efforts are placed on simplicity of
presentation rather than tightness of parameters.

Algorithm 2. Solve
Input: n ≥ 1, ε2 > 0, basis B = (b1, . . . , bn) ∈ Rn×n, means and variances m0, v0, and
mij , vij ∈ R for each i, j ∈ [n].
Output: µ̂ ∈ Rn, Σ̂ ∈ Rn×n.

1. Let vi = 1
n

Pn
j=1 v

ij and v = 1
n2

Pn
i=1 v

ij.

2. For each i ≤ j ∈ [n], let

Vij =

√
n(v − vi − vj)

(2ε2 +
√
n)2ε22

− vii + vjj

(2ε2 +
√
n)4ε2

− v0

2ε2
√
n

+
vij

2ε22
.

3. For each i > j ∈ [n], let Vij = Vji. (* So V ∈ Rn×n *)

4. Output

µ̂ =

nX
i=1

mii −m0

2ε2
bi, Σ̂ = B

„
arg min
M�0

‖M − V ‖F
«
BT .

Figure 4: Solving the equations. In the last step, we project onto the set of positive semidefinite matrices, which can be
done in polynomial time using semidefinite programming.
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are close, and the projected variances rTΣ1r and rTΣ2r are close, then the statistical distance D(F1, F2)
must be small too. So conversely, given D(F1, F2) ≥ ε and w1, w2 ≥ ε (and the distribution is in isotropic
position), for most directions r either the projected means or the projected variances must be different.

Lemma 13. Let ε, δ > 0, t ∈ (0, ε2). Suppose that ‖µ1 − µ2‖ ≤ t. Then, for uniformly random r,

Prr∈Sn−1

[
min{rTΣ1r, r

TΣ2r} > 1− εδ2(ε3 − t2)
12n2

]
≤ δ.

This lemma holds under the assumptions that we have already made about the mixture in this section
(namely isotropy and lower bounds on the weights). While the above lemma is quite intuitive, the proof
involves a probabilistic analysis based on the eigenvalues of the two covariance matrices, and is deferred to
Appendix E.

Next, suppose that rTµ1 − rTµ2 ≥ poly(ε, 1
n ). Continuity arguments imply that if we choose a direction

ri,j sufficiently close to r, then (ri,j)Tµ1 − (ri,j)Tµ2 will not change much from rTµ1 − rTµ2. So given a
univariate algorithm that computes estimates for the mixture parameters in direction r and in direction ri,j ,
we can determine a pairing of these parameters so that we now have estimates for the mean of F1 projected
on r and estimates for the mean of F1 projected on ri,j , and similarly we have estimates for the projected
variances (on r and ri,j) of F1. From sufficiently many of these estimates in different directions ri,j , we can
hope to recover the mean and covariance matrix of F1, and similarly for F2. An analogous statement will
also hold in the case that for direction r, the projected variances are different. In which case choosing a
direction ri,j sufficiently close to r will result in not much change in the projected variances, and we can
similarly use these continuity arguments (and a univariate algorithm) to again recover many estimates in
different directions.

Lemma 14. For r, rij of Algorithm 1, (a) With probability ≥ 1− δ over the random unit vector r, |r · (µ1−
µ2)| > 2ε3 or |rT (Σ1−Σ2)r| > 2ε3, (b) |(rij−r)·(µ1−µ2)| ≤ ε3/3, and (c) |(rij)T (Σ1−Σ2)rij−rT (Σ1−Σ2)r| ≤
ε3/3.

The proof, based on Lemma 13, is given in Appendix F. We then argue that Solve outputs the desired
parameters. Given estimates of the projected mean and projected variance of F1 in n2 directions ri,j , each such
estimate yields a linear constraint on the mean and covariance matrix. Provided that each estimate is close to
the correct projected mean and projected variance, we can recover an accurate estimate of the parameters of
F1, and similarly for F2. Thus, using the algorithm for estimating mixture parameters for univariate GMMs
F = w1F1+w2F2, we can get a polynomial time algorithm for estimating mixture parameters in n-dimensions
for isotropic Gaussian mixtures. Further details are deferred to Appendices G and H.

Lemma 15. Let ε2, ε1 > 0. Suppose |m0 − µ · r|,|mij − µ · rij |, |v0 − rTΣr|,|vij − (rij)TΣrij | are all at most
ε1. Then Solve outputs µ̂ ∈ Rn and Σ̂ ∈ Rn×n such that ‖µ̂ − µ‖ < ε, and ‖Σ̂ − Σ‖F ≤ ε. Furthermore,
Σ̂ � 0 and Σ̂ is symmetric.

4.2 Statistical approximation

In this section, we argue that we can guarantee, with high probability, approximations to the Gaussians that
are close in terms of variation distance. An additive bound on error yields bounded variation distance, only
for Gaussians that are relatively “round,” in the sense that their covariance matrix has a smallest eigenvalue
is bounded away from 0. However, if, for isotropic F , one of the Gaussians has a very small eigenvalue, then
this means that they are practically nonoverlapping, i.e., D(F1, F2) is close to 1. In this case, our estimates
from Algorithm 1 are good enough, with high probability, to cluster a polynomial amount of data into two
clusters based on whether it came from Gaussian F1 or F2. After that, we can easily estimate the parameters
of the two Gaussians.

Lemma 16. There exists a polynomial p such that, for any n ≥ 1, ε, δ > 0, for any any isotropic GMM
mixture F = w1F1 +w2F2, where w1 +w2 = 1, wi ≥ ε, and each Fi is a Gaussian in Rn with D(F1, F2) ≥ ε,
with probability ≥ 1 − δ, (over its own randomness and the samples), Algorithm 4 will output GMM F̂ =
ŵ1F̂1 + ŵ2F̂2 such that there exists a permutation π : [2]→ [2] with,

D(F̂i, Fπ(i)) ≤ ε, and |ŵi − wπ(i)| ≤ ε, for each i = 1, 2.

The runtime and number of samples drawn by Algorithm 4 is at most poly(n, 1
ε ,

1
δ ).
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The statistical approximation algorithm (Algorithm 4), and proof of the above lemma are given in Ap-
pendix I.
Acknowledgments. We are grateful to Santosh Vempala, Charlie Brubaker, Yuval Peres, Daniel Ste-
fankovic, and Paul Valiant for helpful discussions.
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A Conclusion

In conclusion, we have given polynomial rate bounds for the problem of estimating mixtures of two Gaussians
in n dimensions, under provably minimal assumptions. No such efficient algorithms or rate bounds were known
even for the problem in one dimension. The notion of accuracy we use is affine invariant, and our guarantees
imply accurate density estimation and clustering as well. Questions: What is the optimal rate of convergence?
How can one extend this to mixtures of more than two Gaussians?

B Density estimation

The problem of PAC learning a distribution (or density estimation) was introduced in [16]: Given parameters
ε, δ > 0, and given oracle access to a distribution F (in n dimensions), the goal is to learn a distribution
F̂ so that with probability at least 1 − δ, D(F, F̂ ) ≤ ε in time polynomial in 1

ε , n, and 1
δ . Here we apply

our algorithm for learning mixtures of two arbitrary Gaussians to the problem of polynomial-time density
estimation (aka PAC learning distributions) for arbitrary mixtures of two Gaussians without any assumptions.
We show that given oracle access to a distribution F = w1F1 + w2F2 for Fi = N (µi,Σi), we can efficiently
construct a mixture of two Gaussians F̂ = ŵ1F̂1 + ŵ2F̂2 for which D(F, F̂ ) ≤ ε. Previous work on this
problem [10] required that the Gaussians be axis aligned.

The algorithm for density estimation is given in Appendix M, along with a proof of correctness.

C Clustering

It makes sense that knowing the mixture parameters should imply that one can perform optimal cluster-
ing, and approximating the parameters should imply approximately optimal clustering. In this section, we
formalize this intuition. For GMM F , it will be convenient to consider the labeled distribution `(F ) over
(x, y) ∈ Rn × {1, 2} in which a label y ∈ {1, 2} is drawn with probability wi of i, and then a sample x is
chosen from Fi.

A clustering algorithm takes as input m examples x1, x2, . . . , xm ∈ Rn and outputs a classifier C : Rn →
{1, 2} for future data (a similar analysis could be done in terms of partitioning data x1, . . . , xm). The error
of a classifier C is defined to be,

err(C) = min
π

Pr
(x,y)∼`(F )

[C(x) 6= y],

where the minimum is over permutations π : {1, 2} → {1, 2}. In other words, it is the fraction of points that
must be relabeled so that they are partitioned correctly (actual label is irrelevant).

For any GMM F , define CF (x1, . . . , xm) to be the classifier that outputs whichever Gaussian has a greater
posterior: C(x) = 1 if w1F1(x) ≥ w2F2(x), and C(x) = 2 otherwise. It is not difficult to see that this classifier
has minimum error.

Corollary 3 implies that given a polynomial number of points, one can cluster future samples with near-
optimal expected error. But using standard reductions, this also implies that we can learn and accurately
cluster our training set as well. Namely, one could run the clustering algorithm on, say,

√
m of the samples,
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and then use it to partition the data. The algorithm for near-optimal clustering is given in Appendix N,
along with a proof for correctness.

D Proofs from Section 3

Proof of Lemma 6. Let X be a random variable with distribution Fα
(
N (µ, σ2)

)
, and Y a random variable

with distribution N (µ, σ2). From definition 2 and the fact that the sum of two independent Gaussian random
variables is also a Gaussian random variable, it follows that Mi(Y ) = Mi(X + Z), where Z is a random
variable, independent from X with distribution N (0, α). From the independence of X and Z we have that

Mi(Y ) =
i∑

j=0

(
i

j

)
Mi−j(X)Mj(Z).

Since each moment Mi(N (µ, σ2)) is some polynomial of µ, σ2, which we shall denote by mi(µ, σ2), and the
above equality holds for some interval of parameters, the above equation relating the moments of Y to those
of X and Z is simply a polynomial identity:

mi(µ, σ2) =
i∑

j=0

(
i

j

)
mi−j(µ, σ2 − β)mj(0, β).

Given this polynomial identity, if we set β = −α, we can interpret this identity as

Mi(X) =
i∑

j=0

(
i

j

)
Mi−j(Y ) (cjMj(Z)) ,

where cj = ±1 according to whether j is a multiple of 4 or not.
Let d =

∑k
i=1 |Mi (Fα(D))−Mi (Fα(D′)) |, and chose j ≤ k such that |Mj (Fα(D))−Mj (Fα(D′)) | ≥ d/k.

From above, and by linearity of expectation, we get

d

k
≤ |Mj (Fα(D))−Mj (Fα(D′)) |

=
j∑
i=0

(
j

i

)
(Mj−i(D)−Mj−i(D′)) ciMi(N (0, α))

≤

(
j∑
i=0

(
j

i

)
|Mj−i(D)−Mj−i(D′)|

)
max

i∈{0,1,...,k−1}
|Mi(N (0, α))|.

In the above we have used the fact that Mk(N (0, α))) can only appear in the above sum along with |M0(D)−
M0(D′)| = 0. Finally, using the facts that

(
j
i

)
< 2k, and expressions for the raw moments of N (0, α) given by

Equation (17), the above sum is at most (k−1)!
bk/2c!

∑k−1
i=0 |Mj−i(D)−Mj−i(D′)|, which completes the proof.

The following claim will be useful in the proof of Lemma 5.

Claim 17. Let f(x∗) ≥M for x∗ ∈ (0, r) and suppose that f(x) ≥ 0 on (0, r) and f(0) = f(r) = 0. Suppose
also that f ′(x) ≤ m everywhere. Then

∫ r
0
f(x)dx ≥ M2

m

Proof. Note that for any p ≥ 0, f(x∗ − p) ≥M − pm, otherwise if f(x∗ − p) < M − pm then there must be
a point x ∈ (x∗ − p, x∗) for which f ′(x) > M−(M−pm)

x∗−(x∗−p) = m which yields a contradiction.
So ∫ r

0

f(x)dx ≥
∫ x∗

x∗−Mm
f(x)dx ≥

∫ x∗

x∗−Mm
M −m(x∗ − x)dx

∫ x∗

x∗−Mm
M −m(x∗ − x)dx =

M2

m
−m(

M

m
)x∗ +

m

2
[(x∗)2 − (x∗)2 + 2

M

m
x∗ − M2

m
]
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∫ x∗

x∗−Mm
M −m(x∗ − x)dx =

M2

m
−Mx∗ +

m

2
[2
M

m
x∗ − M2

m
] =

M2

2m

And an identical argument on the interval (x∗, r) yields the inequality.

Additionally, we use the following fact:

Fact 18.

‖N (µ, σ2)−N (µ, σ2(1 + δ))‖1 ≤ 10δ
‖N (µ, σ2)−N (µ+ σδ, σ2)‖1 ≤ 10δ

Proof. Let F1 = N (µ, σ2(1 + δ)) and let F2 = N (µ, σ2). Then

KL(F1‖F2) = ln
σ2

σ1
+

(µ1 − µ2)2 + σ2
1 − σ2

2

2σ2
2

= −1
2

ln(1 + δ) +
δσ2

2σ2

≤ −δ
2

+
δ2

4
+
δ

2
=
δ2

4

where in the last line we have used the Taylor series expansion for ln 1 +x = x− x2

2 + x3

3 . . . and the fact that
ln 1 + x ≥ x− x2

2 . Then because ‖F1 − F2‖ ≤
√

2KL(F1‖F2), we get that

‖N (µ, σ2)−N (µ, σ2(1 + δ))‖1 ≤ 10δ

Next, consider F1 = N (µ, σ2) and F2 = N (µ+ σδ, σ2). In this case

KL(F1‖F2) = ln
σ2

σ1
+

(µ1 − µ2)2 + σ2
1 − σ2

2

2σ2
2

= ln
σ

σ
+

(µ+ σσ − µ)2 + σ2 − σ2

2σ2

=
δ2

2

And again because ‖F1 − F2‖ ≤
√

2KL(F1‖F2), we get that

‖N (µ, σ2)−N (µ+ σδ, σ2)‖1 ≤ 10δ

Proof of lemma 5: The restrictions that F, F ′ be ε-standard are symmetric w.r.t. F and F ′ so we will assume
without loss of generality that the first constituent Gaussian of mixture F has the minimal variance among
all Gaussians in F and F ′. That is σ2

1 ≤ σ2
i , σ
′2
i . We employ a case analysis:

Case 1: For both i = 1 and i = 2, either σ′2i − σ2
1 ≥ 16ε2a, or |µ′i − µ1| ≥ 6εa

We choose α = σ2
1−ε2a+2, which may be negative, and apply Fα to F and F ′. Note that Fα transforms the

first Gaussian component of F into a Gaussian of variance ε2a+2, and thus Fα(F )(µ1) ≥ w1
1

εa+1
√

2π
≥ 1

εa
√

2π
.

Next we bound Fα(F ′)(µ1), and we do this by considering the contribution of each component of Fα(F ′)
to Fα(F ′)(µ1). Each component either has large variance, or the mean is far from µ1. Consider the case in
which a component has large variance - i.e. σ2 ≥ 16ε2a + ε2a+2 > 16ε2a. Then for all x,

N (0, σ2, x) ≤ 1
σ
√

2π
≤ 1

4εa
√

2π

Consider the case in which a component has a mean that is far from µ1. Then from Corollary 24 for |x| ≥ 6εa:

max
σ2>0

N (0, σ2, x) ≤ 1
6εa
√

2π

14



So this implies that the contribution of each component of Fα(F ′) to Fα(F ′)(µ1) is at most wi 1
4εa
√

2π
. So

we get

Fα(F )(µ1)−Fα(F ′)(µ1) ≥ 1
εa
√

2π

[
1− 1

4

]
≥ 3

4εa
√

2π

We note that |dN (0,σ2,x)
dx | ≤ 1/σ2, and so the derivative of Fα(F )(x) − Fα(F ′)(x) is at most 4

ε2a+2 in
magnitude since there are four Gaussians each with variance at least ε2a+2. We can apply Claim 17 and this
implies that

D(Fα(F ),Fα(F ′)) = Ω(ε2)

Case 2: Both σ′21 − σ2
1 < 16ε2a and |µ′1 − µ1| < 6εa

We choose α = σ2
1 − ε2b. We have that either σ2

2 − σ2
1 ≥ ε

2 , or |µ1 − µ2| ≥ ε
2 from the definition of

ε-standard. We are interested in the maximum value of Fσ2
1−ε2b(F ) over the interval I = [µ1− 6εa, µ1 + 6εa].

Let F1 = N (µ1, σ
2
1) and let F2 = N (µ2, σ

2
2). We know that

max
x∈I
Fσ2

1−ε2b(F ) ≥ max
x∈I

w1Fσ2
1−ε2b(F1)

Fσ2
1−ε2b(F1) is a Gaussian of variance exactly ε2b so this implies that the value of w1Fσ2

1−ε2b(F ) at µ1 is
exactly w1

εb
√

2π
. So

max
x∈I
Fσ2

1−ε2b(F ) ≥ w1

εb
√

2π
We are interested an upper bound for Fσ2

1−ε2b(F ) on the interval I. We achieve such a bound by bounding

max
x∈I

w2Fσ2
1−ε2b(F2)

Recall that either σ2
2 − σ2

1 ≥ ε
2 , or |µ1 − µ2| ≥ ε

2 . So consider the case in which the variance of F2 is larger
than the variance of F1 by at least ε

2 . Because the variance of Fσ2
1−ε2b(F1) is ε2b > 0, this implies that the

variance of Fσ2
1−ε2b(F2) is at least ε

2 . In this case, the value of Fσ2
1−ε2b(F2) anywhere is at most

1√
2π(σ2

2 − α)
≤ 1√

2π ε2
≤ 2
ε

Consider the case in which the mean µ2 is at least ε
2 far from µ1. So any point x in the interval I is at least

ε
2 − 6εa away from µ2. So for ε sufficiently small, any such point is at least ε

4 away from µ2. In this case we
can apply Corollary 24 to get

max
|x|≥ ε4 ,σ2

w2N (0, σ2, x) ≤ 4
ε
√

2π
≤ 2
ε

So this implies that in either case (provided that σ2
2 − σ2

1 ≥ ε
2 , or |µ1 − µ2| ≥ ε

2 ):

max
x∈I

w2Fσ2
1−ε2b(F2)(x) ≤ 2

ε

So we get
w1

εb
√

2π
≤ max
|x|≤6εa

Fσ2
1−ε2b(F )(µ1 + x) ≤ w1

εb
√

2π
+

2
ε

Again, from the definition of ε-standard either |σ′21 − σ′22 | ≥ ε
2 or |µ′1−µ′2| ≥ ε

2 . We note that |σ′22 − σ2
1 | ≥

|σ′22 − σ′21 | − |σ′21 − σ2
1 | ≥ |σ′22 − σ′21 | − 16ε2a. Also |µ′2 − µ1| ≥ |µ′2 − µ′1| − |µ1 − µ′1| ≥ |µ′2 − µ′1| − 6εa. And

so for sufficiently small ε either |σ′22 − σ2
1 | ≥ ε

4 or |µ1 − µ′2| ≥ ε
4 . Then an almost identical argument as that

used above to bound maxx∈I w2Fσ2
1−ε2b(F2)(x) by 2

ε can be used to bound maxx∈I w′2Fσ2
1−ε2b(F

′
2)(x) by 4

ε .
We now need only to bound maxx∈I w′1Fσ2

1−ε2b(F
′
1)(x). And

max
x∈I
Fσ2

1−ε2b(F
′
1)(x) ≤ max

x
Fσ2

1−ε2b(F
′
1)(x) ≤ Fσ2

1−ε2b(F
′
1)(µ′1)

Because σ2
1 is the smallest variance among all Gaussians components of F, F ′, we can conclude that σ′21 ≥ ε2b

and we can use this to get an upper bound:

max
x∈I
Fσ2

1−ε2b(F
′
1)(x) ≤ Fσ2

1−ε2b(F
′
1)(µ′1) =

1√
2π(σ′21 − α)

≤ 1
εb
√

2π
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We note that µ′1 ∈ I because I = [µ1−6εa, µ1 + 6εa] and |µ′1−µ1| < 6εa in this case. So we conclude that

max
x∈I
Fσ2

1−ε2b(F
′
1)(x) ≥ Fσ2

1−ε2b(F
′
1)(µ′1) =

1√
2π(σ′21 − α)

≥ 1√
2π(ε2b + 16ε2a)

Consider the term
√
ε2b + 16ε2a = εb

√
1 + 16ε2a−2b. So for a > b, we can bound εb

√
1 + 16ε2a−2b ≤ εb(1 +

16ε2a−2b). We have already assumed that a > b, so we can bound ε2a−b ≤ εa. We can combine these bounds
to get

w′1
(εb + 16εb+a)

√
2π
≤ max
|x|≤6εa

Fσ2
1−ε2b(F

′)(µ1 + x) ≤
(

w′1
εb
√

2π

)
+

4
ε

These inequalities yield a bound on maxx |Fσ2
1−ε2b(F )(x)−Fσ2

1−ε2b(F
′)(x)| in terms of |w1−w′1: Suppose

w1 > w′1, then

max
x
|Fσ2

1−ε2b(F )(x)−Fσ2
1−ε2b(F

′)(x)| ≥ w1

εb
√

2π
− w′1
εb
√

2π
− 4
ε

≥ |w1 − w′1|
εb
√

2π
− 4
ε

And if w′1 > w1 then

max
x
|Fσ2

1−ε2b(F )(x)−Fσ2
1−ε2b(F

′)(x)| ≥ w′1
(εb + 16εb+a)

√
2π
− w1

εb
√

2π
− 2
ε

≥ w′1
εb
√

2π
(1− 32εa)− w1

εb
√

2π
− 2
ε

≥ |w1 − w′1|
εb
√

2π
− 32εa−b − 2

ε

So this implies that

max
x
|Fσ2

1−ε2b(F )(x)−Fσ2
1−ε2b(F

′)(x)| ≥ |w1 − w′1|
εb
√

2π
− 32εa−b − 4

ε

Case 2a: |w1 − w′1| ≥ εc

We have already assumed that a > b, and let us also assume that b > c+ 1 in which case
Then for sufficiently small ε

max
x
|Fσ2

1−ε2b(F )(x)−Fσ2
1−ε2b(F

′)(x)| ≥ Ω(ε−b+c)

We can bound the magnitude of the derivative of Fσ2
1−ε2b(F )(x) − Fσ2

1−ε2b(F
′)(x) by 4

ε2b
. Then we can

use Claim 17 to get that D(Fσ2
1−ε2b(F ),Fσ2

1−ε2b(F
′)) ≥ Ω(ε2c)

Case 2b: |w1 − w′1| < εc

Suppose σ′21 − σ2
1 < 16ε2a and |µ′1 − µ1| < 6εa and |w1 − w′1| < εc,

Let

T1 = |w1 − w′1|
T2 = D(Fσ2

1−1/2(N (µ2, σ
2
2)),Fσ2

1−1/2(N (µ′2, σ
2
2)))

T3 = D(Fσ2
1−1/2(N (µ′2, σ

2
2)),Fσ2

1−1/2(N (µ′2, σ
′2
2 )))

And using Fact 18 and because the variance of each Gaussian after applying the operator Fσ2
1−1/2 is at

least 1
2

T2 ≤ O(εa), T3 ≤ O(ε2a)

Using the triangle inequality (and because we have already assumed a > b and b > c so a > c)

D(Fσ2
1−1/2(F ),Fσ2

1−1/2(F ′)) ≥ D(Fσ2
1−1/2(N (µ2, σ

2
2)),Fσ2

1−1/2(N (µ′2, σ
′2
2 )))− T1 − T2 − T3

≥ D(Fσ2
1−1/2(N (µ2, σ

2
2)),Fσ2

1−1/2(N (µ′2, σ
′2
2 ))−O(εa)
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For this case, we have that σ′21 − σ2
1 < 16ε2a and |µ′1 − µ1| < 6εa, and because F, F ′ are ε-standard we must

have that |w′2 −w2|+ |σ′22 − σ2
2 |+ |µ′2 − µ2| ≥ ε− |w′1 −w1| − |σ′21 − σ2

1 | − |µ′1 − µ1|. So for sufficiently small
ε, |w′2 − w2|+ |σ′22 − σ2

2 |+ |µ′2 − µ2| ≥ ε
2 . We can apply Lemma 38 and this yields

D(Fσ2
1−1/2(N (µ2, σ

2
2)),Fσ2

1−1/2(N (µ′2, σ
′2
2 )) ≥ Ω(ε3)

If we additionally require a > 3 then

D(Fσ2
1−1/2(F ),Fσ2

1−1/2(F ′)) ≥ Ω(ε3)−O(εa) = Ω(ε3)

So if we set a = 5, b = 4, c = 2 these parameters satisfy all the restrictions we placed on a, b and c during this
case analysis: i.e. a > b, b > c + 1 and a > 3. These parameters yield D(Fα(F ),Fα(F ′)) ≥ Ω(ε4) for some
α ≤ σ2

1 − Ω(ε2a+2). So all variances after applying the operator Fα are sill at least ε12. �

Proof of Proposition 7: First note that, assuming the number of zeros of any mixture of k Gaussians is finite,
the maximum number of zeros, for any fixed k must occur in some distribution for which all the zeros have
multiplicity 1. If this is not the case, then, assuming without loss of generality that there are at least as many
zeros tangent to the axis on the positive half-plane, if one replaces a1 by a1 − ε, for any sufficiently small ε,
in the resulting mixture all zeros of odd multiplicity will remain and will have multiplicity 1, and each zeros
of even multiplicity that had positive concavity will become 2 zeros of multiplicity 1, and thus the number of
zeros will not have decreased.

We proceed by induction on the number of Gaussians in the linear combination. The base case, where
f(x) = aN (µ, σ2) clearly holds. The intuition behind the induction step is that we will add the Gaussians in
order of decreasing variance; each new Gaussian will be added as something very close to a Delta function, so
as to increase the number of zeros by at most 2, adding only simple zeros. We then convolve by a Gaussian
with width roughly σ2

i − σ2
i+1 (the gap in variances of the Gaussian just added, and the one to be added at

the next step).
Formalizing the induction step, assume that the proposition holds for linear combinations of k − 1 Gaus-

sians. Consider f(x) =
∑k
i=1 akN (µi, σ2

i , x), and assume that σ2
i+1 ≥ σ2

i , for all i. Chose ε > 0 such
that for either any a′1 ∈ [a1 − ε, a1] or a′1 ∈ [a1, a1 + ε], the mixture with a′1 replacing a1 has at least
as many zeros as f(x). (Such an ε > 0 exists by the argument in the first paragraph; for the reminder
of the proof we will assume a′1 ∈ [a1, a1 + ε], though identical arguments hold in the other case.) Let
gc(x) = a′1N (µ1, σ

2
1−σ2

k + c) +
∑k−1
i=2 aiN (µi, σ2

i −σ2
k + c, x). By our induction assumption, g0(x) has at most

2(k − 2) zeros, and we choose a′1 such that all of the zeros are simple zeros, and so that µk is not a zero of
g0(x).

Let δ > 0 be chosen such that δ < σ2
k, and so that for any δ′ > 0 such that δ′ ≤ δ, the function gδ′(x)

has the same number of zeros as g0(x) all of multiplicity one, and gδ′(x) does not have any zero within a
distance δ of µk. (Such a δ must exist by continuity of the evolution of the heat equation, which corresponds
to convolution by Gaussian.)

There exists constants a, a′, b, b′, s, s′ with a, a′ 6= 0, s, s′ > 0 and b < µk < b′, such that for x < b, either
g0(x) > 0, a > 0 and g0(x)

aN (0,s,x) > 1, or g0(x) < 0, a < 0 and g0(x)
aN (0,s,x) > 1. Correspondingly for x > b′,

the left tail is dominated in magnitude by some Gaussian of variance s′. Next, let m = maxx∈R |g′0(x)| and
w = maxx∈R |g0(x)|. Let ε1 = minx:g0(x)=0 |g′0(x)|. Pick ε2, with 0 < ε2 < δ such that for any x s.t. g0(x) = 0,
|g′0(x + y)| > ε1/2, for any y ∈ [−ε2, ε2]. Such an ε2 > 0 exists since g0(x) is analytic. Finally, consider the
set A ⊂ R defined by A = [b, b′] \

⋃
x:g0(x)=0[x− ε2, x + ε2]. Set ε3 = minx∈A |g0(x)|, which exists since A is

compact and g0(x) is analytic.
Consider the scaled Gaussian akN (µk, v, x), where v > 0 is chosen sufficiently small so as to satisfy the

following conditions:

• For all x < b, |aN (0, s, x)| > |akN (µk, v, x)|,
• For all x > b′, |a′N (0, s′, x)| > |akN (µk, v, x)|,

• For all x ∈ R \ A, |ak dN (µk,v,x)
dx | < ε1/2,.

• For all x ∈ A, at least one of the following holds:

– |akN (µk, v, x)| < ε3,

– |akN (µk, v, x)| > w,

– |ak dN (µk,v,x)
dx | > m.
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The above conditions guarantee that g0(x) + akN (µk, v′, x) will have at most two more zeros than g0(x),
for any v′ with 0 < v′ < v. Since gc is uniformly continuous as a function of c > 0, fixing v′′ < v, there exists
some d > 0 such that for any d′ ≤ d, gd′(x)+akN (µk, v′, x) will also have at most two more zeros than g0(x),
for any v′ ≤ v′′. Let α = min(d, v′′), and define h(x) = gα(x) + akN (µk, α, x). To complete the proof, note
that by Theorem 8 the function obtained by convolving h(x) by N (0, σ2

k − α, x) has at most 2(k − 1) zeros,
and, by assumption, at least as many zeros as f(x).

To see that this bound is tight, consider fk(x) = kN (0, k2, x) −
∑k−1
i=1 N (i, 1/25, x), which is easily seen

to have 2(k − 1) zeros. �

Proof of lemma 9: Let x1, x2, . . . , xk be the zeros of f(x) which have |xi| ≤ 2
ε . Using Proposition 7, the number

of such zeros is at most the total number of zeros of f(x) which is bounded by 6. (Although Proposition 7 only
applies to linear combinations of Gaussians in which each Gaussian has a distinct variance, we can always
perturb the Gaussians of f(x) by negligibly small amounts so as to be able to apply the proposition.) We
prove that there is some i ≤ 6 for which |Mi(Fα(F ))−Mi(Fα(F ′)| = Ω(poly(ε)) by constructing a degree 6
polynomial (with bounded coefficients) p(x) for which∣∣∣ ∫

x

f(x)p(x)dx
∣∣∣ = Ω(poly(ε))

Then if the coefficients of p(x) can be bounded by some polynomial in 1
ε we can conclude that there is some

i ≤ 6 for which the ith moment of F is different from the ith moment of F ′ by at least Ω(poly(ε)). So we
choose p(x) = ±

∏k
i=1(x− xi) and we choose the sign of p(x) so that p(x) has the same sign as f(x) on the

interval I = [−2
ε ,

2
ε ]. Lemma 5 implies that

∫∞
−∞ |f(x)|dx ≥ Ω(ε4).

The polynomial p(x) will only match the sign of f(x) on the interval I so we will need to get tail estimates
for the total contribution of the tails (−∞, −2

ε ) and [ 2
ε ,∞) to various integrals. We first prove that these

tails cannot contribute much to the total `1 norm of f(x). This is true because each Gaussian component
has mean at most 1

ε (because F, F ′ are ε-standard) and variance at most 1 so each Gaussian component only
has an exponentially small amount of mass distributed along the tails. Let T = (−∞, −2

ε ) ∪ [ 2
ε ,∞). We can

use Lemma 26 to bound the contribution of each Gaussian component to the integral
∫
T
|f(x)|dx and this

implies that ∫
I

|f(x)|dx ≥
∫
x

|f(x)|dx−
∫
T

|f(x)|dx ≥ Ω(ε4)−O(e−
1

4ε2 ) ≥ Ω(ε4)

Then there must be an interval J = (a, b) ⊂ I and for which
∫
J
|f(x)|dx ≥ 1

6Ω(ε4) and so that f(x) does not
change signs on J . The derivative of f(x) is bounded by 4

ε12 because, from Lemma 5, the smallest variance
of any of the transformed Gaussians is at least ε12. We extend the interval J = (a, b) to J ′ = (a′, b′) so that
f(a′) = f(b′) = 0. In particular, f(x) does not change sign on J ′. Note that J ′ need not be contained in the
interval I = [−2

ε ,
2
ε ] anymore. Let I ′ = J ′ ∪ I. Note that p(x) matches the sign of f(x) on I, and p(x) only

changes sign on the interval I so this implies that p(x) matches the sign of f(x) on the entire interval I ′.
We now need to lower bound

∫
x
f(x)p(x)dx. We write∫

x

f(x)p(x)dx ≥
∫
I′
f(x)p(x)dx−

∣∣∣ ∫
<−I′

f(x)p(x)dx
∣∣∣

≥
∫
J′
f(x)p(x)dx−

∣∣∣ ∫
<−I′

f(x)p(x)dx
∣∣∣

And the last line follows because p(x) matches the sign of f(x) on I ′, and J ′ ⊂ I ′. The polynomial p(x) can
be arbitrarily small for some values of x ∈ J ′. However, we consider the reduced interval J ′′ = [a′+γ, b′−γ].
There are no zeros of f(x) on this interval so there are also no zeros of p(x) on this interval. In fact the
closest zero of p(x) must be at least distance γ from this interval J ′′. So this implies that on the interval J ′′,
p(x) ≥ γ7. Note that

∫
J′
|f(x)|dx ≥

∫
J
|f(x)|dx = Ω(ε4) so∫

J′′
|f(x)|dx ≥

∫
J′
|f(x)|dx−

∫ a′+γ

x=a′
|f(x)|dx−

∫ b′

x=b′−γ
|f(x)|dx

≥ Ω(ε4)−
∫ a′+γ

x=a′
|f(x)|dx−

∫ b′

x=b′−γ
|f(x)|dx

≥ Ω(ε4)−O(
γ2

ε12
)
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This last line follows because f(x) is zero at a′, b′ and the derivative of f(x) is bounded by O( 1
ε12 ). So this

yields a bound on
∫ a′+γ
x=a′

|f(x)|dx of γ2

2 maxx |f ′(x)| . So if we choose γ = O(ε8) then we conclude∫
J′
f(x)p(x)dx ≥

∫
J′′
f(x)p(x)dx ≥

∫
J′′
|f(x)|γ7dx = Ω(ε4)γ7

And this yields ∫
x

f(x)p(x)dx ≥ Ω(ε60)−
∣∣∣ ∫
<−I′

f(x)p(x)dx
∣∣∣

The largest coefficient in p(x) is at most O( 1
ε6 ) and the degree of p(x) is at most 6 by construction. Note

that I ⊂ I ′ so we can use Lemma 29 to conclude∣∣∣ ∫
<−I′

f(x)p(x)dx
∣∣∣ ≤ ∑

i

wi

∫
<−I′

|p(x)|N (µi, σ2
i )(x)dx+

∑
i

w′i

∫
<−I′

|p(x)|N (µ′i, σ
′2
i )(x)dx

≤
∑
i

wi

∫
<−I
|p(x)|N (µi, σ2

i )(x)dx+
∑
i

w′i

∫
<−I
|p(x)|N (µ′i, σ

′2
i )(x)dx

≤ O(
1
ε12

)e−
1

2ε2

So for sufficiently small ε ∫
x

f(x)p(x)dx ≥ Ω(ε60)−O(
1
ε12

)e−
1

2ε2 = Ω(ε60)

And again because each coefficient in p(x) is at most O( 1
ε6 ) by construction, this implies that there is some

i ≤ 6 such that ∣∣∣ ∫
x

xif(x)dx
∣∣∣ = |Mi(Fα(F ))−Mi(Fα(F ′))| = Ω(ε66)

�

D.1 The Univariate Algorithm

The algorithm for reconstructing the parameters of the mixture is given in Figure 5. For simplicity, the algo-
rithm requires the mixture to be in standard (isotropic) position – meaning that the distribution’s mean (ex-
pectation) is 0 and its variance is 1. Achieving this is fairly straightforward by a linear transformation, which
we assume has already been done in our reduction from the n-dimensional problem to the one-dimensional
problem.

Proof of theorem 10: There are three parts to the proof. In the first part, we argue that the estimates of
the moments M̂i are all within an additive α of their true values, with high probability. In the second part,
we argue that there will be at least one candidate set of parameters (ŵ1, µ̂1, σ̂1, µ̂2, σ̂2) ∈ A × B4 in our
brute-force search whose moments (which we can compute analytically as a function of ŵ1, µ̂1, σ̂1, µ̂2, and
σ̂2) are all within α of the true values (and which satisfy |µ̂1 − µ̂2| + |σ̂2

1 − σ̂2
2 | > ε). This means that with

probability at least 1− δ, the discrepancy between the estimated moments and those of the output mixture
will be at most 2α, and that the discrepancy between the true moments and those of the output mixture will
be at most 3α. In the final part, we apply Theorem 4 to show that if the discrepancy in moments is less than
3α, then all parameters are accurate to within an additive ε.

The variance of the mixture can be written as w1σ
2
1 + w2σ

2
2 + w1w2(µ1 − µ2)2. Combining this with

w1µ1 + w2µ2 = 0, gives,

1 = w1σ
2
1 + w2σ

2
2 + w1w2

(
µ1 +

w1

w2
µ1

)2

(4)

= w1σ
2
1 + w2σ

2
2 + w1w2µ

2
1

(
1 +

w1

w2

)2

(5)

= w1σ
2
1 + w2σ

2
2 + w1w2µ

2
1

1
w2

2

. (6)

From this, we have that σi ≤
√

1/wi ≤ ε−1/2 and µ1 ≤
√
w2/w1 ≤ ε−1/2, and similarly, µ2 ≤ ε−1/2.
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Algorithm 3. Univariate estimation
Input: ε > 0, δ > 0, sample oracle SA(F ).
Output: For i = 1, 2, (ŵi, µ̂i, σ̂i) ∈ R3.

(* Note: this algorithm assumes that the mixture is isotropic position, i.e.,

E[x] = 0,E[x2] = 1. *)

1. Let M̂1 = 0, M̂2 = 1.

2. Let α = ε150, and choose m,N ∈ N such that m ≥ 5002

α2δ
, and N ≥ 1

αε3
.

3. For i = 3, 4, 5, 6:

• Let M̂i = 1
m

Pm
j=1 x

j
i, where x1, x2, . . . , xm are m samples drawn from SA(F ).

(* Brute-force search: *)

4. Let A =
˘

1
N
, 2
N
, . . . , N−1

N

¯
, B =

˘
−N,−N + 1

N
,−N + 2

N
, . . . , N

¯
.

5. For each (ŵ1, µ̂1, σ̂1, µ̂2, σ̂2) ∈ A× B4, let:

ŵ2 = 1− ŵ1 (1)

for i = 1, 2, . . . , 6 : M̃i = Mi

`
ŵ1N (µ̂1, σ̂

2
1) + ŵ2N (µ̂2, σ̂

2
2)
´

(2)

discŵ1,µ̂1,σ̂
2
1 ,ŵ2,µ̂2,σ̂

2
2

= max
i∈{1,2,...,6}

˛̨̨
M̂i − M̃i

˛̨̨
(3)

6. Output (ŵ1, µ̂1, σ̂
2
1 , ŵ2, µ̂2, σ̂

2
2) of minimal discŵ1,µ̂1,σ̂

2
1 ,ŵ2,µ̂2,σ̂

2
2
that satisfies

|µ̂1 − µ̂2|+ |σ̂2
1 − σ̂2

2 | > ε.

Figure 5: The one-dimensional estimation algorithm. For (2), evaluation of the moments of the distributions may be
done exactly using explicit formulas for the first six moments of a Gaussian, given in Appendix O.

Part 1. In this part, we argue that the empirical moment estimates are all accurate to within an additive α,
with probability ≥ 1− δ. By Lemma 30 of Appendix K.3, using the union bound, with probability ≥ 1− δ,
the 4 estimated moments will all be close to their expectations,∣∣∣∣∣ 1

m

m∑
i=1

xki − E[xk]

∣∣∣∣∣ ≤
√

2kk!
(δ/4)m

≤ 500√
δm

, for k = 3, 4, 5, 6.

This is at most α, for the specified m.
Part 2. By our choice of N , the true means will be in [−N,N ] and the true standard deviations will be within
[0, N ]. Hence, there will be some candidate mixture where the weights, means, and standard deviations, are
all within 1/N of the truth. For the rest of this part, we refer to these nearby parameters as ŵi, µ̂i, σ̂i.
Now, consider Mk(µ̂i, σ̂2

i ) −Mk(µi, σ2
i ). For k ≤ 6, this is a polynomial in µ̂, σ̂i of total degree at most 6.

Furthermore, as can be verified from Appendix O, the sum of the magnitudes of the coefficients (excluding
the constant term) is at most 76. Therefore, by changing the mean and standard deviation by at most 1/N ,
this can change each such moment by at most an additive,

76
((

ε−1/2 +N−1
)6

−
(
ε−1/2

)6
)

= 76ε−3

((
1 +N−1ε1/2

)6

− 1
)

≤ 76ε−3
(

7N−1ε1/2
)

= 76 · 7 · ε−2.5N−1.

Hence, if we used the true mixing weights with the candidate Gaussian, the moments of the mixture w1F̂1 +
w2F̂2 would be off of the true moments by at most 152 · 7 · ε−2.5N−1. Now, note that the moments of each
candidate Gaussian are at most 76ε−3. Therefore,using the candidate weights, which are off by at most 1/N
can cause an additional additive error of at most 152

ε3N . Hence, each of the moments will be off by at most
152

(
7

ε2.5N + 1
ε3N

)
≤ α from the truth.

Putting these two parts together, the algorithm will find some candidate Gaussian all of whose moments
are within 2α of the estimated moments. Hence, the output mixture will have all moments within 3α of
correct.
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It remains to show that if all of the first 6 moments are correct to within 3α ≤ 3ε150, then the mixture
parameters are within ε of correct. Now, we would like to apply Theorem 4. However, that theorem requires
that the variances be bounded by at most 1. Imagine shrinking F by rescaling it by a factor of

√
ε so that

the variances are at most 1. After such a transformation, we would have |µ1 − µ2| + |σ2
1 − σ2

2 | ≥ ε2, and
similarly for the scaled candidate parameters. Thus the transformed mixture is ε2-standard, so Theorem 4
implies that, if the mixture parameters of the (rescaled) candidate are not within ε2 of correct, then the
(rescaled) moments will be off by at least ε134. This implies that if the parameters of a candidate are not to
within ε1.5 < ε, then the moments would be off by a factor of at least ε134, using the fact that the rescaled
kth moment is simply the kth moment times a factor of exactly εk/2. �

E Anisotropy Preservation Lemma

Before we prove Lemma 13, we state a simple fact about averaging.

Lemma 19. Suppose w1(1 + α) + w2(1− β) ≤ 1, w1, w2 ≥ ε ≥ 0, w1 + w2 = 1 and α > 0. Then, β ≥ εα.

Proof. Clearly 1 ≥ ε(1 +α) + (1− ε)(1−β) since this weighting puts the greatest amount of weight on 1−α.
Rearranging terms gives β ≥ εα/(1− ε) ≥ εβ.

Proof of Lemma 13. We first argue that one of the covariance matrices is far from the identity matrix. In
particular, we will show that,

max{ ‖Σ−1
1 ‖2, ‖Σ

−1
2 ‖2 } ≥ 1 + a, a =

ε3 − t2

3n
. (7)

This means that it has an eigenvalue which is bounded from 1. The covariance matrix of F is the identity
matrix, but as a mixture it is also helpful to write it as,

In = w1Σ1 + w2Σ2 + w1w2(µ1 − µ2)(µ1 − µ2)T . (8)

By Lemma 22, the squared variation distance between F1 and F2 is,

ε2 ≤ (D(F1, F2))2 ≤ 1
2

n∑
i=1

(λi +
1
λi
− 2) + (µ1 − µ2)TΣ−1

1 (µ1 − µ2).

In the above, λ1, . . . , λn > 0 are the eigenvalues of Σ−1
1 Σ2. By (8), we also have,

‖µ1 − µ2‖2 = (µ1 − µ2)T In(µ1 − µ2) ≥ w1(µ1 − µ2)TΣ1(µ1 − µ2).

Together with w1 ≥ ε, and ‖µ1 − µ2‖ < t, this implies that (µ1 − µ2)TΣ1(µ1 − µ2) ≤ t2/ε. Hence,

ε2 ≤ 1
2

n∑
i=1

(λi +
1
λi
− 2) +

t2

ε
.

In particular, there must be some eigenvalue λj , such that,

λj + 1/λj − 2 ≥ 2
n

(
ε2 − t2

ε

)
=

6a
ε2
.

Let vj be a unit (eigen)vector corresponding to λj , i.e., vj = λjΣ−1
1 Σ2vj . Then we have that,

vTj Σ1vj = λjv
T
j Σ2vj(

vTj Σ1vj

vTj Σ2vj
− 1

)
+

(
vTj Σ2vj

vTj Σ1vj
− 1

)
= λj +

1
λj
− 2 ≥ 6a

ε2
.

Since one of the two terms in parentheses above must be at least 3a/ε2, WLOG, we can take vTj Σ1vj

vTj Σ2vj
≥

1 + 3a/ε2. This means that the numerator or denominator is bounded from 1. We can break this into two
cases.
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Case 1: vTj Σ2vj < 1/(1 + a). This establishes (7) immediately.
Case 2: vTj Σ1vj ≥ (1 + 3a/ε2)/(1 + a) = 1 + (3/ε2 − 1)a/(1 + a) ≥ 1 + (3/ε2 − 1)a/2. By Lemma 19,

since w1v
T
j Σ1vj + w2v

T
j Σ2vj ≤ 1, we have

vTj Σ2vj ≤ 1− ε

2

(
3
ε2
− 1
)
a ≤ 1− a.

This means that ‖Σ−1
2 ‖2 ≥ 1/(1− a) ≥ 1 + a.

(end of cases).

We have now established (7) by a case argument. WLOG, suppose ‖Σ−1
1 ‖2 ≥ 1 + a. As discussed in the

preliminaries, Pu(F1) = N (µ1 · u, uTΣ1u). We claim that this implies that,

Pr
u∈Sn−1

[
uTΣ1u ∈ [1− c, 1 + c]

]
< δ, c =

δ2a

4n
=
δ2(ε3 − t2)

12n2
. (9)

To see that this is sufficient for the lemma, note that if uTΣ1u ≤ 1− c, then we have the lemma directly. If
uTΣ1u > 1 + c, then again by Lemma 19, we have uTΣ2u < 1 − εc, which gives the lemma. It remains to
show (9).

We know there is some eigenvalue λ < 1/(1 + a) of Σ1. Let unit vector v ∈ Rn be a corresponding
eigenvector of Σ1. WLOG we may assume that the random u satisfies u · v ≥ 0, since it doesn’t matter
whether we project onto u or −u. Let u =

√
pv+

√
1− pv′, where v′ is another unit vector that is orthogonal

to v, i.e.,
√
p = u · v, and v′ = (u−√pv)/‖u−√pv‖. One would like to say that as long as p is bounded from

0, then uTΣ1u is bounded from 1, but this is not true because v′TΣ1v
′ contributes as well. More precisely,

uTΣ1u = (
√
pv +

√
1− pv′)TΣ1(

√
pv +

√
1− pv′) = pvTΣ1v + (1− p)v′TΣ1v

′ = pλ+ (1− p)v′TΣ1v
′.

(The cross-terms in the above product are 0.) Let v′TΣ1v
′ = γ. So uTΣ1u = pλ+ (1− p)γ, where p ∈ [0, 1].

It does not suffice to argue that p is bounded from 0, even though λ < 1/(1 + a), because we haven’t made
any assumption about γ. However, we only have to consider the case where γ > λ. In the other case, (9)
holds trivially.

Instead, imagine picking unit vector u uniformly at random by first picking v′ uniformly at random from
the set of unit vectors orthogonal to v, and then choosing p, conditional on v′. By symmetry, the distribution
on
√
p will be the same, regardless of the choice v′.

√
p will be distributed exactly like the absolute value of

the first coordinate of a random unit vector. Let P be the set of p ∈ [0, 1] that satisfy (9),

P =
{
p ∈ [0, 1] | pλ+ (1− p)γ ∈ [1− c, 1 + c]

}
.

Since P is convex, it is an interval. We claim that its width is at most 4c/a. Geometrically, the width of
P is the fraction that the interval [1 − c, 1 + c] covers of the interval [λ, γ]. This width is maximized when
γ = 1+c, in which case it is 2c/(γ−λ) ≤ 2c

1−1/(1+a) ≤ 4c/a. Finally, the distribution over p has a density that
is monotonically decreasing. Hence, the probability that p ∈ P is at most the probability that p ∈ [0, 4c/a].
From Lemma 12, we know

Pr
u∈Rn:‖u‖=1

[√
p = |u · v| ∈ [0, 2

√
c/d]

]
≤ 2
√
cn/a = δ.

Now that we have established (9), we are done.

F Continuity Lemma

Proof of lemma 14:
First note that the formula for the covariance of a mixture is:

var(F ) = w1Σ1 + w2Σ2 + w1w2(µ1 − µ2)(µ1 − µ2)T . (10)

Let t = 2ε3
√
n/δ.

Case 1: ‖µ1−µ2‖ > t. In this case, by Lemma 12, with probability ≥ 1−δ, |r ·(µ1−µ2)| ≥ δt/
√
n = 2ε3,

which is what we wanted.
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Case 2: ‖µ1 − µ2‖ < t. By Lemma 13, with probability ≥ 1− δ, for some `,

rTΣ`r ≤ 1− εδ2(ε3 − t2)
12n2

≤ 1− εδ2(ε3/2)
12n2

≤ 1− ε4 (11)

WLOG, we can take ` = 1. Now, if |r · (µ1 − µ2)| ≤ 2ε3, then,

w1r
TΣ1r + w2r

TΣ2r + 2ε3 ≥ 1

If rTΣ1r ≤ 1− ε4 < 1− 4ε3, then rTΣ2r ≥ 1− 2ε3. This gives, rT (Σ2 − Σ1)r ≥ ε4 − 2ε3 ≥ 2ε3.
(end of cases) Hence we have established part (a) of the lemma. For (b), first notice that ‖µ1 − µ2‖ ≤√

2/ε. The reason is because, by (10), the variance of F projected in the direction v = (µ1 − µ2)/‖µ1 − µ2‖
is 1 and is at least w1w2(µ1 − µ2)2 ≥ 1

2ε(µ1 − µ2)2. Furthermore, since the origin lies on the segment joining
the two, we have ‖µ`‖ ≤

√
2/ε, for each ` ∈ [2]. Further,

|rµ` − rijµ`| ≤ ‖ε2bi + ε2bj‖ · |µ`| ≤
4ε2√
ε
≤ ε3/3.

This gives (b).
For (c), also by (10), we have that ‖Σ`‖2 ≤ 1/ε. Similarly,

|(rij)TΣ`rij − rTΣ`r| = |ε22(bi + bj)TΣ`(bi + bj) + 2ε2(bi + bj)TΣ`r|

≤ (4ε22 + 2
√

2ε2)‖Σ`‖2

≤ 10ε2
ε
≤ ε3/3

�

G Recovery Lemma

Proof of lemma 15: Let idealizations m̄0 = µ · r, m̄ij = µ · rij , v̄0 = rTΣr, v̄ij = (rij)TΣrij , v̄i = 1
n

∑
j v̄

ij ,
and v̄ = 1

n2

∑
i,j v̄

ij .
Since m̄0 = r · µ and m̄ii = (r + 2ε2bi)µ, we get that,

bi · µ =
m̄ii − m̄

2ε2
.

Hence, since we have assumed that each variable is within ε1 of its idealization,

‖µ− µ̂‖2 =
n∑
i=1

(bi · µ− bi · µ̂)2 =
n∑
i=1

(
bi · µ−

mii −m
2ε2

)2

≤ n
(

2ε1
2ε2

)2

.

This gives a bound of ‖µ − µ̂‖ ≤ ε1
√
n/ε2. The variance calculation is also straightforward, but a bit more

involved. For vectors u, v ∈ Rn, let u � v = uTΣv. Note that � is symmetric since Σ is. So, v̄0 = r � r, and

v̄ij = (r + ε2(bi + bj)) � (r + ε2(bi + bj))

= r � r + ε22(bi � bi + bj � bj + 2bi � bj) + 2ε2(bi + bj) � r

v̄i = r � r + ε22

(
bi � bi +

1
n

∑
`

b` � b` +
2√
n
bi � r

)
+ 2ε2bi � r +

2ε2
n

∑
`

b` � r

=
(

1 +
2ε2√
n

)
r � r + ε22

(
bi � bi +

1
n

∑
`

b` � b` +
2√
n
bi � r

)
+ 2ε2bi � r

v̄ =
(

1 +
4ε2√
n

+
2ε22
n

)
r � r +

2ε22
n

∑
`

b` � b`

v̄ − v̄i − v̄j =
(

2ε22
n
− 1
)
r � r − ε22(bi � bi + bj � bj)−

(
2ε22√
n

+ 2ε2

)
(bi + bj) � r

v̄ii + v̄jj

2
= r � r + 2ε22(bi � bi + bj � bj) + 2ε2r � (bi + bj).
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A straightforward calculation (by hand or computer) verifies that,

bi � bj =
√
n(v̄ − v̄i − v̄j)

(2ε2 +
√
n)2ε22

− v̄ii + v̄jj

(2ε2 +
√
n)4ε2

− v̄0

2ε2
√
n

+
v̄ij

2ε22
.

Now, since each variable is within ε1 of its idealization, the matrix V of the algorithm satisfies,

|Vij − bi � bj | ≤ ε1
(

3
√
n

(2ε2 +
√
n)2ε22

+
2

(2ε2 +
√
n)4ε2

+
1

2ε2
√
n

+
1

2ε22

)
≤ 3ε1

ε22
.

Also note that bi �bj = Qij where Q = BTΣB. Hence, as matrices, the difference obeys ‖V −Q‖F ≤ 3nε1/ε22.
Now, let R = arg minM�0 ‖M−V ‖. Note that, since R is the closest positive semidefinite matrix in Frobenius
norm, and Q is positive semidefinite, we have ‖V −R‖F ≤ ‖V −Q‖F ≤ 3nε1/ε22. By the triangle inequality,
‖Q − R‖F ≤ 6nε1/ε22. Since a change of basis does not alter the Frobenius norm, ‖B(Q − R)BT ‖F =
‖Σ − Σ̂‖F ≤ 6nε1/ε22. Finally, observe that R is symmetric since V is symmetric by construction, and the
set of positive semidefinite matrices is symmetric. A change of basis does not alter a matrices symmetry, so
Σ = BRBT is also symmetric. �

H Additive Approximation Lemma

Proof of lemma 11: We show a failure probability of ≤ 2δn2. Since our goal is to prove polynomial bounds,
this suffices.

By Lemma 14(a), with probability ≥ 1− δ, we will have |r · (µ1 − µ2)| > 2ε3 or |rT (Σ1 − Σ2)r| > 2ε3.
Case 1: |r · (µ1 − µ2)| > 2ε3. WLOG, we can assume r · µ(F1) < r · µ(F2). By Lemma , with

probability ≥ 1− δ we will correctly estimate all the means of the one-dimensional mixture to within ε1 using
m1 = poly(1/ε1) samples. Hence, the parameters of G0

` will be within ε1 of Pr(F`). Then |µ(G0
1)− µ(G0

2)| >
2ε3− 2ε1 > ε3 and the algorithm will correctly permute so that µ(G0

2) > µ(G0
1). By Lemma 14(b), the means

in all the projected directions will satisfy rij · (µ2−µ1) > ε3−2ε3/3 > ε3/3 for all i, j ∈ [n]. Again by Lemma
, with probability 1 − δn2, we will correctly estimate all the means of the projection onto each rij within
ε1 using n2m1 = poly(1/ε1) samples.4 Since ε3/3 > 2ε1, we will correctly surmise the Gaussian of greater
(projected) mean. Hence, with probability ≥ 1 − 2δn2, all Gaussians will be correctly “matched up.” By
Lemma 15, this will result in a reconstructed mean with |µ̂− µ| < ε.

Case 2: |rT (Σ1 − Σ2)r| > 2ε3. It is still possible that |µ(G0
1)− µ(G0

2)| > ε3. If this is the case, then the
argument in the previous paragraph, starting with the word “then” still applies. If |µ(G0

1) − µ(G0
2)| < ε3,

then the completely analogous argument to the previous paragraph, for variances rather than means, still
applies.�

I Statistical Approximation Lemma

In this section, we state and prove the correctness of an algorithm that takes a polynomial number of samples
from a GMM, and efficiently outputs, with high probability, approximations to the two constituent Gaussians
that are close in terms of variation distance.
Proof of lemma 16: Consider two cases.

Case 1: The smallest eigenvalues of Σ1,Σ2 are both greater than 2ε2. Now, with probability ≥ 1− δ/3,
for F̂i output by Algorithm 1, we have ‖µ̂i − µi‖ ≤ ε1, ‖Σ̂i − Σi‖F ≤ ε1, and |ŵi − wi| ≤ ε1, for each i. Let
λ1 ≥ λ2 ≥ . . . ≥ λn ≥ 0 be the eigenvalues of Σ−1

i Σ̂i. By Lemma 22:

D2(F̂i, Fi) ≤
n∑
j=1

(λj +
1
λj
− 2) + (µi − µ̂i)TΣ−1

i (µi − µ̂i). (12)

By assumption, we know ‖Σ−1
i ‖2 ≤ 1

2ε2
. Hence,

(µi − µ̂i)TΣ−1
i (µi − µ̂i) ≤ ‖µi − µ̂i‖2 · ‖Σ−1

i ‖2 ≤
ε2

1

2ε2
.

4There is a slight mismatch in parameters here since rij is not a unit vector, and hence Prij (F ) is not isotropic, as required by
Lemma H. However, we can use the unit vector rij/‖rij‖ for the projection, request accuracy ε1/2, and then rescale the parameters.
Since ‖rij‖ > 1/2, this will result in a final accuracy of ε1, with probability δ. The number of samples required is still poly(1/ε).
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Algorithm 4. High-dimensional isotropic variation-distance approximation
Input: Integers n ≥ 1, reals ε, δ > 0, sample oracle SA(F ).
Output: n-dimensional GMM

1. Let ε1, ε2, ε3 =

2. Run Algorithm 1(n, ε1, δ/3, SA(F )) to get F̂ = ŵ1F̂1 + ŵ2F̂2.

3. Permute ŵi, F̂i so that the smallest eigenvalue of var(F̂ )1 is no larger than the

smallest eigenvalue of var(F̂ )2.

4. If the smallest eigenvalue of var(F̂1) is greater than ε2, then halt and output

the mixture F̂. ELSE: (* Clustering step *)

(a) Let λ, v be the smallest eigenvalue and corresponding unit eigenvector of

F̂1.

(b) Draw m = ε−1
4 samples x1, . . . , xm from SA(F ).

(c) Partition the data into two sets, D1 ∪D2 = {x1, . . . , xm}, where,

D1 =


xi :

˛̨̨
Pv(xi)− Pv(µ(F̂1))

˛̨̨
≤
√
ε2

ε3

ff
.

(d) Output GMM Ĝ = ŵ1Ĝ1 + ŵ2Ĝ2, where Ĝi is the Gaussian with mean and

covariance matrix that matches the empirical mean and covariance on set

Di, and ŵi are those from Step 2.

Figure 6: The algorithm that guarantees low variation distance.

Let ∆ = Σ̂i − Σi, so ‖∆‖F ≤ ε1. Then we have that,

λ1 = ‖Σ−1
i Σ̂i‖2 = ‖Σ−1

i (Σi + ∆)‖2 ≤ ‖In‖2 + ‖Σ−1
i ‖2‖∆‖2 ≤ 1 +

ε1

2ε2
. (13)

Similarly,
1
λn

= ‖Σ̂−1
i Σi‖2 = ‖Σ̂−1

i (Σ̂i −∆)‖2 ≤ ‖In‖2 + ‖Σ̂−1
i ‖2‖∆‖2.

The quantity ‖Σ̂−1
i ‖
−1
2 is the smallest eigenvalue of Σ̂i = Σi −∆, which is at least the smallest eigenvalue of

Σi minus the largest eigenvalue of ∆. Hence, ‖Σ̂−1
i ‖
−1
2 ≥ 2ε2 − ‖∆‖F ≥ 2ε2 − ε1. This gives,

1
λn
≤ 1 +

ε1

2ε2 − ε1
≤ 1 +

ε1

ε2
. (14)

Combining these with (12) gives,

D2(F̂i, Fi) ≤
2nε1

ε2
+

ε2
1

2ε2
≤ ε2.

As argued, the smallest eigenvalue of Σ̂i is at least 2ε2 − ε1 ≥ ε2. Since this applies to both i = 1, 2, the
algorithm will halt and output F̂ , which meets the conditions of the lemma.

Case 2: Σ1 or Σ2 has an eigenvalue λ < 2ε2. We further divide into two subcases.
Case 2a: Both Σ̂i have all eigenvalues greater than ε2, and the algorithm will output F̂ . This is

not a problem, and the argument above (with small modification to the parameters) will guarantee that
D(Fi, F̂i) ≤ ε in this case. The only change to the above argument needed is that we can guarantee only that
the smallest eigenvalue of Σ̂i is at least ε2 − ε1, so the bound in (13) becomes 1 + ε1

ε2−ε1 ≤ 1 + 2 ε1ε2 , which is
still sufficient for the argument. (The bound of (14) remains valid.)

Case 2b: Σ̂i has an eigenvalue smaller than ε2, for some i. By possibly renumbering, the algorithm
chooses eigenvalue λ < ε2 of Σ̂1 along with corresponding unit eigenvector, v. Suppose again that |µ̂i−µi| ≤
ε1, ‖Σ̂i − Σi‖F ≤ ε1, and |ŵi − wi| ≤ ε1, for each i, which happens with probability at least 1− δ/3.
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We will now argue that,

Prx∼F1

[∣∣Pv(x)− Pv(µ(F̂1))
∣∣ > √ε2

ε3

]
≤ ε3 (15)

Prx∼F2

[∣∣Pv(x)− Pv(µ(F̂1))
∣∣ ≤ √ε2

ε3

]
≤ ε3 (16)

Hence, by the union bound, with probability at least 1−mε3 ≥ 1−δ/3 we make no clustering mistakes. Given
(10nε−1δ−1)4 samples (actually many fewer), it is known that one can estimate the parameters of a Gaussian
to within variation distance ε, with probability ≥ 1 − δ/6. [Adam: Get reference!] With probability
≥ 1− δ/6, the number of samples from each Gaussian is at least wimδ/3 ≥ εmδ/3 > (10nε−1δ−1)4. Hence,
hypothetically speaking, if our algorithm chose the set Di based on the true labels of which Gaussian each
sample came from, then our Gaussians would have variation distance ε from the truth. By the union bound,
all of this happens with probability ≥ 1− δ/3− δ/3− 2δ/6 = 1− δ.

It now remains to show (15) and (16). For (15), by the fact that |v · (µ1 − µ̂1)| ≤ ε1 it suffices to upper
bound the probability that x drawn from F1 satisfies,∣∣v · (x− µ1)

∣∣ > √ε2

ε3
− ε1 ≥

√
ε2

2ε3
.

Since the standard deviation of F1 in the direction of v is at most
√

2ε2, points satisfying the above are at least
1/(2ε3) standard deviations from their true mean. Using the fact that, for a one-dimensional Gaussian random
variable, the probability of being at least s standard deviations from the mean is at most 2e−s

2/2/(
√

2πs) ≤
1/s, we get a bound of 2ε3 which is sufficient for (15).

Next, since vT Σ̂1v = λ, vΣ1v
T ≤ λ+ ε1 ≤ 2ε2. By isotropy and (10),

w1vΣ1v
T + w2vΣ2v

T + w1w2(v · (µ1 − µ2))2 = 1.

At a high level, we can conclude that either the projected means or variances are far apart. In particular,
since w1vΣ1v

T ≤ 1/2, a crude statement is that vΣ2v
T ≥ 1/2 or |v · (µ1 − µ2)| ≥ 1/2 (or both).

To establish (16), we break into two further subsubcases.
Case 2bi: |v · (µ1 − µ2)| ≥ 1/2.
Next consider a random sample from F2. Note that |v ·(µ̂1−µ2)| > 1/4. A crude bound on the probability

that it is put in D1 is,
2
√
ε2/ε3

1/8
= 16

√
ε2/ε3.

To see this, note simply that the (marginal) density of points in the interval of width 1/8 around µ2 are all
larger than those in the interval tested by the algorithm, which has width 2

√
ε2/ε3. This establishes (16) in

this case.
Case 2bii: |v · (µ1 − µ2)| < 1/2 and vΣ2v

T > 1/2. In this case, the density of F2 is never larger than
1/
√
π ≤ 1. Hence, the probability of falling in the specified interval is at most its width, 2

√
ε2/ε3. This

establishes (16). �

J Total Variance Estimates

J.1 Kullback-Leibler Divergence for Gaussians

Fact 20. Let F1, F2 be one-dimensional normal distributions with means and variances µ1, µ2 and σ1, σ2,
respectively. Then

KL(F1‖F2) = ln
σ2

σ1
+

(µ1 − µ2)2 + σ2
1 − σ2

2

2σ2
2

The KL between two n-dimensional Gaussians is:

Fact 21. Let F1, F2 be n-dimensional normal distributions with means and variances µ1, µ2 and Σ1,Σ2,
respectively. Then

KL(F1‖F2) =
1
2

(
log

det(Σ2)
det(Σ1)

+ Tr(Σ−1
2 Σ1) + (µ1 − µ2)TΣ−1

2 (µ1 − µ2)− n
)
.

KL divergence is convex
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J.2 Total Variance via Kullback-Leibler Divergence

Lemma 22. Let F1 = N (µ1,Σ1) and F2 = N (µ2,Σ2) be two n-dimensional Gaussian distributions. Let
λ1, . . . , λn > 0 be the eigenvalues of Σ−1

1 Σ2. Then the variation distance between them satisfies,

(D(F1, F2))2 ≤
n∑
i=1

(λi +
1
λi
− 2) + (µ1 − µ2)TΣ−1

1 (µ1 − µ2).

Proof. The Kullback-Leibler divergence (KL) between two Gaussians is well-known to be,

KL(F1‖F2) =
1
2

(
Tr(Σ−1

1 Σ2) + ln
det(Σ1)
det(Σ2)

− n+ (µ1 − µ2)TΣ−1
1 (µ1 − µ2)

)
.

Note that det(Σ−1
1 Σ2) = det(Σ2)

det(Σ1) = λ1 . . . λn, and hence ln det(Σ1)
det(Σ2) =

∑
ln 1

λi
. Also, Tr(Σ−1

1 Σ2) = λ1 + . . .+λn.
It is also well-known that D2(F1, F2) ≤ 2KL(F1‖F2). This gives,

(D(F1, F2))2 ≤
n∑
i=1

(λi + ln
1
λi
− 1) + (µ1 − µ2)TΣ−1

1 (µ1 − µ2).

Using the fact that log x ≤ x− 1, we are done.

K Gaussian Inequalities

K.1 Maximization Inequalities

Lemma 23. Let f(x, σ) = 1√
2πσ2 e

− x2

2σ2 . Then

arg max
r≥σ≥0

f(x, σ) =
{

x r ≥ |x|
r r < |x|

Proof.

∂

∂σ
f(x, σ) =

1√
2π

[−1
σ2
e−

x2

2σ2 +
x2

σ4
e−

x2

2σ2

]
=

e−
x2

2σ2

σ2
√

2π

[
− 1 +

x2

σ2

]
For x2 > σ2, ∂

∂σf(x, σ) > 0 and for x2 < σ2, ∂
∂σf(x, σ) < 0.

As a simple corollary:

Corollary 24.

max
|x|≥r,σ2>0

N (0, σ2, x) ≤ 1
r
√

2π

Proof.

max
|x|≥r,σ2>0

N (0, σ2, x) = max
|x|≥r

max
σ2>0

N (0, σ2, x) = max
|x|≥r

N (0, x2, x) ≤ max
|x|≤r

1
x
√

2π
≤ 1
r
√

2π

Lemma 25. Let f(x, σ) = 1√
2πσ2 e

− x2

2σ2 . Then

∂2

∂x2
f(x, σ) =

 < 0 |x| < σ
0 |x| = σ

> 0 |x| > σ

Proof.
∂2

∂x2
f(x) =

1√
2πσ2

[−1
σ2

+
x2

σ4

]
e−

x2

2σ2
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K.2 Central Moment Integrals

Lemma 26. Let σ2 ≤ 1. Then
1√

2πσ2

∫ ∞
1
ε

e−
x2

2σ2 dx ≤ 1
2
e−

1
4ε2

Proof. Let I(x) =
∫∞

1
ε
e−

x2

2σ2 dx. Let B = [0, 1
ε ] × [0, 1

ε ]. Let C = {(x, y)|
√
x2 + y2 ≤ 1

ε and x, y ≥ 0}. Let
B′ = <2 −B, and C ′ = <2 − C.

Then
I(x)2 =

∫ ∞
1
ε

∫ ∞
1
ε

e−
x2+y2

2σ2 dxdy =
∫
B′
e−

x2+y2

2σ2 dxdy

I(x)2 ≤
∫
C′
e−

x2+y2

2σ2 dxdy =
1
4

∫ 2π

0

∫ ∞
1
ε

e−
r2

2σ2 rdrdθ

because B′ ⊂ C ′ and ey > 0 for all real y. Thus

I(x)2 ≤ 2π
−σ2

4
e−

r2

2σ2

∣∣∣∞
1
ε

= 2π
σ2

4
e−

1
2ε2σ2 ⇒ 1√

2πσ2

∫ ∞
1
ε

e−
x2

2σ2 dx ≤ 1
2
e−

1
4ε2σ2

Claim 27. For i odd:

Hi(x, σ) :=
∫
xie−

x2

2σ2 dx = −xi−1σ2e−
x2

2σ2 − (i− 1)xi−3σ4e−
x2

2σ2

−(i− 1)(i− 3)xi−5σ6e−
x2

2σ2 . . .− (i− 1)!!σi+1e−
x2

2σ2

Proof. We can check

∂

∂x
Hi(x, σ) = xie−

x2

2σ2 + (i− 1)xi−2σ2e−
x2

2σ2 . . .+ (i− 1)!!xσi−1e−
x2

2σ2

−(i− 1)xi−2σ2e−
x2

2σ2 − (i− 1)(i− 3)xi−4σ4e−
x2

2σ2 . . .− (i− 1)!!xe−
x2

2σ2

= xie−
x2

2σ2

Similarly

Claim 28. For i even:

Hi(x, σ) :=
∫
xie−

x2

2σ2 dx = −xi−1σ2e−
x2

2σ2 − (i− 1)xi−3σ4e−
x2

2σ2

−(i− 1)(i− 3)xi−5σ6e−
x2

2σ2 . . .+ (i− 1)!!σi
∫
e−

x2

2σ2 dx

We can apply these identities to get bounds on the contribution of the tails - i.e. |x| ≥ 2
ε for all finite

moments i ≥ 0.

Lemma 29. Let σ2 ≤ 1 and |µ| ≤ 1
ε .∫

|x|≥ 2
ε

xi
1√

2πσ2
e−

(x−µ)2

2σ2 dx ≤ O(
1
εi
e−

1
2ε2 )

Proof. Let

Ti =
∫
|x|≥ 2

ε

xi
1√

2πσ2
e−

(x−µ)2

2σ2 dx

Assume that µ ≤ 0. Then

Ti ≤ 2
∫ ∞

1
ε

(x− µ)i
1√

2πσ2
e−

x2

2σ2 dx
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We can compute the binomial expansion of (x − µ)i and using this expansion, a bound on the contribution
of the tails to the central moments of order j ≤ i will yield a bound on the contribution of the tails to the
raw moment Ti.

Using Claim 27 and Claim 28 (and the fact that Hi(x, σ) for σ2 ≤ 1 is maximized for σ = 1):∫ ∞
1
ε

xj
1√

2πσ2
e−

x2

2σ2 dx = O(
1

εj−1
e−

1
4ε2 )

Then using the bound |µ| ≤ 1
ε

Mi ≤ O(
1
εi
e−

1
4ε2 )

Note that here the hidden constant depends on i.

K.3 Moment Concentration

Lemma 30. Let x1, x2, . . . , xm be independent draws from a Normal distribution of mean 0 and variance 1,
and let k ≥ 1 be an integer. Then, with probability ≥ 1− δ,∣∣∣∣∣ 1

m

m∑
i=1

xki − Ex∼N (0,1)[xk]

∣∣∣∣∣ ≤
√

2kk!
δm

.

Proof. Let a = Ex[xk], the kth moment of a standard normal distribution. By Chebyshev’s inequality, with
probability at most δ, (

1
m

m∑
i=1

xki − a

)2

≤ 1
δ

E

( 1
m

m∑
i=1

xki − a

)2
 .

Hence it suffices to show that E[
(

1
m

∑m
i=1 x

k
i − a

)2] ≤ 2kk!
m . Clearly, Ex1,...,xm

[
1
m

∑m
i=1 x

k
i − a

]
= 0. Using

the fact that the variance of a sum of independent random variables is the sum of the variances,

E

( 1
m

m∑
i=1

xki − a

)2
 =

1
m

Ex
[(
xk − a

)2]
=

1
m

(
Ex[x2k]− a2

)
≤ 1
m

E[x2k]

=
1
m

(2k)!
2kk!

In the last equality we have used (17). Using the fact that
(

2k
k

)
< 22k, we get that the above is at most

2kk!
m .

K.4 Moment Estimates via Bernstein Inequalities

Let Xj be independent random variables, and E[Xj ] = 0. Then the Bernstein Inequality states:

Theorem 31. Assume that E[|Xk
j | ≤

E[X2
j ]

2 Lk−2k!. Then

Pr[
∑
j

Xj > 2t
√∑

j

E[X2
j ]] ≤ e−t

2

for 0 < t ≤
√P

j E[X2
j ]

2L

We will apply this inequality to get estimates for how many samples we need to estimate the central
moments of a Gaussian. Suppose Xj is a Gaussian random variable that has mean 0 and variance 1. We need
to bound the kth central moments of the Gaussian, which we can use Claim 27 and Claim 28 to explicitly
calculate.
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E[|Xk
j |] =

{
(k − 1)!! k is even√

2
π (k − 1)!! k is odd

So in particular the criteria in Bernstein’s Inequality holds for L = Θ(1). Then we can sample m points
from the Gaussian, X1, X2, . . . Xm.

Fact 32. Let t = Θ(
√

ln 1
δ ), and m = 4t2

γ2 . Then

Pr[
|
∑
j Xj |
m

> γ] ≤ δa

We also need to bound how quickly an estimate of the 2nd moment converges: So let Yj = X2
j − 1, be the

square of a sample from the Gaussian of mean 0 and variance 1. Then

E[|Y kj |] =
∣∣∣(2k − 1)!!− k(2k − 3)!! +

(
k

2

)
(2k − 5)!! . . .

∣∣∣ = Θ((2k − 1)!!)

Again, we can choose L = Θ(1) to get the criteria in Bernstein’s Inequality to hold. This implies

Fact 33. Let t = Θ(
√

ln 1
δ ), and m = 4t2

γ2 . Then

Pr[
|
∑
j X

2
j −m|
m

> γ] ≤ δa

Finally, we need to bound how quickly correlation estimates will converge. So suppose that Xj , Yj are
independent samples from a Gaussian of mean 0 and variance 1. Then let Zj = XjYj .

E[|Zkj |] =
{

(k − 1)!!(k − 1)!! k is even
2
π (k − 1)!!(k − 1)!! k is odd

Here also, L = Θ(1) suffices, and we get

Fact 34. Let t = Θ(
√

ln 1
δ ), and m = 4t2

γ2 . Then

Pr[
|
∑
j XjYj |
m

> γ] ≤ δa

K.5 Total Variation Distance Lower Bounds

Lemma 35. Assume ε ≤ 1
2 . Then

‖N (0, 1, x)−N (0, 1 + ε, x)‖1 ≥
ε

100
Proof. Consider

N (0, 1, x)
N (0, 1 + ε, x)

=
√

1 + εe−
εx2

2(1+ε) = f(x)

We can use the Taylor series expansion for
√

1 + x = (1 + 1
2x−

1
8x

2 . . .) and for |x| ≤ 1
2 ,
√

1 + x ≥ 1 + x
4 . So

using the assumption that ε ≤ 1
2 , we get

√
1 + ε ≥ 1 + ε

4 . We can also use ex ≥ 1 + x to get

f(x) ≥ (1 +
ε

4
)(1− εx2

2(1 + ε)
) ≥ (1 +

ε

4
)(1− εx2

2
)

So for x = 1
3 :

f(
1
3

) ≥ (1 +
ε

4
)(1− ε

18
) ≥ (1 +

ε

4
)(1− ε

9
) > 1

We can use Lemma 25 to get that f(x) is concave on [−1
3 ,

1
3 ]. Note that f(0) ≥ 1 + ε

4 . Then the concavity,
and the value at 0 together imply that for x ∈ [−1

6 ,
1
6 ], f(x) > 1 + ε

8 .

‖N (0, σ2, x)−N (0, σ2 + ε, x)‖1 ≥ (1− 1
1 + ε

8

)
∫ 1

6

−1
6

N (0, 1, x)dx ≥ 1
3
N (0, 1,

1
6

) ≥ ε

100

30



Lemma 36.
‖N (µ, σ2, x)−N (0, σ2 + ε, x)‖1 ≥

1
4
‖N (0, σ2, x)−N (0, σ2 + ε, x)‖1

Proof. Let F1 = N (µ, σ2) and F2 = N (0, σ2 + ε). Assume without loss of generality that µ ≤ 0.

‖N (µ, σ2, x)−N (0, σ2 + ε, x)‖1 ≥
∫ ∞

0

|F1(x)− F2(x)|1F1(x)≤F2(x)dx

So we are integrating the `1 difference over only the range [0,∞] and only where F1(x) ≤ F2(x). For every
point x ∈ [0,∞], F1(x) is an increasing function of µ - and this just follows from the fact that a Gaussian is
decreasing for all x larger than the mean. So if we let F3 = N (0, σ2) then∫ ∞

0

|F2(x)− F1(x)|1F1(x)≤F2(x)dx ≥
∫ ∞

0

|F2(x)− F1(x)|1F3(x)≤F2(x)dx

because on [0,∞], F1(x) ≤ F3(x) so on the range [0,∞], 1F1(x)≤F2(x) ≥ 1F3(x)≤F2(c). Also∫ ∞
0

|F2(x)− F1(x)|1F3(x)≤F2(x)dx ≥
∫ ∞

0

|F2(x)− F3(x)|1F1(x)≤F3(x)dx

because whenever F3(x) ≤ F2(x), we must have F1(x) ≥ F2(x), so we can replace |F2(x) − F1(x)| by
F2(x)− F1(x) ≥ F2(x)− F3(x) and lastly whenever F3(x) ≤ F2(x) we have F2(x)− F3(x) = |F2(x)− F3(x)|.
And using symmetry properties:∫ ∞

0

|F2(x)− F3(x)|1F1(x)≤F3(x)dx =
1
2

∫ ∞
−∞
|F2(x)− F3(x)|1F1(x)≤F3(x)dx

And because F1(x), F3(x) are distributions, the contribution from F1(x) ≤ F3(x) to the `1 difference is exactly
1
2 of the total `1 difference. So

1
2

∫ ∞
−∞
|F2(x)− F3(x)|1F1(x)≤F3(x)dx ≥

1
4
‖N (0, σ2, x)−N (0, σ2 + ε, x)‖1

Lemma 37. Let ε ≤ 1
4 .

‖N (ε, 1)−N (0, 1)‖1 ≥
ε

20

Proof. First observe that the derivative of N (0, 1, x) is nondecreasing on (−∞,−1], since the only solutions
to d2N (0,1,x)

dx2 = 0 are at ±1. Thus for x ∈ [−3/2,−1] we have that N (0, 1, x) ≥ N (ε, 1, x) + εdN (ε,1,x)
dx (x). For

x ∈ [−3/2,−1], and ε ≤ 1/4, we have

1/10 ≤ dN (0, 1, x)
dx

(−3/2− 1/4) ≤ dN (ε, 1, x)
dx

(−3/2) ≤ dN (ε, 1, x)
dx

(x).

Putting everything together,

‖N (ε, 1, x),N (0, 1, x)‖1 ≥
∫ −1

−3/2

(N (0, 1, x)−N (ε, 1, x)) dx ≥
∫ −1

−3/2

ε
dN (ε, 1, x)

dx
(x)dx ≥ ε1

2
1
10
.

Lemma 38. Consider two weighted Gaussian distributions, w1N (µ1, σ
2
1) and w2N (µ2, σ

2
2) and suppose that

|w1 − w2|+ |µ1 − µ2|+ |σ2
1 − σ2

2 | ≥ ε, and that 1
2 ≤ σ

2
1 , σ

2
2 ≤ 3

2 and w1, w2 ≥ ε: Then

‖w1N (µ1, σ
2
1)− w2N (µ2, σ

2
2)‖1 = Ω(ε3)
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Proof. We will use the previous lemmas to break this into a case analysis.

Case 1: Suppose that |w1 − w1| ≥ c1ε3
Then ‖w1N (µ1, σ

2
1)− w2N (µ2, σ

2
2)‖1 ≥ |w1 − w2| ≥ c1ε3

Case 2: Suppose that |σ2
1 − σ2

2 | ≥ c2ε2. Then using the triangle inequality

‖w1N (µ1, σ
2
1)− w2N (µ2, σ

2
2)‖1 ≥ ‖w1N (µ1, σ

2
1)− w1N (µ2, σ

2
2)‖1 − |w1 − w2|

≥ w1‖N (µ1, σ
2
1)−N (µ2, σ

2
2)‖1 − c1ε3

≥ w1

4
‖N (0, σ2

1)−N (0, σ2
2)‖1 − c1ε3

where the last line follows from Lemma 36. And applying Lemma 35 and that w1 ≥ ε

‖w1N (µ1, σ
2
1)− w2N (µ2, σ

2
2)‖1 ≥

c2ε
2

800
− c1ε3

So if c2 ≥ 1600c1, then this case is complete.

Case 3: In the remaining case, |µ1 − µ2| ≥ ε − c2ε2 − c1ε3 ≥ ε
2 for sufficiently small ε. Then using the

triangle inequality

‖w1N (µ1, σ
2
1)− w2N (µ2, σ

2
2)‖1 ≥ w1‖N (µ1, σ

2
1)−N (µ2, σ

2
2)‖1 − |w1 − w2|

And using Fact 18 and that σ2 ≥ 1
2 and the triangle inequality:

w1‖N (µ1, σ
2
1)−N (µ2, σ

2
2)‖1 ≥ w1‖N (µ1, σ

2
1)−N (µ2, σ

2
1)‖1 − w1‖N (µ2, σ

2
1)−N (µ2, σ

2
2)‖1

≥ w1‖N (µ1, σ
2
1)−N (µ2, σ

2
1)‖1 − 20w1c2ε

2

Then we can use Lemma 37 and that w1 ≥ ε, σ2
i ≤ 3/2 to get:

w1‖N (µ1, σ
2
1)−N (µ2, σ

2
1)‖1 ≥ w1

ε

20 · 2
√

3/2
≥ w1

ε

50

and this then implies that

‖w1N (µ1, σ
2
1)− w2N (µ2, σ

2
2)‖1 ≥ w1

[ ε
50
− 20c2ε2

]
− c1ε3

and the lemma is complete.

L The General Anisotropic Case

The basic idea of the general anisotropic algorithm, Algorithm 5 given in Figure 7, is simple: first use a
polynomial number of samples to put the data very nearly into isotropic position, then run Algorithm 4 to
get an approximation to the transformed mixture model, and then transform the resulting model back.

Other than for clarity of exposition, there does not seem to be a good reason to use separate data for
estimating the covariance matrix of the data – one may very well be able to use the same data for both putting
the data in isotropic position and estimating the mixture. The present approach we adopt is modular. It
enables the analysis in the previous sections to deal with the case where the data is exactly in isotropic
position and postpone discussion of isotropy completely to this section.

The formal argument here goes as follows. We first argue that, with high probability, the estimates of the
covariance matrices will be sufficiently accurate that the transformed distribution will be nearly isotropic.
Formally, we argue that it is in fact statistically very close to a GMM F ′ which is exactly in isotropic position.
In fact, they are statistically so close that Algorithm 4 would behave identically on data from F and F ′. To
be precise, suppose Algorithm 4 used at most m samples. For the sake of analysis, imagine running the
algorithm on samples from F and samples from F ′. Then, if F and F ′ are at statistical distance at most
δ/(2m), then we can couple samples from the two distributions (the sets of samples from F and F ′ would
each be i.i.d., but the two sets would be dependent) such that with probability 1− δ/2, the algorithm would
give identical outputs. If we choose the parameters so that Algorithm 4 succeeds with probability 1− δ/2 in
approximating F ′ well, which in turn implies that we approximate F well.

The analysis we present here can be improved by applying results in [25, 19], but here we favor clarity of
exposition over optimality in our bounds.
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Algorithm 5. The general anisotropic algorithm
Input: Integers n ≥ 1, reals ε, δ > 0, sample oracle SA(F ).
Output: n-dimensional GMM

1. Let p be the number of samples needed by Algorithm 4 (with input parameters

ε, δ
2
, n. Let ε1 = δ

2p
, and let m = Ω(

log 1
δ
n4

ε51
)

2. Draw samples x1, x2, . . . , xm from SA(F ).

3. Let µs and Σs be the mean and covariance matrices of the sample.

4. Let T (x) = Σ
−1/2
s (x− µs) and T−1(x) = µs + Σ

1/2
s x.

5. Let F ′ = T (F ) be the GMM F under the transformation T.

6. Run Algorithm 4(n, ε/2, δ/2,SA(F ′)) to get approximation F̂ = ŵ1F̂1 + ŵ2F̂2, where
F̂i = N (µ̂i, Σ̂i). (* Note that one can efficiently simulate SA(F ′) using SA(F ).
*)

7. Output T−1(F̂ ).

Figure 7: The general parameter learning algorithm.

Lemma 39. Let x1, x2, . . . xm ∈ <n, and let µ1,Σ1 be the mean and co-variance of these points. Let µ2,Σ2

be the mean and covariance of an n-dimensional Gaussian. Let AAT = Σ2. And let F1, F2 be the Gaussian
distributions defined by µ1,Σ1 and µ2,Σ2 respectively. Let yi = A−1(xi − µ2)

KL(F1‖F2) =
1
2

[
− log det(

1
m

∑
i

yiy
T
i −

1
m2

∑
i,j

yiy
T
j ) +

1
m

∑
i

yTi yi − n
]

Proof. Using Fact 21, we can write:

KL(F1‖F2) =
1
2

(log
det(Σ2)
det(Σ1)

+ Tr(Σ−1
2 Σ1) + (µ1 − µ2)TΣ−1

2 (µ1 − µ2)− n)

Consider the term
Tr(Σ−1

2 Σ1) + (µ1 − µ2)TΣ−1
2 (µ1 − µ2)

Using the properties of the trace operator, we can re-write this as

Tr(A−1Σ1A
−T ) + Tr(A−1(µ1 − µ2)(A−1(µ1 − µ2))T ) =

Tr(A−1(
1
m

∑
i

xix
T
i − µ1µ

T
1 )A−T ) + Tr(A−1(µ1 − µ2)(µ1 − µ2)TA−T ) =

Tr(A−1(
1
m

∑
i

xix
T
i − µ1µ

T
1 + µ1µ

T
1 − µ1µ

T
2 − µ2µ

T
1 + µ2µ

T
2 )A−T )

We can apply the identity 1
m

∑
i xiµ

T
2 = µ1µ

T
2 (and a similar identity for µ2µ

T
1 to rewrite this as

Tr(A−1(
1
m

∑
i

(xi − µ2)(xi − µ2)T )A−T ) =

1
m

∑
i

(A−1(xi − µ2))T (A−1(xi − µ2))

Next consider the term

log
det(Σ2)
det(Σ1)

= log
det(AAT )
det(Σ1)

= − log det(A−1Σ1A
−T )
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We can write

Σ1 =
1
m

∑
i

xix
T
i − µ1µ

T
1 =

1
m

∑
i

(xi − µ2)(xi − µ2)T − µ1µ
T
1 + µ1µ

T
2 + µ2µ

T
1 − µ2µ

T
2

Σ1 =
1
m

∑
i

(xi − µ2)(xi − µ2)T − (µ1 − µ2)(µ1 − µ2)T

This implies that

A−1Σ1A
−T =

1
m

∑
i

(A−1(xi − µ2))(A−1(xi − µ2))T − 1
m2

∑
i,j

(A−1(xi − µ2))(A−1(xj − µ2))T

We will think of xi as being sampled from N (µ2,Σ2), and we will use this expression for the Kullback-
Leibler divergence to bound how quickly sampling points from N (µ2,Σ2) will converge to a Gaussian that
is close in statistical distance to the original Gaussian. If we sample xi from N (µ2,Σ2), and then apply the
transformation yi = A−1(xi − µ2), this is equivalent to sampling from the distribution N (0, I). We can then
use bounds on how quickly moment estimates from the distribution N (0, I) converge to the actual moments
to bound how quickly the Kullback-Leibler divergence converges to zero, which will in turn give us a bound on
how quickly the total variance of the empirical distribution N (µ2,Σ1) converges in total variation distances
to the distribution N (µ2,Σ2).

Lemma 40. Let I +A be a real, symmetric matrix. Suppose that for all i, j, |Ai,j | ≤ γ. Then

(1− γn)n ≤ det(I +A) ≤ (1 + γn)n

Proof. Consider the Rayleigh quotient:

xT Ix+ xTAx

xTx
= 1 +

xTAx

xTx

Let u = x√
xT x

. Then

uTAu = Tr(uTAu) = Tr(AuuT ) ≤ ‖A‖F ‖uuT ‖F

where ‖B‖F denotes the Frobenius norm of the matrix B. ‖uuT ‖F = 1 and ‖A‖F =
√∑

i,j a
2
i,j ≤ γn. So

uTAu ≤ γn

and this implies that the Rayleigh quotient is always in the range [1−γn, 1+γn]. Because I+A is a symmetric
matrix, we can compute an eigen-decomposition of I + A =

∑
i λiviv

T
i and then det(I + A) =

∏
i λi. Each

eigenvalue λi is in the range [1− γn, 1 + γn] because the Rayleigh quotient is always in this range. So

(1− γn)n ≤ det(I +A) ≤ (1 + γn)n

Let yi be a sample from N (0, I). Note that E[ypi ] = 0, E[(ypi )2] = 1 and E[ypi y
q
i ] = 0.

Lemma 41. Suppose that |
P
i y
p
i

m | ≤ γ, |
P
i(y

p
i )2

m − 1| ≤ γ, and |
P
i y
p
i y
q
i

m | ≤ γ for all p, q ∈ [n]. Then

KL(F1‖F2) =
1
2

[
− log det(

1
m

∑
i

yiy
T
i −

1
m2

∑
i,j

yiy
T
j ) +

1
m

∑
i

yTi yi − n
]
≤ 6γn2

Proof. Consider the term ∣∣∣ 1
m

∑
i

yTi yi − n
∣∣∣ =

∣∣∣∑
p

(
1
m

∑
i

(ypi )2 − 1)
∣∣∣ ≤ nγ
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Let B′ = 1
m

∑
i yiy

T
i and B′′ = µ1µ

T
1 where µ1 = 1

m

∑
i yi.

B′p,q =
1
m

∑
i

ypi y
q
i

if p = q then 1− γ ≤ B′p,q ≤ 1 + γelse p 6= q and |B′p,q| ≤ γ

Also consider the vector µ1: | 1
m

∑
i y
p
i | ≤ γ So this implies that |B′′p,q| ≤ γ2. This implies that we can write

B′ +B′′ as B′ +B′′ = I +A where |Ap,q| ≤ γ + γ2 ≤ 2γ for sufficiently small γ. So we can apply Lemma 40
and get

n log(1− 2γn) ≤ log det(I +A) ≤ n log(1 + 2γn)

Using the inequality log 1 + x ≤ x, and that for |x| ≤ 1
2 1− 2x ≤ log 1− x:

−4γn2 ≤ det(I +A) ≤ 2γn2

and this implies the lemma.

We can use Fact 32, Fact 33 and Fact 34 and set γ = ε2c

3n2 to get that with probability 1 − δ, and

m = O(n
4 ln 1

δ

ε4c ) samples, we get an empirical Gaussian N (µ1,Σ1) (i.e. we sample points x1, x2, . . . xm ∈ <n,
and let µ1,Σ1 be the mean and co-variance of these points) for which

D(N (µ1,Σ1),N (µ2,Σ2)) ≤
√

2KL(N (µ1,Σ1)‖N (µ2,Σ2)) ≤ O(εc)

Proposition 42. Let m = Ω( log 1
δn

4

ε4c+1 ). Let x1, x2 . . . xm denote m samples from a GMM F = w1F1 +w2F2.
Let µs and Σs be the mean and co-variance matrix of the m sample points, and let AAT = Σs. Then with
probability at least 1− δ there is a GMM F̂ = ŵ1F̂1 + ŵ2F̂2 such that, D(F̂ , F ) ≤ εc and

D(F̂i, Fi) ≤ εc and |ŵi − wi| ≤ εc, for each i = 1, 2

and the transformation A−1(x− µs) puts the GMM F̂ in isotropic position.

Proof. We will construct the GMM F̂ explicitly as follows: partition the sample set x1, x2, . . . xm into X1, X2,
the sample points that came from F1, F2 respectively. Let m1 = |X1|, i.e. the number of points (among the
m samples) sampled from F1 (and let m2 = |X2|). Then applying Hoeffding’s bound:

Pr[|m1

m
− w1| ≥

εc

4
] ≤ 2e−2m ε2c

16 ≤ δ

4

because m ≥ Ω( log 1
δ

ε2c ). Denote the event that |m1
m − w1| ≤ εc

4 as (E1). If (E1) does occur, then m1,m2 =

Ω(n
4 ln 1

δ

ε4c )
Then given the partition X1, X2 let µ̂1, Σ̂1 be the mean and co-variance of X1, and similarly let µ̂2, Σ̂2

be the mean and co-variance of X2. We construct F̂ = ŵ1F̂1 + ŵ2F̂2 with ŵ1 = m1
m , ŵ2 = m2

m and let
F̂1 = N (µ̂1, Σ̂1), F̂2 = N (µ̂2, Σ̂2).

We can use Fact 32, Fact 33 and Fact 34 and set γ = ε2c

3n2 to get that with probability 1 − δ
3 , and

mi = O(n
4 ln 1

δ

ε4c ) samples, we get an empirical Gaussian N(µ̂i, Σ̂i) for which

D(N (µ̂i, Σ̂i),N (µi,Σi)) ≤
√

2KL(N (µ̂i‖Σ̂i)‖N (µi,Σi)) ≤ O(εc)

Let the event that this happens be (E2), (E3) respectively.
So with probability at least 1− δ, all events (E1), (E2) and (E3) occur. This implies that

D(F̂ , F ) ≤ D(ŵ1F̂1, w1F1) +D(ŵ2F̂2, w2F2)

and using the triangle inequality and events (E1) and (E2)

D(ŵ1F̂1, w1F1) ≤ D(ŵ1F̂1, w1F̂1) +D(w1F̂1, w1F1) ≤ |ŵ1 − w1|+D(F̂1, F1) ≤ εc

2
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Algorithm 6. Density estimation
Input: Integer n ≥ 1, sample oracle SA(F ), ε, δ > 0
Output: For i = 1, 2, µ̂i ∈ Rn, Σ̂i ∈ Rn×n.

1. Let m1 = O(
n4 ln 1

δ
ε4

),m2 = O(
ln 1
δ
ε

), ε1 = δ
4m1

2. Run Algorithm 5(n, ε1,
δ
4
,SA(F )) to get approximation F̂ = ŵ1F̂1 + ŵ2F̂2

3. Draw m1 samples S1 from SA(F ), and set Ŝ = N (µ̂s, Σ̂s) where µ̂s and Σ̂s are the

mean and co-variance of the set S1

4. Draw m2 samples S2 from SA(F ). Let U = {x|x ∈ Rn and F̂ (x) > Ŝ(x)}
5. Let p be the fraction of samples from S2 in U

6. Construct a sample oracle SA(F̂ ) for F̂. Draw m2 samples from SA(F̂ ) and let p̂
be the fraction of samples in U.

7. If |p− p̂| ≤ ε
4
, Output F̂, and otherwise Output Ŝ

Figure 8: The density estimation algorithm.

An identical argument for i = 2 yields the inequality

D(F̂ , F ) ≤ εc

We note that the means for the set of points X and for the distribution F̂ are equal:

EX=X1∪X2 [xi] = µs = EF̂ [x]

and the co-variance plus the squared mean are also equal:

EX=X1∪X2 [xixTi ] = Σs + µsµ
T
s = EF̂ [xxT ]

This implies that the means and co-variance matrices are equal, and as a result the same transformation
A−1(x − µs) that puts the point set X into isotropic position will also put the mixture F̂ into isotropic
position.

We now conclude the proof of our main theorem:
Proof of theorem 1: Let p and ε1 be as in Algorithm 5. Then D(F̂ , F ) ≤ δε1

2 so with probability at least
1− δ

2 , we can assume that the p = 1
ε1

random samples needed by Algorithm 4 all originate from SA(F̂ ). F̂
is exactly in isotropic position after the transformation T , so Algorithm 4 will return an ε

2 -accurate estimate
with probability at least 1− δ

2 . Note that the notion of ε2 -accurate is affine-invariant, so an ε-accurate estimate
for F ′ is also an ε

2 -accurate estimate for F̂ . And again using Proposition 42, any estimate that is ε
2 -accurate

compared to F̂ must also be ε-accurate compared to F . �

M Density Estimation

In this section we state the efficient density estimation algorithm, and prove Corollary 2.

Proof of 2. We first prove that one of the two estimates F̂ , or Ŝ will be close in statistical distance to the
actual distribution F :

Let ν = min(D(F1, F2), w1, w2). If ν ≥ ε1, then the distribution F = w1F1 + w2F2 satisfies the require-
ments of Theorem 1 and with probability at least 1− δ

4 Algorithm 5 will output a distribution F̂ = ŵ1F̂1+ŵ2F̂2

satisfies D(F̂i, Fπ(i)) ≤ ε1 and |ŵi − wπ(i)| ≤ ε1 for some permutation π : {1, 2} → {1, 2}. This implies that
D(F, F̂ ) ≤ 4ε1. Also note that 32ε1 ≤ ε and this implies that D(F, F̂ ) ≤ ε

8 with probability at least 1− δ
4 .

In the remaining case, ν ≤ ε1. In this case we can assume that all the samples come from one of the
two Gaussians, either F1 or F2. Consider the case w1 = ν, and the remaining cases will follow an identical
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argument. We sample m1 points from SA(F ) and so the probability that any sample comes from F1 is at
most m1w1 ≤ ε1m1 ≤ δ

4 . So in this case, with probability at least 1− δ
4 we can assume that all m2 samples

come from F2. Given m1 samples from F2, we can apply Fact 32, Fact 33, Fact 34 and Lemma 41 and set
γ = ε2

3n2 to get that with probability 1 − δ
4 , and m1 = O(n

4 ln 1
δ

ε4 ) samples, we get an empirical Gaussian
Ŝ = N (µ̂s, Σ̂s) for which

D(N (µ2,Σ2),N (µ̂s, Σ̂s)) ≤
√

2KL(N (µ2,Σ2)‖N (µ̂s, Σ̂s)) ≤ ε1

And because ν ≤ ε1, this implies that D(F,N (µ̂s, Σ̂s)) ≤ 2ε1 ≤ ε
8 with probability at least 1− δ

4 .
So with probability at least 1− δ

2 , we have that either D(F, F̂ ) ≤ ε
8 or D(F, Ŝ) ≤ ε

8 . All we need to do is
prove that we output (close to) the correct estimate, either F̂ or Ŝ.

Suppose that D(F̂ , Ŝ) ≤ ε
2 . In this case, we can apply the triangle inequality and both estimates F̂ , Ŝ

are statistical distance at most ε from F , so we can output either estimate.
If not, then D(F̂ , Ŝ) > ε

2 . We assume that D(F̂ , F ) ≤ ε
8 and the remaining case is identical.

Let U = {x|x ∈ Rn and F̂ (x) > Ŝ(x)}. ‖F̂ , Ŝ‖1 ≥ ε and this implies∫
U

F̂ (x)dx−
∫
U

Ŝ(x)dx = Prx←F̂ [x ∈ U ]− Prx←Ŝ [x ∈ U ] ≥ ε

2

In particular, this implies that ∫
U

F̂ (x)dx = Prx←F̂ [x ∈ U ] ≥ ε

2

Also, because D(F̂ , F ) ≤ ε
8 this implies that

‖Prx←F̂ [x ∈ U ]− Prx←F [x ∈ U ]‖1 ≤
ε

8

So we draw samples from F to estimate Prx←F [x ∈ U ]. We get an estimate p for this probability, and we can
also estimate Prx←F [x ∈ U ] by constructing a sample oracle for F̂ and empirically measuring this probability
from samples. Let this estimate be p̂. If p, p̂ are sufficiently close, then we output F̂ and if not we output Ŝ.

Using the standard Chernoff bound, choosing m2 = O( ln 1
δ

ε ) samples we can guarantee that with proba-
bility at least 1− δ

4 both the estimate p̂ for Prx←F̂ [x ∈ U ] and the estimate p for Prx←F [x ∈ U ] will be ε
16

close to the actual probabilities. Prx←F̂ [x ∈ U ] and ‖Prx←F̂ [x ∈ U ] − Prx←F [x ∈ U ]‖1 ≤ ε
8 and so with

probability at least 1− δ
4

|p− p̂| < ε

4

and the Algorithm 6 will output F̂ correctly in this case. If instead D(F, Ŝ) ≤ ε
8 then because p is within ε

16
of Prx←F [x ∈ U ] and p̂ is within ε

16 of Prx←F̂ [x ∈ U ] and

‖Prx←Ŝ [x ∈ U ]− Prx←F [x ∈ U ]‖1 ≤
ε

8

and
‖Prx←F̂ [x ∈ U ]− Prx←Ŝ [x ∈ U ]‖1 >

ε

2

so this implies that |p− p̂| > ε
4 and in this case we will correctly output Ŝ.

N Proof of Optimal Clustering

Lemma 43. Given a univariate GMM F = w1F1 + w2F2 such that wi ≥ ε, and D(F1, F2) ≥ ε, then
D(F,N (0, 1)) > poly(ε).

Proof. This lemma is essentially a much simpler version of the polynomially robust identifiability of mixtures
(Theorem 4); the proof approach and intuition carry over. Throughout, let µi, σ2

i be the mean and variance
of Gaussian Fi. Assume without loss of generality that σ2

1 ≤ σ2
2 . We first show that there will be a poly(ε)

disparity in one of the low-order moments of F and N (0, 1).
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Case 1: Assume σ2
1 > 1 − ε4. If σ2

1 > 2, then we immediately have a disparity in the variance of F and
N (0, 1) of at least 1. Otherwise, by Fact 20 and the triangle inequality, since D(F1, F2) > ε, and σ2

1 ≤ 2,
either |µ1 − µ2| > ε/40 or |σ2

1 − σ2
2 | > ε/40. In the first case, we have:

var(F ) = w1σ
2
1 + w2σ

2
2 + w1µ

2
1 + w2µ

2
2

≥ σ2
1 + ε

(
|µ1 − µ2|

2

)2

≥ 1− ε4 + ε
ε2

402
≥ 1 + ε4,

and we have a disparity in the variances of F and N (0, 1).
Case 2: Assume σ2

1 ≤ 1 − ε4. Consider the deconvolved distributions Fσ2
1−ε8(F ),Fσ2

1−ε8(N (0, 1)). From
our assumption on σ2

1 , it follows that maxx Fσ2
1−ε8(N (0, 1))(x) ≤ 1

.9ε2
√

2π
. Additionally, Fσ2

1−ε8(F )(µ1) ≥
w1

1
ε4
√

2π
≥ 1

ε3
√

2π
. Together with a bound of 2

ε8 for the derivative of the probability density function of
Fσ2

1−ε8(F )(x), this implies that D(Fσ2
1−ε8(F ),Fσ2

1−ε8(N (0, 1))) ≥ 1
72ε2 . From Proposition 7, the function

f(x) = Fσ2
1−ε8(F )(x)− Fσ2

1−ε8(N (0, 1))(x) has at most 4 (which is less than 6) zeros, and thus the proof of
Lemma 9 applies without modification to yield that at least one of the first six moments of Fσ2

1−ε8(F ) differs
from that of Fσ2

1−ε8(N (0, 1)) by Ω(ε66). By Lemma 6, it follows that one of the first six moments of F differs
from that of N (0, 1) by at least c = Ω(ε66).

To conclude our proof, we argue that a poly(ε) disparity in the first six moments implies a poly(ε) statistical
distance. First note that if σ2

2 > 2, we can directly show a statistical distance of at least ε4. Assuming that
σ2

2 ≤ 2, from Lemma 29 (bounds on the contribution of the tails of a Gaussian to the ith moment), it follows
that for some i ∈ [6], ∫

x∈[−
√

2/ε,
√

2/ε]

xi(F (x)−N (0, 1, x))dx ≥ c/2.

Finally, we have:

c/2 ≤
∫
x∈[−

√
2/ε,
√

2/ε]

xi(F (x)−N (0, 1, x))dx

≤
∫
x∈[−

√
2/ε,
√

2/ε]

|xi(F (x)−N (0, 1, x))|dx

≤
∫
x∈[−

√
2/ε,
√

2/ε]

(√
2
ε

)i
|(F (x)−N (0, 1, x))|dx ≤ 8

ε6
2D(F,N (0, 1)),

from which the lemma follows.

Lemma 44. Consider a mixture of two multivariate Gaussians: F̂ = ŵ1F̂1 + ŵ2 + F̂2 in isotropic position
and a single Gaussian Ŝ. Suppose that min(ŵ1, ŵ2, D(F̂1, F̂2)) ≥ ε. Then for a random direction r with
probability at least 1− δ the statistical distance between the two distributions F̂ and Ŝ when projected onto r
is at least ε1 = poly(ε, 1

n ,
1
δ ).

Proof. Given a mixture of two Gaussians: F̂ = ŵ1F̂1 + ŵ2 + F̂2 in isotropic position, we can apply Lemma
13 and the resulting univariate mixture, which we will denote by Ŝ = ŵ1Ŝ1 + ŵ2 + Ŝ2 is in isotropic position,
and has ŵ1, ŵ2 ≥ ε. We can apply Lemma 38 (setting w1, w2 = 1 when applying the lemma in order to get
a lower bound on the statistical distance between Ŝ1 and Ŝ2). So we know that for some ε2 = poly(ε, 1

n ,
1
δ ),

Ŝ = ŵ1Ŝ1 + ŵ2 + Ŝ2 satisfies ŵ1, ŵ2, D(Ŝ1‖Ŝ2) ≥ ε2. Then we can apply Lemma 43 to get that the statistical
distance between the two distributions F̂ and Ŝ when projected onto r is at least ε1 = poly(ε, 1

n ,
1
δ ).

Claim 45. Suppose F = w1F1 +w2F2. Then if min(w1, w2, D(F1, F2)) ≤ ε then p̂ = 1 has error probability
at most OPT + 2ε.

Proof. The error probability of a clustering scheme p̂ is measured w.r.t. the best permutation π : {1, 2} →
{1, 2}, so we can assume without loss of generality that if either of the two mixing weights w1, w2 is at most
ε, that w2 is at most ε. So consider this case. The error probability of p̂ is:

Ex←F [|p̂(x)− 1− w2F2(x)
w1F1(x) + w2F2(x)

|] = Ex←F [| w2F2(x)
w1F1(x) + w2F2(x)

|] ≤ ε
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So the error probability of p̂ is certainly at most OPT +ε. Next, consider the case in which D(F1‖F2) ≤ ε.
Again, the error probability of a clustering scheme p̂ is measured w.r.t. the best permutation π : {1, 2} →
{1, 2}, so here we can assume that w1 ≥ 1

2 . We can re-write the distributions F1, F2 as F1 = fc + f1 and
F2 = fc+f2 where ‖fi‖1 = D(F1‖F2) and fi is non-negative. So we can express sampling from the distribution
w1F1 + w2F2 as, with probability 1 −D(F1‖F2), sample from fc and with probability w1D(F1‖F2) sample
from f1, and with the remaining probability sample from w2D(F1‖F2). We can assume that the clustering
scheme p̂ chooses the wrong cluster in the latter two cases, and in the first case the clustering scheme will
choose the correct cluster with probability at least w1, so the error probability of the clustering scheme is at
most

D(F1‖F2) + (1−D(F1‖F2))w2 ≤ D(F1‖F2) + w2 ≤ w2 + ε

And a similar argument implies that the optimal clustering scheme has error probability at least w2 −
D(F1‖F2) ≥ w2 − ε. So this implies the claim.

Claim 46. Consider a clustering scheme p̂ = d ŵ2F̂2

ŵ1F̂1+ŵ2F̂2
e+ 1. If there are indices i, j ∈ {1, 2} such that

D(ŵ1F̂1 + ŵ2F̂2‖w1F1 + w2F2) +D(ŵiF̂i‖wjFj) ≤ ε

then the error probability of p̂ is at most OPT + 2ε

Proof. Consider

Ex←F [| w1F1

w1F1 + w2F2
− ŵ1F̂1

ŵ1F̂1 + ŵ2F̂2

|]

We can re-write this as∫
x∈<n

| w1F1

w1F1 + w2F2
− ŵ1F̂1

ŵ1F̂1 + ŵ2F̂2

|(w1F1 + w2F2)dx

≤
∫
x∈<n

|w1F1 − ŵ1F̂1
w1F1 + w2F2

ŵ1F̂1 + ŵ2F̂2

dx

≤
∫
x∈<n

(|w1F1 − ŵ1F̂1|+ |ŵ1F̂1 − ŵ1F̂1(
w1F1 + w2F2

ŵ1F̂1 + ŵ2F̂2

)|dx

≤
∫
x∈<n

(|w1F1 − ŵ1F̂1|+ |
ŵ1F̂1

ŵ1F̂1 + ŵ2F̂2

(w1F1 + w2F2 − ŵ1F̂1 + ŵ2F̂2)|)dx

≤
∫
x∈<n

(|w1F1 − ŵ1F̂1|+ |(w1F1 + w2F2 − ŵ1F̂1 + ŵ2F̂2)|)dx

So

Ex←F [| w1F1

w1F1 + w2F2
− ŵ1F̂1

ŵ1F̂1 + ŵ2F̂2

|] ≤ D(ŵ1F̂1 + ŵ2F̂2‖w1F1 + w2F2) +D(ŵiF̂i‖wjFj) ≤ ε

We will use this bound on the `1 difference between the conditional probabilities to give a bound on how
much more the clustering scheme p̂ can err, compared to the optimal. Consider any point x ∈ <n. Suppose
the optimal clustering scheme pays u at this point, i.e

min(
w1F1(x)

w1F1(x) + w2F2(x)
,

w2F2(x)
w1F1(x) + w2F2(x)

) = u

Without loss of generality, assume that the optimal clustering scheme clusters this point at 1. Then, the
clustering scheme p̂ only pays more at this point if the clustering is different. Let

v = | w1F1

w1F1 + w2F2
− ŵ1F̂1

ŵ1F̂1 + ŵ2F̂2

|

If the clustering for p̂ is different from pOPT this implies

w2F2(x)
w1F1(x) + w2F2(x)

+ v = u+ v ≥ 1
2
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Algorithm 7. Near-Optimal Clustering
Input: Integer n ≥ 1, sample oracle SA(F ), ε, δ > 0
Output: For p̂ : Rn → {1, 2}.

1. Let ε1 be as in Lemma 44, and let ε2 << ε1 Also let m1 = O(
n4 ln 1

δ

ε42
),m2 = O(

ln 1
δ

ε1
)

2. Run Algorithm 5(n, ε2,
δ
4
,SA(F )) to get approximation F̂ = ŵ1F̂1 + ŵ2F̂2

3. If min(ŵ1, ŵ2, D(F̂1‖F̂2)) ≤ ε
2
, output p̂ = 1

4. Draw m1 samples S1 from SA(F ), and set Ŝ = N (µ̂s, Σ̂s) where µ̂s and Σ̂s are the

mean and co-variance of the set S1

5. Draw m2 samples S2 from SA(F ). Let U = {x|x ∈ Rn and F̂ (x) > Ŝ(x)}
6. Let p be the fraction of samples from S2 in U

7. Construct a sample oracle SA(F̂ ) for F̂. Draw m2 samples from SA(F̂ ) and let q
be the fraction of samples in U.

8. If |p− q| ≤ ε1
4
, Output p̂ = d ŵ2F̂2

ŵ1F̂1+ŵ2+F̂2
e+ 1, and otherwise Output p̂ = 1

Figure 9: The near-optimal clustering algorithm.

The clustering scheme p̂ pays 1 − u which is 1 − 2u larger than what the optimal clustering scheme pays
at this point. But using the above inequality, the difference in payment is at most 2v, and from the above
argument we know that under the best permutation π : {1, 2} → {1, 2}, the expected difference in conditional
probabilities is at most:

D(ŵ1F̂1 + ŵ2 + F̂2‖w1F1 + w2F2) +D(ŵiF̂i‖wjFj) ≤ ε

for any indices i, j ∈ {1, 2}. So this implies that the expected cost difference between p̂ and pOPT is at most
2ε

Theorem 47. For any n ≥ 1, ε, δ > 0 and any n-dimensional GMM F = w1F1 +w2F2, using m independent
samples from F , Algorithm 7 outputs a clustering scheme p̂ such that with probability ≥ 1 − δ (over the
samples and randomization of the algorithm) the error probability of p̂ is at most ε larger than the error
probability of the optimal clustering scheme pOPT . And the runtime (in the Real RAM model) and number
of samples drawn from the oracle is at most poly(n, 1

ε ,
1
δ ).

Proof. Consider the actual mixture of Gaussians F = w1F1 + w2F2. Either min(w1, w2, D(F1‖F2)) ≥ ε2, or
min(w1, w2, D(F1‖F2)) ≤ ε2 and in either case one of the two clustering schemes will have error probability
at most ε larger than the optimal clustering scheme.

In order to show this, consider each case. Suppose min(w1, w2, D(F1‖F2)) ≥ ε2. In this case, the conditions
of Algorithm 5 are met. This implies

D(ŵ1F̂1 + ŵ2F̂2‖w1F1 + w2F2) +D(ŵiF̂i‖wjFj) ≤
ε

2

And using the Claim 46 this implies that p̂ = d ŵ2F̂2

ŵ1F̂1+ŵ2F̂2
e + 1 has error probability at most ε larger than

the optimal clustering scheme.
Suppose that min(w1, w2, D(F1‖F2)) ≤ ε2. Then we can immediately invoke Claim 45 and this implies

that p̂ = 1 has error probability at most ε larger than the optimal clustering scheme.
All that we need to prove is that Algorithm 7 outputs a good clustering scheme. It is easy to see that if

min(ŵ1, ŵ2, D(F̂1‖F̂2)) ≤ ε
2 , then the algorithm might as well output the clustering scheme p̂ = 1 because

even if min(w1, w2, D(F1‖F2)) ≥ ε1
4 and p̂ = d ŵ2F̂2

ŵ1F̂1+ŵ2F̂2
e+ 1 has error probability at most ε larger than the

optimal clustering scheme, based on the guarantees of Algorithm 5 min(w1, w2, D(F1‖F2)) ≤ ε and so the
clustering scheme p̂ = 1 will have error probability at most ε larger than optimal, again invoking Claim 45.
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And in the remaining case, (after applying the transformation T ) we can invoke Lemma 44 and with
probability at least 1− δ

4 , when projected on the random direction r the statistical distance between the two
distributions F̂ and Ŝ when projected onto r is at least ε1. And projecting cannot increase statistical distance,
so the statistical distance between F̂ and Ŝ is at least ε1. Notice that the statistical distance between F and
F̂ is at most ε2

4 in the case in which min(w1, w2, D(F1‖F2)) ≥ ε2
4 . So with sufficiently many samples p will

be within O(ε2) << ε1 of q, and we will output the clustering scheme based on F̂ in this case. The analysis
is identical to the analysis in Algorithm 6. And a similar argument follows for the remaining case.

O Moments for Gaussians

For completeness, we give the first six (raw) moments of a univariate normal random variable, N (µ, σ2):

E[x
0
] = 1

E[x
1
] = µ

E[x
2
] = µ

2
+ σ

2

E[x
3
] = µ

3
+ 3µσ

2

E[x
4
] = µ

4
+ 6µ

2
σ
2

+ 3σ
4

E[x
5
] = µ

5
+ 10µ

3
σ
2

+ 15µσ
4

E[x
6
] = µ

6
+ 15µ

4
σ
2

+ 45µ
2
σ
4

+ 15σ
6

Additionally, for the univariate normal distribution N (0, σ2), the ith raw moment is,

Ex∼N (0,σ2)[xi] =

{
0 if i is odd
(i− 1)!!σi = i!

2i(i/2)!σ
i if i is even.

(17)
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