
Theoretical Foundations for Deep Learning:
Problem Set # 2

Instructor: Ankur Moitra

Due: May 7th May 10th, due to student holiday

You can work with other students, but you must write-up your solutions by yourself
and indicate at the top who you worked with!

Please submit by May 7th, at 11:59pm, via gradescope.

Problem 1 30 points

In this problem we will take a compression approach to proving generalization bounds.
In class, we asserted that the VC-dimension of the class of halfspaces in d dimensions
is d + 1 and we used this fact to give bounds on the generalization error. Instead,
let’s consider a compression game that works as follows:

(a) Alice receives a set S of n training examples (x1, y1), · · · , (xn, yn) that are drawn
i.i.d. from a distribution D. We assume the labels are consistent with some
unknown halfspace, i.e. y = sgn(w̄Tx)

(b) Alice selects a set T ⊆ S of k examples to send to Bob in such a way that Bob
can reconstruct a halfspaces that correctly labels all the examples in Alice’s
training set, i.e. Bob can find w and b so that for any (x, y) ∈ S

y = sgn(wTx+ b)

Find a compression scheme that works with k = O(d). To make things simpler,
you may assume that every set of d of the x’s are linearly independent and have some
separation δ from each other, and you only need your compression scheme to work
when this condition holds. Notice that this problem is subtle because it depends
on the choice of how Bob will find a hypothesis that works on the subset of data
that Alice sent. It’s not true that every halfspace that fits T will fit S too. Hint:
You may want to think about the problem in low dimensions, like in R2 first and
consider a halfspace that goes through a subset of the data and use an arbitrarily
small perturbation. You may assume that Alice sends the points in a particular order,
though there is a scheme that does not use order.

The point is you can use certain types of compression schemes to prove generaliza-
tion bounds: Suppose your compression scheme is deterministic and has the following
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property: If T is Alice’s compression of a set S then for any S ′ with T ⊆ S ′ ⊆ S, we
have that Alice’s compression for S ′ is unchanged and is still T . With this property in
hand, suppose we form a set of n+ 1 samples S chosen i.i.d. from D and let T be its
compression. Now apply a random permutation to S. This doesn’t change anything
because the draws were i.i.d. Think of the first n points as the training set and call
it S ′. Think of the last example (x, y) as the test point. The key observation is if the
test point is not in T , which you can think of as the set of informative examples, then
you shouldn’t make a mistake on it because you haven’t learned anything new from
it. Or to put it another way, the halfspace that Bob finds by taking S ′ compressing
it down to T and finding a halfspace that agrees with the compression necessarily fits
S, which includes the test point, too.

Problem 2 40 points

In this problem we will explore the task of learning a halfspace with noise. We will
work with the random classification noise model where we flip the label of each ex-
ample independently with probability η. In particular, assume there is a distribution
D on Rd and each sample is drawn according to the following procedure: x← D and
y = sgn(w̄Tx+ b̄) with probability 1− η and otherwise y = −sgn(w̄Tx+ b̄). You can
assume that η < 1/2 and that sgn(0) = 1.

Consider the Leaky ReLU loss which is defined as follows. For a given hypothesis
(w, b) and a labeled example (x, y) we incur loss

Lλ(w, b) = |wTx+ b|(1−y(wT x+b)≥0 − λ)

Notice that for λ = 0 we recover the ReLU loss. Show that for an appropriate choice
of λ > 0, the following properties hold:

(a) For any (w, b),
E(x,y)[Lλ(w, b)] ≥ 0

(b) Furthermore (assuming that no examples are on the decision boundary {x|wTx+
b = 0}) equality is achieved if and only if (w, b) gets optimal accuracy, i.e.

P(x,y)[sgn(wTx+ b) = y] = 1− η = P(x,y)[sgn(w̄Tx+ b̄) = y]

(c) How would you design an algorithm for learning a halfspace with optimal agree-
ment in the random classification noise model? Hint: Think about how you
would use a new training example to take a step in the direction of the mini-
mum of a convex function. You can take for granted that stochastic gradient
descent, with an appropriately chosen step size, will converge. And you do
not need to worry about proving bounds on the number of iterations or the
generalization error, though such things can be done.

(d) What would go wrong if the noise were not random, but adversarial? Is it still
true that a (w, b) that minimizes the Leaky ReLU loss necessarily gets optimal
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accuracy? Let’s be clear about what we mean by adversarial: There is an
arbitrary distribution D on (x, y) pairs. We can still define optimal accuracy
over a class of hypotheses. And here you want to show that finding the (w, b)
that minimizes the Leaky ReLU loss does not necessarily give you optimal
accuracy.

Problem 3 30 points

In this problem, we will prove lower bounds for learning junta functions. A k-junta
is a function f : {±1}n → {±1} that only depends on k coordinates. In particular,
there is a set S ⊆ [n] with |S| = k and if you change any coordinate outside S
the function value does not change. Prove that any statistical query algorithm for
learning juntas on the uniform distribution must make at least nΩ(k) queries or make
a query with tolerance τ = n−Ω(k). We are interested in the setting where k is much
smaller than n, and you can assume k ≤ n1−ε for some ε > 0. As we did in class,
since the functions we are trying to learn are {±1} valued and the distribution on
examples is known, you may assume the queries are all correlational.
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