Algorithmic Aspects of Machine Learning: Problem Set \# 1

Instructor: Ankur Moitra

Due: March 7th
You can work with other students, but you must write-up your solutions by yourself and indicate at the top who you worked with!

Problem 1

Show that for a matrix M its rank and its border rank are always the same. In particular, suppose you are given a matrix M and a parameter r so that for every $\epsilon>0$ there is a rank r matrix M_{r} so that M and M_{r} are entrywise ϵ-close. Show that M must have rank at most r. Hint: Use the Eckhart-Young Theorem.

Problem 2

In this problem, we will show that there are nonnegative matrices whose rank and nonnegative rank can be substantially different. Let $M \in \mathbb{R}^{n \times n}$ where $M_{i, j}=(i-j)^{2}$. Prove that $\operatorname{rank}(M)=3$ and that $\operatorname{rank}^{+}(M) \geq \log _{2} n$. Hint: To prove a lower bound on $\operatorname{rank}^{+}(M)$ it suffices to consider just where it is zero and where it is non-zero.

Comment: There are examples where the separation is even more dramatic.

Problem 3

A well-known paper of Papadimitriou et al. considered the following document model: $M=A W$ and each column of W has only one non-zero and the support of each column of A is disjoint. Prove that the left singular vectors of M are the columns of A (after rescaling). You may assume that all the non-zero singular values of M are distinct. Hint: $M M^{T}$ is block diagonal, after applying a permutation π to its rows and columns.

Problem 4

Let $M=A W$ where A is separable and the rows of M, A and W are normalized to sum to one. Also assume W has full row rank. Prove that Greedy Anchorwords

Greedy Anchorwords

1. $\operatorname{Set} S=\emptyset$
2. Add the row of M with the largest ℓ_{2} norm to S
3. For $i=2$ to r
4. Project the rows of M orthogonal to the span of vectors in S
5. Add the row with the largest ℓ_{2} norm to S
6. End
finds all the anchor words and nothing else. Hint: the ℓ_{2} norm is strictly convex - i.e. for any x and y that are not multiples of each other and $t \in(0,1),\|t x+(1-t) y\|_{2}<$ $t\|x\|_{2}+(1-t)\|y\|_{2}$.

Problem 5

In this problem, we will design algorithms for decomposing higher-order tensors. Let $u \odot v$ denotee the Khatri-Rao product between two vectors, which is defined as follows: if $u \in \mathbb{R}^{m}$ and $v \in \mathbb{R}^{n}$ then $u \odot v \in \mathbb{R}^{m n}$ and corresponds to flattening the matrix $u v^{T}$ into a vector, column by column. Moreover the Kruskal rank k-rank of a collection of vectors $u_{1}, u_{2}, \ldots, u_{m} \in \mathbb{R}^{n}$ is the largest k such that every set of k vectors are linearly independent.
(a) Let k_{u} and k_{v} be the k-rank of $u_{1}, u_{2}, \ldots, u_{m}$ and $v_{1}, v_{2}, \ldots, v_{m}$ respectively. Prove that the k-rank of $u_{1} \odot v_{1}, u_{2} \odot v_{2}, \ldots, u_{m} \odot v_{m}$ is at least $\min \left(k_{u}+k_{v}-1, m\right)$.
(b) Construct a family of examples where the k-rank of $u_{1} \odot u_{1}, u_{2} \odot u_{2}, \ldots, u_{m} \odot u_{m}$ is exactly $2 k_{u}-1$, and not any larger. To make this non-trivial, you must use an example where $m>2 k_{u}-1$. Hint: One way to do this is to use a collection of orthonormal bases.
(c) Given an $n \times n \times n \times n \times n$ fifth order tensor $T=\sum_{i=1}^{r} a_{i}^{\otimes 5}$ give an algorithm for finding its factors that works for $r=2 n-1$, under appropriate conditions on the factors $a_{1}, a_{2}, \ldots, a_{r}$. Hint: Reduce to the third-order case.

Comment: In fact for random or perturbed vectors, the Khatri-Rao product has a much stronger effect of multiplying their Kruskal rank. These types of properties can be used to obtain algorithms for decomposing higher-order tensors in the highly overcomplete case where r is some polynomial in n.

