
Algorithmic Aspects of Machine Learning:
Problem Set # 1

Instructor: Ankur Moitra

Due: March 7th

You can work with other students, but you must write-up your solutions by yourself
and indicate at the top who you worked with!

Problem 1

Show that for a matrix M its rank and its border rank are always the same. In
particular, suppose you are given a matrix M and a parameter r so that for every
ε > 0 there is a rank r matrix Mr so that M and Mr are entrywise ε-close. Show that
M must have rank at most r. Hint: Use the Eckhart-Young Theorem.

Problem 2

In this problem, we will show that there are nonnegative matrices whose rank and
nonnegative rank can be substantially different. Let M ∈ Rn×n where Mi,j = (i− j)2.
Prove that rank(M) = 3 and that rank+(M) ≥ log2 n. Hint: To prove a lower bound
on rank+(M) it suffices to consider just where it is zero and where it is non-zero.

Comment: There are examples where the separation is even more dramatic.

Problem 3

A well-known paper of Papadimitriou et al. considered the following document model:
M = AW and each column of W has only one non-zero and the support of each
column of A is disjoint. Prove that the left singular vectors of M are the columns of
A (after rescaling). You may assume that all the non-zero singular values of M are
distinct. Hint: MMT is block diagonal, after applying a permutation π to its rows
and columns.

Problem 4

Let M = AW where A is separable and the rows of M , A and W are normalized to
sum to one. Also assume W has full row rank. Prove that Greedy Anchorwords
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Greedy Anchorwords

1. Set S = ∅
2. Add the row of M with the largest `2 norm to S

3. For i = 2 to r

4. Project the rows of M orthogonal to the span of vectors in S

5. Add the row with the largest `2 norm to S

6. End

finds all the anchor words and nothing else. Hint: the `2 norm is strictly convex — i.e.
for any x and y that are not multiples of each other and t ∈ (0, 1), ‖tx+ (1− t)y‖2 <
t‖x‖2 + (1− t)‖y‖2.

Problem 5

In this problem, we will design algorithms for decomposing higher-order tensors. Let
u�v denotee the Khatri-Rao product between two vectors, which is defined as follows:
if u ∈ Rm and v ∈ Rn then u�v ∈ Rmn and corresponds to flattening the matrix uvT

into a vector, column by column. Moreover the Kruskal rank k-rank of a collection of
vectors u1, u2, ..., um ∈ Rn is the largest k such that every set of k vectors are linearly
independent.

(a) Let ku and kv be the k-rank of u1, u2, ..., um and v1, v2, ..., vm respectively. Prove
that the k-rank of u1 � v1, u2 � v2, ..., um � vm is at least min(ku + kv − 1,m).

(b) Construct a family of examples where the k-rank of u1�u1, u2�u2, ..., um�um
is exactly 2ku − 1, and not any larger. To make this non-trivial, you must use
an example where m > 2ku − 1. Hint: One way to do this is to use a collection
of orthonormal bases.

(c) Given an n× n× n× n× n fifth order tensor T =
∑r

i=1 a
⊗5
i give an algorithm

for finding its factors that works for r = 2n − 1, under appropriate conditions
on the factors a1, a2, ..., ar. Hint: Reduce to the third-order case.

Comment: In fact for random or perturbed vectors, the Khatri-Rao product has a
much stronger effect of multiplying their Kruskal rank. These types of properties
can be used to obtain algorithms for decomposing higher-order tensors in the highly
overcomplete case where r is some polynomial in n.

Algorithmic Aspects of Machine Learning PS # 1


