
Massachusetts Institute of Technology
6.854J/18.415J: Advanced Algorithms Wednesday, February 17, 2016
Ankur Moitra

Problem Set 2

Due: Wednesday, February 24, 2016 – 7 pm
Dropbox Outside Stata G5

Collaboration policy: collaboration is strongly encouraged. However, remember that

1. You must write up your own solutions, independently.

2. You must record the name of every collaborator.

3. You must actually participate in solving all the problems. This is difficult in very large
groups, so you should keep your collaboration groups limited to 3 or 4 people in a given
week.

4. Write each problem in a separate sheet and write down your name on top of every sheet.

5. No bibles. This includes solutions posted to problems in previous years.

1 Rank estimation from a sample

Suppose we have an unsorted list of distinct numbers x1, x2, . . . , xn. We want to randomly
subsample t < n items from this list (drawing with replacement) and from that subsample
we want to return some element x such that rank(x) is approximately equal to k for a given
k. By rank we mean the rank of x in the original list. The largest of x1, . . . , xn has rank 1,
the second largest has rank 2, etc. and we’re trying to find something with rank ≈ k.

Describe a simple strategy for choosing a candidate x from the subsample with rank
approximately equal to k. How large do we need to set t (in big-O notation) so that, with
probability (1− δ), your strategy returns an x with (1− ε)k ≤ rank(x) ≤ (1 + ε)k?

Hint: This should not require any complex counting arguments or combination/permutation
calculations.

2 Distinct elements with deletion

In class we saw how to estimate the number of distinct elements in a data stream using the
Flajolet-Martin algorithm, which required O(1

ε2
) registers.

Consider the following alternative formulation of the distinct elements problem: given an
N dimensional vector x, we want to process a stream of arbitrary increments to entries in x.
In other words, if we see a number i ∈ 1, . . . , N in the stream, we update entry xi ⇐ xi + 1.

2 Problem Set 2

Our goal is to estimate ‖x‖0, which measures the number of non-zero entries in x. With x
viewed as a histogram that maintains counts for N potential elements, ‖x‖0 is exactly the
number of distinct elements processed.

In this problem we will develop an alternative algorithm for estimating ‖x‖0 that can
also handle decrements to entries in x. Specifically, instead of the stream containing just
indices i, it contains pairs (i,+) and (i,−). On receiving (i,+) x should update so that
xi ⇐ xi + 1 and on receiving (i,−) x should update so that xi ⇐ xi − 1. For this problem
we will assume that, at the end of our stream, each xi ≥ 0 (i.e. for a specific index we can’t
receive more decrements than increments).

Let’s start with a simpler problem. For a given value T , let’s design an algorithm that
succeeds with probability (1− δ), outputing LOW if T < 1

2
‖x‖0 and HIGH if T > 2‖x‖0.

(a) As in class, assume we have access to a completely random hash function h(·) that maps
each i to a random point in [0, 1]. We maintain the estimator s =

∑
i:h(i)< 1

2T
xi as we

receive increment and decrement updates. Show that, at the end of our stream:

(i) If T < 1
2
‖x‖0, Prh[s = 0] < 1/e ≈ .37

(ii) If T > 2‖x‖0, Prh[s = 0] > .5

(b) Using this fact, show how to use O(log 1/δ) independent random hash functions, and
corresponding individual estimators s1, s2, . . . , sO(log 1/δ), to output LOW if T < 1

2
‖x‖0

and HIGH if T > 2‖x‖0. If neither event occurs you can output either LOW or HIGH.
Your algorithm should succeed with probability (1− δ).

(c) Using O(logN) repetitions of your algorithm for the above decision problem (with δ set
appropriately), show how to obtain an estimate F for ‖x‖0 such that 1

4
‖x‖0 ≤ F ≤ 4‖x‖0.

The algorithm described is an example of a linear sketch, a term that refers to the fact
that each estimator s stores exactly the same value at the end of the stream, no matter the
order or number of increments and decrements. s only depends on the final value of x and
our random hash function h(·).

3 Better point query?

In class we learned about the Count-Min sketch. We saw that it could be used to estimate
the frequency of any item in our stream up to an additive error εn, where n is the total
number of elements streamed in.

Using the notation from Problem 2, this is equivalent to estimating the value of any
entry xi in x to within additive error ε‖x‖1. ‖x‖1 increases by 1 every time a new element
is streamed in, which is why ‖x‖1 = n.

In this problem, we’ll analyze an alternative algorithm that requires a bit more space,
but can estimate the value of xi to within error ε‖x‖2, which is often much better in practice.

Problem Set 2 3

(a) Briefly describe a scenario when an error of ε‖x‖2 could be much tighter than an error
of ε‖x‖1 for estimating an items frequency.

We’ll analyze the following procedure:

• For a small value q to be set later, choose a random hash function h(·) that maps every
i ∈ {1, . . . , N} to {1, . . . , q}1. Choose another random hash function g(·) that maps
every i ∈ {1, . . . , N} to {−1, 1}. Allocate space for q counters C1, . . . , Cq.

• When Increment(xi) is called, set Ch(i) ⇐ Ch(i) + g(i).

• When Estimate(xi) is called, return yi = g(i)Ch(i).

(b) Show that E[yi] = xi. In other words, show that our estimate for xi is correct in
expectation.

(c) Show that V ar[yi] = E[y2i]−E[yi]
2 ≤ ‖x‖22

q
. Warning: This part is a bit more challenging!

(d) Apply Chebyshev’s inequality to show that P(|xi − yi| ≥ ε‖x‖2) ≤ 1
ε2q

.

(e) What value of q would we need to ensure that we obtain ε error with probability 9/10?
How many counters do we need to store in comparison to Count-Min?

4 Johnson-Lindenstrauss for k-means clustering

In this problem we analyze a common algorithmic application of the Johnson-Lindenstrauss
lemma.

Consider the k-means clustering problem. Given points x1, . . . ,xn ∈ Rd, the goal is
partition the points into k disjoint sets (clusters) C1, . . . , Ck so as to minimize the cost:

Cost(x1, . . . ,xn, C1, . . . , Ck) =
k∑
i=1

∑
j∈Ci

‖xj − µi‖22,

where µi = 1
|Ci|

∑
j∈Ci

xj is the mean of the points in cluster Ci. In other words, we want to
find k clusters that have as little internal variance as possible.

(a) Prove that:

Cost(x1, . . . ,xn, C1, . . . , Ck) =
k∑
i=1

1

|Ci|
∑

j,`∈Ci,j<`

‖xj − x`‖22.

1 You can assume full randomess for now, although it is not required.

4 Problem Set 2

(b) Suppose we embed x1, . . . ,xn into O(log n/ε2) dimensional vectors x̃1, . . . , x̃n using the
Johnson-Lindenstrauss construction from class. Recall that, with high probability, the
Johnson-Lindenstrauss lemma ensures that:

(1− ε)‖xj − xk‖22 ≤ ‖x̃j − x̃k‖22 ≤ (1 + ε)‖xj − xk‖22,

for all j, k. Leverage this fact and part (a) to show that, for all clusterings simultaneously :

(1− ε)Cost(x1, . . . ,xn, C1, . . . , Ck)

≤ Cost(x̃1, . . . , x̃n, C1, . . . , Ck)

≤ (1 + ε)Cost(x1, . . . ,xn, C1, . . . , Ck),

with high probability.

(c) Suppose we find a set of clusters C̃1, . . . , C̃k such that:

Cost(x̃1, . . . , x̃n, C̃1, . . . , C̃k) ≤ γ · Cost(x̃1, . . . , x̃n, C̃
∗
1 , . . . , C̃

∗
k),

where C̃∗1 , . . . , C̃
∗
k is the optimal partition for x̃1, . . . , x̃n – i.e. we find a γ approximation

to the optimal clustering for the dimensionality reduced points. Show that, for ε ≤ 1
2
,

Cost(x1, . . . ,xn, C̃1, . . . , C̃k) ≤ (1 +O(ε))γ · Cost(x1, . . . ,xn, C
∗
1 , . . . , C

∗
k),

where C∗1 , . . . , C
∗
k is the optimal partition for x1, . . . ,xn.

In other words, we can compute an approximate clustering for our (possibly high dimen-
sional) original points using just the dimensionality reduced data. This approach will
speed up algorithms for solving k-means whenever log n/ε2 < d.

(d) (Open Research Question) In k-means clustering, k is typically much smaller than n.
It can be shown that Johnson-Lindenstrauss embedding to just O(log k/ε2) dimensions
suffices for obtaining a (9 + ε)γ approximation. Can you beat the (9 + ε) factor approx-
imation loss, or show that it is optimal when reducing to O(log k) dimensions instead of
O(log n)?

	Rank estimation from a sample
	Distinct elements with deletion
	Better point query?
	Johnson-Lindenstrauss for k-means clustering

