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Collaboration policy: collaboration is strongly encouraged. However, remember that

1. You must write up your own solutions, independently.

2. You must record the name of every collaborator.

3. You must actually participate in solving all the problems. This is difficult in very large
groups, so you should keep your collaboration groups limited to 3 or 4 people in a given
week.

4. Write each problem in a separate sheet and write down your name on top of every sheet.

5. No bibles. This includes solutions posted to problems in previous years.

1 Self-concordant barriers

As we discussed in class, a function f : (a, b) → R is self-concordant if it is convex and
|f ′′′(t)| ≤ 2|f ′′(t)|3/2 for all t ∈ (a, b). Moreover, a function f : Rn → R is self-concordant if
its restriction to any line, that is, fx,u(t) = f(x + tu) is self-concordant.

Furthermore, we say that f is a c-self-concordant barrier for a convex set D if:

1. The domain of f is D and f(x) → ∞ as x approaches the boundary of D (f is a
“barrier” for D).

2. f is self-concordant.

3. The restriction of f to any line satisfies |f ′(t)| ≤ (c|f ′′(t)|)1/2.

(a) Prove that the sum of an a-self-concordant barrier for the set X and a b-self-concordant
barrier for the set Y is an (a+ b)-self-concordant barrier for X ∩ Y .

(b) Show that − lnxi is 1-self-concordant for set xi > 0.

(c) Conclude that the logarithmic barrier −
∑

i lnxi is n-self concordant for x > 0 (where
n is the length of x).
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2 Planar Vertex Cover

To recall, in Vertex Cover problem we are given a weighted graph G = (V,E) with a weight
function w defined over V and the goal is to select the minimum weight subset of vertices S
in V such that for each edge e = (u, v) at least one of u, v are in S.

(a) Prove that any extreme point solution of the standard LP relaxation of Vertex Cover
problem

min
x

∑
v∈V

xv

s.t. xu + xv ≥ 1 ∀(u, v) ∈ E
0 ≤ xv ≤ 1 ∀v ∈ V

has property that xv ∈
{

0, 1
2
, 1
}

for all v ∈ V . Extreme point x is a feasible solution
that cannot be written as λx1 + (1− λ)x2 for 0 < λ < 1 and feasible solution x1 and x2

distinct from x.

One of the advantages of LP-based approaches is that they provide a general framework
so that in many cases lead to better approximation guarantee over a restricted but yet
interesting subset of input by exploiting some properties of those instances.

(b) Give a 3
2
-approximation algorithm for Vertex Cover problem on planar graphs. You may

use the fact that there are polynomial time LP solvers that return extreme point optimal
solution and that there is polynomial time algorithms to 4-color any planar graph (i.e.
each vertex is assigned to one of the colors such that the end points of any edge have
different colors).

(b) (Optional) A graph G is a k-degenerate graph if in every subgraph of G there is a
vertex of degree k. Design a (2 − 2

k+1
)-approximation algorithm for Vertex Cover on

k-degenerate graphs.

3 MAX-SAT

In this problem we aim to design randomized approximation algorithm for MAX-SAT prob-
lem. First let us define the problem formally. In MAX-SAT problem, the input consists
of n boolean variables x1, · · ·xn (each may be either true or false), m clauses C1, · · · , Cm

(each of which consists of disjunction (“or”) of some number variables and their negations)
and a non-negative weight wi for each clause. The objective is to find an assignment of
true/false to xis that maximize the weight of satisfied clauses. A clause is satisfied if one
of its non-negated variable is set to true, or one of the negated variable is set to false.

Moreover, we assume that no literal is repeated in a clause and at most one of xi and x̄i
appears in a clause.
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(a) Write down an LP-relaxation of MAX-SAT problem. Hint: Come up with an integer
program with 0-1 variables yi for each boolean variable xi such that yi = 1 corresponds
to xi set to true).

(b) Show the expected performance of the “standard” randomized rounding algorithm (on
the LP-relaxation you designed in part (a)) is (1− 1/e). Note that clauses can be of any
length.

A naive algorithm for MAX-SAT problem is to set each variable to true with probability
1/2. It is easy to see that this unbiased randomized algorithm of MAX-SAT is a (1/2)-
approximation algorithm (in expectation).

(c) Show the algorithm that returns the best of two solutions given by the randomized round-
ing algorithm and the simple unbiased randomized algorithm is a (3/4)-approximation
algorithm of MAX-SAT.

4 Richardson Iteration: An Alternative View

In lecture, we briefly discussed the following least squares problem:

min
x
f(x) = ‖Ax− b‖22

A is a fixed data matrix (not necessarily square or symmetric) and b is a fixed vector
containing the dependent variable. This problem can be solved directly by computing x∗ =
(ATA)−1ATb.

However, it is often much faster to apply iterative methods. Here you will give a complete
analysis for applying gradient descent to the problem. Specifically, consider the following
iteration, which is often called “Richardson Iteration”:

x0 ⇐ 0

xt+1 ⇐ xt + η · 2(ATb−ATAxt)

For this problem you may assume that A is full rank and thus ATA is invertible.

(a) Show that f(x) is convex.

(b) Show that if we set η = O(1/‖ATA‖2), after

t = O
(
‖ATA‖2‖(ATA)−1‖2 log(‖ATA‖2‖(ATA)−1‖2/ε)

)
iterations this method will converge, specifically guaranteeing that:

f(xt)− f(x∗) ≤ ε‖b‖22.
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For simple problems like linear system solving, there are often alternative ways of analyzing
and viewing methods like Richardson-Iteration. Here we briefly consider one such approach.

(c) Show that for M = (I− 2ηATA), our iteration is equivalent to:

xt+1 ⇐M(xt − x∗) + x∗

(d) What property of M is required for the iterate xt to converge to x∗? How should we
set η to guarantee this convergence? With η set as suggested, how many iterations are
required to guarantee that:

‖xt − x∗‖2 ≤ ε‖x∗‖2


	Self-concordant barriers
	Planar Vertex Cover
	MAX-SAT
	Richardson Iteration: An Alternative View

