
Massachusetts Institute of Technology
6.854J/18.415J: Advanced Algorithms Wednesday, April 13, 2016
Ankur Moitra

Problem Set 8

Due: Wednesday, April 20, 2016 – 7 pm
Dropbox Outside Stata G5

Collaboration policy: collaboration is strongly encouraged. However, remember that

1. You must write up your own solutions, independently.

2. You must record the name of every collaborator.

3. You must actually participate in solving all the problems. This is difficult in very large
groups, so you should keep your collaboration groups limited to 3 or 4 people in a given
week.

4. Write each problem in a separate sheet and write down your name on top of every sheet.

5. No bibles. This includes solutions posted to problems in previous years.

1 Multiplicative Weights with Switching Experts

Multiplicative weights can compete with the “best expert in hindsight”. If f ti is the loss
of expert i in round t, multiplicative weights will select experts from the distribution pt in
round t such that:

T∑
t=1

〈pt, f t〉 ≤ min
i

T∑
t=1

f ti +O(
√
T lnn)

For this problem, instead of simply picking the best expert in hindsight, consider a more
complex set of strategies that switch between experts, but only up to k times. Let Sk be the
loss of the best switching strategy in hindsight:

Sk = min
1=t1<t2<...<tk≤tk+1=T

 k∑
j=1

min
i

tj+1∑
t=tj

f ti

(a) Show how to modify the multiplicative weights algorithm to compete with Sk. Specifi-

cally, your algorithm should pick an expert from distributions p1, . . . , pT in each round
so that:

T∑
t=1

〈pt, f t〉 ≤ Sk +O(
√
Tk ln(nT)).

As in class, you may assume that you know T ahead of time.

(b) How high can we set k so that our average loss still goes to 0 as T →∞?

2 Problem Set 8

2 Multiclass AdaBoost

AdaBoost can combine many weak binary classifiers into a strong binary classifier. It turns
out the reweighting approach is useful for multiclass classification as well.

Specifically, consider the k class problem where we are given a sample set of data examples
and labels:

(x1, f(x1)), (x2, f(x2)), . . . , (xm, f(xm))

where f : X → {1, . . . , k} is the classification function that we’re trying to learn.
Let U be the discrete uniform distribution on {x1, . . . , xm}. Our ultimate goal is to

output a classifier H that satisfies:

err(H,U) = E
x∼U

1[H(x) 6= f(x)] < ε

where 1[c] denotes an indicator random variable for the event c.
For binary boosting, we started with a weak classifier and then reweighted points to

increase the “importance” of the ones which we classified incorrectly. For multiclass boosting
we will do something a bit more complicated: we maintain a weight for every (point, wrong
class) pair. For example, if f(x1) = 3 we’ll have (k − 1) weights for:

(x1, 1), (x1, 2), (x1, 4), . . . , (x1, k).

This allows use to discourage specific wrong answers when boosting. Formally, we’ll scale
our weights to form a distribution D over all m(k − 1) (point, wrong answer) pairs. We use
the notation D(xi, j) to denote the weight of the pair containing xi and the jth incorrect
class for xi – i.e. the jth smallest value from {1, . . . , k} − {f(xi)}.

For a distribution D, we say a weak classifier h has “edge” η if:

E
x,j∼D

[1[h(x) = f(x)]− 1[h(x) = j]] ≥ η.

In other words, if we pick a (point, wrong answer) pair from D, the point is more likely (by
η) to be classified correctly by h than to be assigned that particular incorrect answer.

Consider the following boosting procedure:

• Set D1 to be the uniform distribution – i.e. D1(xi, j) = 1
m(k−1) for all i, j.

• For t = 1, 2, . . . , T :

– Find a weak learner ht with edge ηt over Dt.

– Set αt = 1
2

ln 1+ηt
1−ηt

– For each i, j set Dt+1(xi, j) = Dt(xi,j)·e−αt[1[h(xi)=f(xi)]−1[h(xi)=j]]
zt

where zt is a normal-
ization constant.

Problem Set 8 3

• Output classifier H with H(xi) = arg max`∈1,...,k
∑T

t=1 αt1[ht(xi) = `]. In other words,
output the label for xi that was output with the highest (weighted) frequency by our
intermediate weak classifiers.

To argue that this procedure works we’ll use a proof similar to the binary setting.

(a) Show that:

err(H,U) = E
x∼U

1[H(x) 6= f(x)] ≤ (k − 1)
T∏
t=1

zt

(b) Show that, as in the binary classification case,

zt ≤ e−O(η2)

There are many ways to do this, but one approach uses that, for any values ui,j ∈ [−1, 1],

m∑
i=1

∑
j 6=f(xi)

D(xi, j)e
−αui,j ≤

m∑
i=1

∑
j 6=f(xi)

D(xi, j)

(
1 + ui,j

2
e−α +

1− ui,j
2

eα
)
.

This fact just follows from the convexity of e−αx.

(c) Conclude a final bound on err(H,U). If ηt is always greater than some constant, what
dependence do we expect to incur on k in the number of iterations required to reach ε
error?

3 Approximating “Light” Max Cuts

Let’s consider an undirected graph G = (V,E) for simplicity. Recall that the Semidefinite
Programming relaxation for max cut outputs n unit vectors v1, . . . , vn ∈ Rn maximizing:

OPT =
∑

(i,j)∈E

1− 〈vi, vj〉
2

These vectors are then “rounded” by choosing a unit vector x ∈ Rn uniformly at random
from the sphere and placing node i into S if xTvi ≥ 0 and into V \ S otherwise.

Goemans and Williamson showed that, in general, this rounding scheme returns a max-
imum cut in G with expected value within α ≈ 0.87856 of optimal. Specifically, let θi,j be
the angle between vectors vi and vj (so 〈vi, vj〉 = cos θi,j), then the expected size of the cut
returned is: ∑

(i,j)∈E

P[i ∈ S, j /∈ S or i /∈ S, j ∈ S] =
∑

(i,j)∈E

θi,j
π
.

4 Problem Set 8

This sum was shown to be ≥ OPT by showing that, for each term,

θi,j
π
≥ 0.87856

1− cos(θi,j)

2
= 0.87856

1− 〈vi, vj〉
2

,

which follows from the fact that, for all θ, 2
π

θ
1−cos(θ) ≥ 0.87856. Let θ0 be the unique θ

minimizing 2
π

θ
1−cos(θ) .

(a) Show that, when OPT/|E| > 1−cos(θ0)
2

this term-by-term analysis cannot be tight – i.e.
it cannot be that θi,j = θ0 for all i, j. Goemans and Williamson actually take advantage
of this fact to give better approximation ratios for “heavy” max cut instances, where the
optimum of the SDP relaxation is large compared to the number of edges in G.

(b) On the other hand, there are known instances of graphs where OPT/|E| < 1−cos(θ0)
2

but
the Goemans-Williamson rounding scheme will not achieve an approximation of better
than 0.87856 in expectation. Explain why this is possible. Why does your argument
from part (a) not work for the less than case?

Note: We’re not asking you to actually come up with a bad case graph. Simply explain
what values for θi,j would lead to the Goemans-Williamson approximation being tight.

Nevertheless, there are several algorithms that do achieve better approximations when
OPT/|E| is small. These approaches are inspired by noting that a random cut (i.e. assign
each vertex independently at random to one side of the cut) can actually give a decent
approximation to “light” maximum cut instances, since a random cut will have expected
value |E|/2. We will look at one such approach.

(c) Construct a set of unit vectors u1, . . . , un ∈ Rn that, when rounded using the random
scheme, outputs a uniformly random cut. In other words, u1, . . . , un should be chosen
such that the procedure assigns each node i to S with probability exactly 1/2 and the
choices are independent amongst nodes.

Consider appending a weighted copy of ui to each vi obtained from solving the SDP relax-
ation. Specifically, for some λ ∈ [0, 1] construct:

v′i = [
√
λvi,
√

1− λui].

(d) Let θ′i,j be the angle between v′i and v′j. For what values of θi,j is θ′i,j > θi,j? For
what values is it less than θi,j < θ′i,j? Use your answers to justify how rounding with
{v′1, . . . , v′n} instead of {v1, . . . , vn} could improve your bad case from part (b).

We won’t prove it formally, but it can be shown that when OPT/|E| < 1−cos(θ0)
2

, it’s always
possible to obtain an improvement over Goemans-Williamson using this scheme.

Problem Set 8 5

4 Log-Determinant Barrier

Like linear programs, to solve semidefinite programs using interior point methods, we need
a self-concordant barrier function. One choice is the log determinant function:

−log det(X) = − log(determinant(X)).

Using the definitions from Problem Set 7, Question 1, show that −log det is an n-self-
concordant barrier for the positive definite cone, which contains any symmetric n×n matrix
A with A � 0. Here, we are viewing the positive definite cone as a subset of the space of
symmetric matrices, rather than arbitrary matrices.

You may use the fact that, for any pair of positive definite A and symmetric B, there is
some full rank C and diagonal matrices DA and DB such that:

A = CTDAC and B = CTDBC.

Hint: Recall that proving self-concordance requires restricting a function to a line. Since
−log det is defined over the positive definite cone, its restriction to a line in that cone takes
the form fA,B(t) = −log det(A + tB) where A is positive definite and B is symmetric.

	Multiplicative Weights with Switching Experts
	Multiclass AdaBoost
	Approximating ``Light'' Max Cuts
	Log-Determinant Barrier

