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1 Last Time

• min cost flow

• Goldberg-Tarjan

A mandatory homework problem (due April 1st):

Homework 1. Let F be a family of sets closed under union, i.e.

A,B ∈ F =⇒ A ∪B ∈ F.

Prove that there is an element x such that

|{A ∈ F s.t. x ∈ A}| ≥ |F |
2
.

2 Introduction to Linear Programs

“Canonical form” of LPs:

• x, y are variables vectors, b, c are constant vectors, and A is a matrix (that represents the
constraints in the linear program).

• Primal (P):

max cTx

s.t. Ax ≤ b
x ≥ 0

• Dual (D):

min yT b

s.t. yTA ≥ cT

y ≥ 0

• We say x is feasible if it meets constraints in (P), and y is feasible if it meets constraints in
(D).
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3 Weak Duality

Lemma 2 (Weak Duality). If x, y are feasible, then there’s a relationship about “how good they
are”:

cTx ≤ yT b

Proof. Using x ≥ 0 and yTA ≥ cT , we find that

yTAx ≥ cTx.

Now, using Ax ≤ b and yT ≥ 0,
yTAx ≤ yT b.

So, using transitivity, we have shown that

cTx ≤ yT b.

3.1 Application to Min Cut/Max Flow

Let’s apply weak duality to max flow by formulating the problem as a linear program. Let Ps,t be
all s− t paths in G = (V,E) and let xP be a weight assigned to each path P ∈ Ps,t.

max
∑

P∈Ps,t

xP

s.t.
∑

P∈Ps,t,e∈P
xP ≤ u(e)

xP ≥ 0

Here our constraints can be written in matrix form by letting A be an |E| × |Ps,t| matrix that
contains a 1 in position (e, P ) if e ∈ P . All other entries are 0.

The dual of the above program is as follows:

min
∑
e

u(e)y(e)

s.t. ∀P ∈ Ps,t,
∑
e∈P

y(e) ≥ 1

y(e) ≥ 0

We claim that an s− t cut S corresponds to a feasible solution to the dual. Specifically, y contains
an entry for every edge e = (u, v) in G and we can set:

y(e) =

{
1 if u ∈ S, v ∈ V \ S
0 else
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Then,
∑

e∈P y(e) ≥ 1 ∀P ∈ Ps,t. This is because P is a path from s to t and thus at some point
must cross the min cut, which means that it contains an edge with y(e) = 1.

Moreover,
∑

e y(e)u(e) = cap(S, V \S). Weak duality therefore implies a fact we already know well
– any cut can be used to upper bound the maximum obtainable flow.

4 Projection Theorem and Farkas’ Lemma

Geometrically, the constraints of a linear program each form a half space that constrains the location
of any feasible solution.

P = {x|Ax ≤ b, x ≥ 0}

x

y

P

This is called a polyhedron; it is convex.
For any x, y ∈ P and λ ∈ [0, 1]:

λx+ (1− λ)y ∈ P

We’re go-

ing to assume one basic fact about convex regions:

Theorem 3 (Projection theorem). If P is a nonempty closed, convex set, then:

(1) For any b, there is a unique minimizer in P to

f(z) = ‖z − b‖2.

Call the optimal point z∗ = projP (b).

(2) z∗ is the projection of b iff
(z − z∗)T (b− z∗) ≤ 0 ∀z ∈ P

Visually,

b

z∗

z
P
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The projection theorem can be used to prove another basic fact about convex regions.

Lemma 4 (Farkas’ lemma). Exactly one of the following holds:

(1) ∃x s.t. Ax = b, x ≥ 0

(2) ∃y s.t. yTA ≥ 0 and yT b < 0

This version of Farkas’ lemma corresponds to the standard form of an LP.

Proof. No more than one: if both (1) and (2) hold, set c = 0 in the standard form. Then from (2)
there must be some y such that yTA ≥ 0 and yT b < 0. However, by (1) there is some feasible x for
the primal and since c = 0, cTx = 0. yT b ≤ 0 = cTx violates weak duality.

At least one: Assume @x that satisfies (1). Then, we will construct a y that satisfies (2). Let
P = {Ax s.t. x ≥ 0}. by assumption, b 6∈ P .

Let p = projP (b). p = Ax for some x ≥ 0. Let y = p− b. We want to show that y satisfies (2).

Claim 1: yTA ≥ 0.

Proof: By the projection theorem,

(z − p)T (b− p) ≤ 0 ∀z ∈ P.

With p = Ax, set z = A(x+ ei). Then

(A(x+ ei)−Ax)T (b− p) = ei
TAT (b− p) ≤ 0 =⇒ ei

TAT y ≥ 0.

In other words, the ith entry of AT y is ≥ 0. By setting z for each i, we see that AT y ≥ 0.

Claim 2: yT b ≤ 0.

Proof: bT y = (p− y)T y = pT y− yT y. Since b is not in P , yT y = ‖y‖2 > 0, so we just need to show
that pT y ≤ 0. Since 0 ∈ P , then by the projection theorem,

(0− p)T (b− p) ≤ 0 =⇒ pT y ≤ 0.

Conclusion: So, we’ve shown that (1) and (2) can’t both be true, and that if (1) is true, we just
take it; if (1) is not true, then we can construct a y such that (2) is holds.
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