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1 Overview

Recall:

e Weak Duality
e Projection onto a convex set

e Farkas’ Lemma
Today:

e Strong Duality
e Zero Sum Games

e Complementary Slackness + relation to strong and weak duality

2 Farkas’ Lemma
Recall standard form of a linear program:

(primal) max 'z s.t. Az =b, 2 >0

(dual) min yTb s.t. yTA > cT

And the original form of Farkas’ lemma:

Lemma 1 (Farkas’). Ezactly 1 of the following holds:
(1) 3z s.t. Az =b, x>0

(2) 3y s.t. y"A>0, y"h <0

That is, either there is a feasible x, or there is a y that certifies no such x exists.
We now prove that an alternate form of Farkas’ lemma holds.

Lemma 2 (Farkas’, alternate form). Ezactly 1 of the following holds:

(1') 3z s.t. Az <b

') 3y s.t. yTA=0,y>0,y'b<0



Proof. We map (1’) into the form (1). Consider the following linear system.

xT xT
(A —A I)|a | =b|a | >0 (1)
S S

or expanded out
Azt —Az™ +s=b,a" >0,27 >0,5s >0

s represents “slack” variables (the amount of room remaining for each constraint), and A is the

same as in (1).

Claim 3. 1” and 1’ are equivalent. We can convert any solution of 1’ to a solution of 1" and vice
versa.

Suppose we have a solution to 1/, x with Az < b. Then we can construct a solution to 1” as follows.

xt = maz(x,0)
x~ = —min(z,0)
s=b— Ax

This is a solution to 1”.

Conversely, suppose we are given a solution z*, 27, s to the 1” system. Then,

is a valid solution.

Now looking back at the original Farkas’ lemma, we find the corresponding 2” having the form
y' (A —A 1)>0,4"b<0

1” has no solution if and only if 2" holds.

2" is equivalent to 2’ because y7 A > 0 and —yT A > 0 implies y7 A =0,y > 0,y7b < 0. O

3 Strong Duality

Let z* € RU{—o00} U{+00} be the optimal value for (p). Note that —oco corresponds to (p) being
infeasible and 400 corresponds to an unbounded objective value.

Let w* € RU {—o00} U {400} be optimal value for (d). Here —oo corresponds to an unbounded
objective value and +o0o corresponds to (p) being infeasible.

Theorem 4. If either (p) or (d) is feasible, z* = w*.



Proof. Assume without loss of generality that (p) is feasible.
If (p) is feasible and (p) is unbounded, then z* = 4o00. Then w* = +oo by weak duality.
Otherwise, let 2* be an optimal solution to (p). Then z* = c¢!z*.

We're looking for y with b7y < and ATy > ¢ or equivalently,
—AT —c
(o Jo= ()
If there is no such y, then Farkas’ lemma tells us that there exists an x, A such that

AT
() (2T —A)( Bf%p ):OxZO,)\EO,xTc+)\z*<O

Case 1: If A > 0, then rescale both z and A by 1 to get (z,A) = (£,1). This is still feasible by (*).
The new system satisfies Az = b, > 0 and 272 > z*. However, since z* was optimal we have a
contradiction.

Case 2: If A =0, then Az =0, 2 > 0 and ¢’z > 0. Now, z* + x is feasible for (p) so ¢! (z* + x) >
cT'x* = z*, but since z* is optimal this is a contradiction. ]

4 Zero Sum Games

A powerful application of strong duality is to zero sum games. A zero sum game associates with
every strategy a for player A and b for player B, a known payoff of M, ; for A and —M,; for B.

strategies
for B
e
~ Y
strategies \ AgetsM,
e payoff B gets -M, ,
matrix

The Colonel Blotto Games are examples of zero-sum games. Imagine A has r armies and B has s
armies. Both players divide their armies among 2 mountain passes. A gets —1 if he is outnumbered
on either pass. Otherwise he gets 1.



Theorem 5. (Von Neumann) There are randomized strategies (z,y) where z,y >0, > x; =1 and
> i = 1, which represent distributions among the strategies, and a value V such that

eI M > V1 (1)
My <V1 (2)
where 1 is the vector of all 1s.

Intuitively, (1) corresponds to the amount A can guarantee by playing = and (2) corresponds to
the amount B can guarantee by playing y.

We present a sketch of the proof. We first set up (1) as an LP which maximizes V. Then the dual
of this linear program will minimize V and give (2). Use strong duality to finish. [

The V from above is called the game value. While the theorem above gives a powerful characteri-
zation of V, V can also be computed.

5 Complementary Slackness

Lemma 6. (Complementary Slackness) Let x and y be feasible for the primal and the dual respec-
tively. Then both x and y are optimal if and only if z; > 0 imples (yT A); = ¢;

Proof. We follow the proof of weak duality. Because y? A > ¢, > 0 and b = Az, we have
y'b =yl Az > Tz

If for any 4, we have x; > 0 and (y? A); > ¢;, then this inequality becomes strict, i.e. y? Az > Tz,
and so z and y aren’t optimal.

If for all 4, z; > 0 implies (y’ A); = ¢;, then the inequality becomes equality, i.e. y7 Az = ¢z, and
so x and y are both optimal. O

T

6 Physics Interpretation

We will give a physical interpretation of duality through physics. Let
p={ylATy > c}.

Pictorally the setup looks like:




with gravity in the —b direction. We can create a dictionary between LP terms and physics terms
as follows:

LPs Physics

—b gravity

rows of AT normals to walls

Jx >0, 2747 =b forces balance at equilibrium

complementary slackness: z; > 0 = (ATy); = ¢; only walls touching, exert force

This can be turned into a proof of strong duality, but the details are subtle.
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