MIT 6.854/18.415: Advanced Alg	gorithms	Spring 2016
--------------------------------	----------	-------------

Lecture 13 – March 16, 2016

Prof. Ankur Moitra Scribe: Emilio Pace, Max W. Shen, Sachin Shinde

1 Introduction

In this section, we consider a specific application of algorithms for continuous convex optimization (e.g. the ellipsoid method presented in Lecture 12) to efficiently minimize submodular functions, a discrete analogue of convex functions.

2 Submodular Functions

Definition 1 (Submodular Function). Consider a set N of size n. A function $f : 2^N \to \mathbb{R}$ (where 2^N denotes the power set of N) is submodular if, for all subsets $A \subseteq B \subseteq N$ and elements $j \in N, j \notin B$,

$$f(A \cup \{j\}) - f(A) \ge f(B \cup \{j\}) - f(B).$$
(1)

Intuitively, a submodular function exhibits "diminishing returns" as elements are added to a subset of N: adding the element j to the larger set B causes f to grow no more than adding j to the smaller set A. Alternatively, if adding $\{j\}$ to A decreases the value of f, the decrease will only be larger when $\{j\}$ is added to B.

Corollary 2. f is submodular if and only if for all subsets $A, B \subseteq N$,

$$f(A \cap B) + f(A \cup B) \le f(A) + f(B).$$

$$\tag{2}$$

Proof. Good exercise, or see pages 25–29 of Prof. Jeff Bilmes's lecture slides [1].

2.1 Example: Coverage Function

Consider a bipartite graph G = (V, E) with parts N and M as shown in Figure 1. For $A \subseteq N$, the function f(A) = |neighborhood(A)| (i.e. the number of nodes in M connected to at least one node in A) is a submodular function.

A practical example arrises when adding sensors to observe an area. Adding a new sensor will either cover an entirely new area, or overlap with area that is already covered. For sensor subsets A and B with $A \subseteq B$, the new sensor cannot cover more area once added to the set B than when added to the set A.

Figure 1: Bipartite graph G.

2.2 Example: Entropy

Consider a collection of n random variables X_1, \ldots, X_n . The joint entropy function

$$f(A) = H(\{X_i\}_{i \in A})$$

= $\sum_{\{x_i\}_{i \in A}} -P(\{x_i\}_{i \in A}) \log_2[P(\{x_i\}_{i \in A})]$

for $A \subseteq \{1, \ldots, n\}$ is a submodular function.

2.3 Example: Graph Cut Function

Consider a graph G = (V, E). Then $f(A) = |E(A, V \setminus A)|$, the number of edges in the cut-set, is a submodular function.

3 Optimizing over Convex Sets

It turns out that we can reduce minimizing a submodular function to minimizing a convex function with convex constraints (i.e. over a convex set). We will first explore how we can solve this continuous optimization problem efficiently.

Definition 3 (Convex Set). A set $S \subseteq \mathbb{R}^n$ is convex if for all $x, y \in S$ and $\lambda \in [0, 1]$, we have

$$\lambda x + (1 - \lambda)y \in S. \tag{3}$$

Definition 4 (Convex Function). A function $g: S \to \mathbb{R}$ is convex on a convex set S if, for all $x, y \in S$ and $\lambda \in [0, 1]$,

$$g(\lambda x + (1 - \lambda)y) \le \lambda g(x) + (1 - \lambda)g(y).$$
(4)

Intuitively, g(z) lies below the line connecting (x, g(x)) and (y, g(y)) for all z in between x and y.

To minimize convex $g : \mathbb{R}^n \to \mathbb{R}$ over a convex set P, we can use the ellipsoid method to find a point within the subset $S_c = \{x \mid x \in P \land g(x) \leq c\}$, and use a technique such as binary search to find the right c. It's easy to see that the convexity of P and g implies that S_c is a convex set.

Figure 2: Convex optimization of g over P via the ellipsoid method.

The separation oracle for S_c can be computed efficiently provided we have a separation oracle for P. Given a query point \overline{x} , we first check whether $\overline{x} \in P$ using P's oracle, returning the resultant hyperplane if $\overline{x} \notin P$. If $\overline{x} \in P$, then return $\overline{x} \in S_c$ if $g(x) \leq c$, and return a subgradient of g at \overline{x} otherwise. You can usually just think of the subgradient as a gradient, but we use a slightly more general definition to account for non-smooth level sets (i.e. when S_c has sharp corners).

Definition 5 (Subgradient). A subgradient of $g : \mathbb{R}^n \to \mathbb{R}$ at \overline{x} is a vector $\xi \in \mathbb{R}^n$ such that for all $x \in \mathbb{R}^n$,

$$g(x) \ge g(\overline{x}) + \xi^T (x - \overline{x}).$$
(5)

If we are given any $\overline{x} \notin S_c$ and a subgradient ξ of g at \overline{x} , we have for all $x \in S_c$ that

$$\xi^T x \le \xi^T \overline{x} + g(x) - g(\overline{x}) \tag{6}$$

$$<\xi^T \overline{x} + c - c \tag{7}$$

$$=\xi^T \overline{x},\tag{8}$$

so ξ separates \overline{x} from S_c .

This tells us that the ellipsoid method can be used to efficiently minimize a convex function on a convex set.

4 Lovász Extension

Let's now examine how we can extend any submodular function to a convex functions. Note that any submodular function $f_0: 2^N \to \mathbb{R}$ can be represented as a binary function $f: \{0,1\}^n \to \mathbb{R}$, by enumerating N as $\{a_1,\ldots,a_n\}$ and letting $f(b_1b_2\ldots b_n) = f_0(\bigcup_{i|b_i=1}\{a_i\})$. Hereon, we will consider the binary representation, treating N as the set $\{1,2,\ldots,n\}$. **Definition 6** (Lovász Extension). Given a binary function $f : \{0,1\}^n \to \mathbb{R}$, its Lovász extension $\hat{f} : [0,1]^n \to \mathbb{R}$ is given by

$$\hat{f}(z) = \mathbb{E}_{\lambda \sim Unif[0,1]}[f(\{i|z_i \ge \lambda\})],\tag{9}$$

which extends f to a continuous function on $[0,1]^n$.

The first thing to note is that $\hat{f}(x) = f(x)$ for any $x \in \{0,1\}^n$. Accordingly, the minimum of $\hat{f}(x)$ is immediately a lower bound on the minimum of f(x). Additionally, since $\hat{f}(z)$ is defined as the expectation of $f(X_z)$ for a random variable $X_z \in \{0,1\}^n$, it must be that for all z there is some realization of X_z (i.e. some $x \in \{0,1\}^n$) such that $f(x) \leq \hat{f}(z)$.

It follows that the minimums of $\hat{f}(x)$ and f(x) must be exactly equal. So, if we can minimize the Lovász extension, we can minimize our convex function¹.

Now we just need to know whether or not we can minimize the Lovász extension efficiently. The following theorem, due to Lovász, implies that we can:

Theorem 7. \hat{f} is convex if and only if f is submodular.

For our purpose of optimizing f, we only need to prove the backwards direction; that if f is submodular, then \hat{f} is convex.

Proof. To make this easier to follow, we will use two assumptions. First, let's assume that $\hat{f}(\emptyset) = 0$ (note that subtracting off $f(\emptyset)$ preserves submodularity). Secondly, let's assume that the components of $z \in [0,1]^n$ are sorted in descending order as $z_1 \ge z_2 \ge \ldots \ge z_n$. The fully general case can be recovered by permuting the coordinates and keeping track of the permutation.

Now define $S_i = \{1, 2, ..., i\}$. Expanding the expectation in Definition 6 gives

$$\hat{f}(z) = \sum_{i=1}^{n-1} (z_i - z_{i+1}) f(S_i) + z_n f(S_n)$$
(10)

because $z_i - z_{i+1}$ is the probability that $z_{i+1} \leq \lambda \leq z_i$.

The key idea is to show that $\hat{f}(z)$ is the solution to the following maximization problem:

$$(P): \max_{x} z^{T} x$$

s.t. $x(S) \le f(S) \quad \forall S \subsetneq N$ (11a)

$$x(N) = f(N) \tag{11b}$$

where we have defined $x(S) = \sum_{i \in S} x_i$.

To see why this works, let F denote the feasible region (which is independent of z), and let $f^*(z)$ denote the optimal solution to (P) for a given $z \in [0,1]^n$. For any $z, z' \in [0,1]^n$ and $\lambda \in [0,1]$, we

¹There are still a few details to work through – e.g. we need to ensure that when we return a minimize for $\hat{f}(x)$, it is actually an extreme point of $[0, 1]^n$. We have shown that there *always is* a minimizer that is an extreme point, but there could be valid minimizers that are not.

have

$$f^*(\lambda z + (1-\lambda)z') = \max_{x \in F} (\lambda z + (1-\lambda)z')^T x$$
(12)

$$\leq \lambda \max_{x \in F} z^T x + (1 - \lambda) \max_{x \in F} z^{T} x \tag{13}$$

$$= \lambda f^{*}(z) + (1 - \lambda) f^{*}(z').$$
(14)

and so $f^*(z)$ is convex. So proving $\hat{f}(z) = f^*(z)$ suffices to prove Theorem 7.

To do this, we will use weak duality. (P)'s dual is given by

$$(D): \min_{y} \sum_{S \subseteq N} y_{S} f(S)$$

s.t.
$$\sum_{S \subseteq N} y_{S} e_{S} = z$$
 (15a)

$$y_S \ge 0 \quad \forall \ S \subsetneq N \tag{15b}$$

where e_S is the indicator function on S, i.e.

$$(e_S)_i = \begin{cases} 1 & \text{if } i \in S \\ 0 & \text{if } i \notin S \end{cases}.$$

Weak duality tells us that for any feasible x and y, we have

$$z^T x \le \sum_{S \subseteq N} y_S f(S).$$
(16)

Therefore, to find the optimum $f^*(z)$, it suffices to find a feasible x^* and y^* with

$$z^{T}x^{*} = \sum_{S \subseteq N} y_{S}^{*}f(S).$$
(17)

It turns out that (17) is satisfied if we define x^* and y^* as:

$$x_i^* = f(S_i) - f(S_{i-1}) \tag{18}$$

$$y_S^* = \begin{cases} z_i - z_{i-1} & \text{if } S = S_i \text{ for } i < n \\ z_n & \text{if } S = N \\ 0 & \text{otherwise} \end{cases}$$
(19)

Notice that by rearranging, we have

$$z^{T}x^{*} = \sum_{i=1}^{n} z_{i}(f(S_{i}) - f(S_{i-1}))$$
(20)

$$=\sum_{i=1}^{n-1} (z_i - z_{i+1}) f(S_i) + z_n f(S_n)$$
(21)

$$=\sum_{S\subseteq N} y_S^* f(S).$$
(22)

So, as long as x^* and y^* are feasible, x^* is optimal and as hoped,

$$f^*(z) = z^T x^*$$
(23)

$$=\sum_{i=1}^{n} (z_i - z_{i+1}) f(S_i) + z_n f(S_n)$$
(24)

$$=\hat{f}(z).$$
(25)

Let's first show that x^* is feasible. Recalling the assumption that $f(S_0) = f(\emptyset) = 0$, we have

$$x^*(N) = \sum_{i=1}^{n} f(S_i) - f(S_{i-1})$$
(26)

$$= f(S_n) - f(S_0)$$
 (27)

$$=f(N) \tag{28}$$

as desired. To show constraint (11a) is satisfied, let's induct on |S|. The base case of |S| = 0 trivially holds as $x^*(\emptyset) = 0 \le f(\emptyset)$. For the inductive step, let *i* be the largest element of *S*. By Corollary 2, we have

$$f(S) + f(S_{i-1}) \ge f(S \cup S_{i-1}) + f(S \cap S_{i-1})$$
(29)

$$= f(S_i) + f(S \setminus \{i\}) \tag{30}$$

which rearranges to

$$f(S) \ge f(S_i) - f(S_{i-1}) + f(S \setminus \{i\})$$
 (31)

$$=x_i^* + f(S \setminus \{i\}). \tag{32}$$

Since $|S \setminus \{i\}| = |S| - 1$, the induction hypothesis gives $x^*(S \setminus \{i\}) \le f(S \setminus \{i\})$, so

$$f(S) \ge x_i^* + x^*(S \setminus \{i\}) \tag{33}$$

$$=x^*(S) \tag{34}$$

and the inductive step is complete.

The case for y^* is more straightforward. First note that for any $i \in N$,

$$\left(\sum_{S\subseteq N} y_S^* e_S\right)_i = \left(\sum_{j=1}^{n-1} (z_j - z_{j+1}) e_{S_j} + z_n e_{S_n}\right)_i$$
(35)

$$=\sum_{j=i}^{n-1} (z_j - z_{j+1}) + z_n \tag{36}$$

$$=z_i \tag{37}$$

and thus constraint (15a) holds.

Furthermore, our assumption that $z_1 \ge z_2 \ge \ldots \ge z_n$ implies that $z_i - z_{i+1} \ge 0$ for all i < n. As y_S^* takes on one of these values or zero for all $S \subsetneq N$, we have $y_S^* \ge 0$ for all $S \subsetneq N$. That is, y^* satisfies constraint (15b), and is therefore feasible.

References

 J. Bilmes. EE595. Class Lecture, Topic: "Submodular functions, their optimization and applications." Dept. of Elect. Eng., Univ. Washington, Seattle, Apr. 1, 2011 [Online]. Available: http://melodi.ee.washington.edu/~bilmes/ee595a_spring_2011/lecture2.pdf