
MIT 6.854/18.415: Advanced Algorithms Spring 2016

Lecture 13 – March 16, 2016

Prof. Ankur Moitra Scribe: Emilio Pace, Max W. Shen, Sachin Shinde

1 Introduction

In this section, we consider a specific application of algorithms for continuous convex optimization
(e.g. the ellipsoid method presented in Lecture 12) to efficiently minimize submodular functions, a
discrete analogue of convex functions.

2 Submodular Functions

Definition 1 (Submodular Function). Consider a set N of size n. A function f : 2N → R
(where 2N denotes the power set of N) is submodular if, for all subsets A ⊆ B ⊆ N and elements
j ∈ N, j /∈ B,

f(A ∪ {j})− f(A) ≥ f(B ∪ {j})− f(B). (1)

Intuitively, a submodular function exhibits “diminishing returns” as elements are added to a subset
of N : adding the element j to the larger set B causes f to grow no more than adding j to the
smaller set A. Alternatively, if adding {j} to A decreases the value of f , the decrease will only be
larger when {j} is added to B.

Corollary 2. f is submodular if and only if for all subsets A,B ⊆ N ,

f(A ∩B) + f(A ∪B) ≤ f(A) + f(B). (2)

Proof. Good exercise, or see pages 25–29 of Prof. Jeff Bilmes’s lecture slides [1].

2.1 Example: Coverage Function

Consider a bipartite graph G = (V,E) with parts N and M as shown in Figure 1. For A ⊆ N , the
function f(A) = |neighborhood(A)| (i.e. the number of nodes in M connected to at least one node
in A) is a submodular function.

A practical example arrises when adding sensors to observe an area. Adding a new sensor will
either cover an entirely new area, or overlap with area that is already covered. For sensor subsets
A and B with A ⊆ B, the new sensor cannot cover more area once added to the set B than when
added to the set A.

1

N M

Figure 1: Bipartite graph G.

2.2 Example: Entropy

Consider a collection of n random variables X1, . . . , Xn. The joint entropy function

f(A) = H({Xi}i∈A)

=
∑
{xi}i∈A

−P ({xi}i∈A) log2[P ({xi}i∈A)]

for A ⊆ {1, . . . , n} is a submodular function.

2.3 Example: Graph Cut Function

Consider a graph G = (V,E). Then f(A) = |E(A, V \A)|, the number of edges in the cut-set, is a
submodular function.

3 Optimizing over Convex Sets

It turns out that we can reduce minimizing a submodular function to minimizing a convex function
with convex constraints (i.e. over a convex set). We will first explore how we can solve this
continuous optimization problem efficiently.

Definition 3 (Convex Set). A set S ⊆ Rn is convex if for all x, y ∈ S and λ ∈ [0, 1], we have

λx+ (1− λ)y ∈ S. (3)

Definition 4 (Convex Function). A function g : S → R is convex on a convex set S if, for all
x, y ∈ S and λ ∈ [0, 1],

g(λx+ (1− λ)y) ≤ λg(x) + (1− λ)g(y). (4)

Intuitively, g(z) lies below the line connecting (x, g(x)) and (y, g(y)) for all z in between x and y.

To minimize convex g : Rn → R over a convex set P , we can use the ellipsoid method to find a
point within the subset Sc = {x | x ∈ P ∧ g(x) ≤ c}, and use a technique such as binary search to
find the right c. It’s easy to see that the convexity of P and g implies that Sc is a convex set.

2

{ | () }x g x c

P

x

x

c
S

Figure 2: Convex optimization of g over P via the ellipsoid method.

The separation oracle for Sc can be computed efficiently provided we have a separation oracle for
P . Given a query point x, we first check whether x ∈ P using P ’s oracle, returning the resultant
hyperplane if x 6∈ P . If x ∈ P , then return x ∈ Sc if g(x) ≤ c, and return a subgradient of g at x
otherwise. You can usually just think of the subgradient as a gradient, but we use a slightly more
general definition to account for non-smooth level sets (i.e. when Sc has sharp corners).

Definition 5 (Subgradient). A subgradient of g : Rn → R at x is a vector ξ ∈ Rn such that for all
x ∈ Rn,

g(x) ≥ g(x) + ξT (x− x). (5)

If we are given any x 6∈ Sc and a subgradient ξ of g at x, we have for all x ∈ Sc that

ξTx ≤ ξTx+ g(x)− g(x) (6)

< ξTx+ c− c (7)

= ξTx, (8)

so ξ separates x from Sc.

This tells us that the ellipsoid method can be used to efficiently minimize a convex function on a
convex set.

4 Lovász Extension

Let’s now examine how we can extend any submodular function to a convex functions. Note that
any submodular function f0 : 2N → R can be represented as a binary function f : {0, 1}n → R,
by enumerating N as {a1, . . . , an} and letting f(b1b2 . . . bn) = f0

(⋃
i|bi=1{ai}

)
. Hereon, we will

consider the binary representation, treating N as the set {1, 2, . . . , n}.

3

Definition 6 (Lovász Extension). Given a binary function f : {0, 1}n → R, its Lovász extension
f̂ : [0, 1]n → R is given by

f̂(z) = Eλ∼Unif[0,1][f({i|zi ≥ λ})], (9)

which extends f to a continuous function on [0, 1]n.

The first thing to note is that f̂(x) = f(x) for any x ∈ {0, 1}n. Accordingly, the minimum of f̂(x)
is immediately a lower bound on the minimum of f(x). Additionally, since f̂(z) is defined as the
expectation of f(Xz) for a random variable Xz ∈ {0, 1}n, it must be that for all z there is some
realization of Xz (i.e. some x ∈ {0, 1}n) such that f(x) ≤ f̂(z).

It follows that the minimums of f̂(x) and f(x) must be exactly equal. So, if we can minimize the
Lovász extension, we can minimize our convex function1.

Now we just need to know whether or not we can minimize the Lovász extension efficiently. The
following theorem, due to Lovász, implies that we can:

Theorem 7. f̂ is convex if and only if f is submodular.

For our purpose of optimizing f , we only need to prove the backwards direction; that if f is
submodular, then f̂ is convex.

Proof. To make this easier to follow, we will use two assumptions. First, let’s assume that f̂(∅) = 0
(note that subtracting off f(∅) preserves submodularity). Secondly, let’s assume that the compo-
nents of z ∈ [0, 1]n are sorted in descending order as z1 ≥ z2 ≥ . . . ≥ zn. The fully general case can
be recovered by permuting the coordinates and keeping track of the permutation.

Now define Si = {1, 2, . . . , i}. Expanding the expectation in Definition 6 gives

f̂(z) =

n−1∑
i=1

(zi − zi+1)f(Si) + znf(Sn) (10)

because zi − zi+1 is the probability that zi+1 ≤ λ ≤ zi.

The key idea is to show that f̂(z) is the solution to the following maximization problem:

(P) : max
x

zTx

s.t. x(S) ≤ f(S) ∀ S (N (11a)

x(N) = f(N) (11b)

where we have defined x(S) =
∑

i∈S xi.

To see why this works, let F denote the feasible region (which is independent of z), and let f∗(z)
denote the optimal solution to (P) for a given z ∈ [0, 1]n. For any z, z′ ∈ [0, 1]n and λ ∈ [0, 1], we

1There are still a few details to work through – e.g. we need to ensure that when we return a minimize for f̂(x),
it is actually an extreme point of [0, 1]n. We have shown that there always is a minimizer that is an extreme point,
but there could be valid minimizers that are not.

4

have

f∗(λz + (1− λ)z′) = max
x∈F

(λz + (1− λ)z′)Tx (12)

≤ λmax
x∈F

zTx+ (1− λ) max
x∈F

z′Tx (13)

= λf∗(z) + (1− λ)f∗(z′). (14)

and so f∗(z) is convex. So proving f̂(z) = f∗(z) suffices to prove Theorem 7.

To do this, we will use weak duality. (P)’s dual is given by

(D) : min
y

∑
S⊆N

ySf(S)

s.t.
∑
S⊆N

ySeS = z (15a)

yS ≥ 0 ∀ S (N (15b)

where eS is the indicator function on S, i.e.

(eS)i =

{
1 if i ∈ S
0 if i 6∈ S

.

Weak duality tells us that for any feasible x and y, we have

zTx ≤
∑
S⊆N

ySf(S). (16)

Therefore, to find the optimum f∗(z), it suffices to find a feasible x∗ and y∗ with

zTx∗ =
∑
S⊆N

y∗Sf(S). (17)

It turns out that (17) is satisfied if we define x∗ and y∗ as:

x∗i = f(Si)− f(Si−1) (18)

y∗S =


zi − zi−1 if S = Si for i < n

zn if S = N

0 otherwise

(19)

Notice that by rearranging, we have

zTx∗ =
n∑
i=1

zi(f(Si)− f(Si−1)) (20)

=

n−1∑
i=1

(zi − zi+1)f(Si) + znf(Sn) (21)

=
∑
S⊆N

y∗Sf(S). (22)

5

So, as long as x∗ and y∗ are feasible, x∗ is optimal and as hoped,

f∗(z) = zTx∗ (23)

=

n−1∑
i=1

(zi − zi+1)f(Si) + znf(Sn) (24)

= f̂(z). (25)

Let’s first show that x∗ is feasible. Recalling the assumption that f(S0) = f(∅) = 0, we have

x∗(N) =

n∑
i=1

f(Si)− f(Si−1) (26)

= f(Sn)− f(S0) (27)

= f(N) (28)

as desired. To show constraint (11a) is satisfied, let’s induct on |S|. The base case of |S| = 0
trivially holds as x∗(∅) = 0 ≤ f(∅). For the inductive step, let i be the largest element of S. By
Corollary 2, we have

f(S) + f(Si−1) ≥ f(S ∪ Si−1) + f(S ∩ Si−1) (29)

= f(Si) + f(S \ {i}) (30)

which rearranges to

f(S) ≥ f(Si)− f(Si−1) + f(S \ {i}) (31)

= x∗i + f(S \ {i}). (32)

Since |S \ {i}| = |S| − 1, the induction hypothesis gives x∗(S \ {i}) ≤ f(S \ {i}), so

f(S) ≥ x∗i + x∗(S \ {i}) (33)

= x∗(S) (34)

and the inductive step is complete.

The case for y∗ is more straightforward. First note that for any i ∈ N ,∑
S⊆N

y∗SeS


i

=

n−1∑
j=1

(zj − zj+1)eSj + zneSn


i

(35)

=

n−1∑
j=i

(zj − zj+1) + zn (36)

= zi (37)

and thus constraint (15a) holds.

Furthermore, our assumption that z1 ≥ z2 ≥ . . . ≥ zn implies that zi − zi+1 ≥ 0 for all i < n. As
y∗S takes on one of these values or zero for all S (N , we have y∗S ≥ 0 for all S (N . That is, y∗

satisfies constraint (15b), and is therefore feasible.

6

References

[1] J. Bilmes. EE595. Class Lecture, Topic: “Submodular functions, their optimization and ap-
plications.” Dept. of Elect. Eng., Univ. Washington, Seattle, Apr. 1, 2011 [Online]. Available:
http://melodi.ee.washington.edu/~bilmes/ee595a_spring_2011/lecture2.pdf

7

http://melodi.ee.washington.edu/~bilmes/ee595a_spring_2011/lecture2.pdf

	Introduction
	Submodular Functions
	Example: Coverage Function
	Example: Entropy
	Example: Graph Cut Function

	Optimizing over Convex Sets
	Lovász Extension

