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1 Last Time

Linear Programming Relaxations, Vertex Cover, Set Cover, Primal Dual method

2 Gradient Descent

There are many variations, we’ll focus on Unconstrained Minimization. Given a convex, dif-
ferentiable function, f : Rn → R

A convex function :

f(λx+ (1 + λ)y) ≤ λf(x) + (1− λ)f(y) ∀x, y ∈ Rn, λ ∈ [0, 1]

We want to minimize f(x).

2.1 Gradient Descent

Let’s start with n = 1 case.

for t = 1 to T
set Xt+1 = Xt − ηf ′(Xt)

where η is the learning rate.

Recall, if f is twice differentiable: Taylor’s Thm:

f(y) = f(x) + f ′(x)(y − x) + f ′′(x)/2(y − x)2 + o((y − x)2)

Fact: If f is twice differentiable, then f is convex ⇐⇒ f ′′(x) ≥ 0∀x.

Lagrange Remainder:

f(y) = f(x) + f ′(x)(y − x) + f ′′(x′)
2 (y − x)2 for some x′ ∈ [x, y]

Example:
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(see 14.50min in video)
Note that the tangent line is a lower bound for ALL f(x).

Observation: f(y) ≥ f(x) + (y − x)f ′(x)
We see that strongly convex functions can fix a quadratic on the right hand side to give a lower
bound of f(y). The further away you move from, the further above the lower bound you are.
intuition: gradient descent is a simple greedy algorithm, using linear approximation

2.2 Gradient Descent, n ≥ 2

Theorem 1. (MultiVariate Taylor)

f(y) = f(x) +
n∑
i=1

df(x)

dxi
(yi − xi) + 1/2

n∑
i=1,j=1

d2f(x)

dxidXj
(yi − xi)(yj − xj)

gradient:

∇f = [
df(x)

dx1
...]

∇2f = [
df(x)

dx21
...]

[see 21min of lecture to see further notes]

There are many variants of the analysis of gradient descent, but we will study the strongest possible
assumptions that give us the fastest (geometric) convergence.

1. β-smooth if ||∇f(y)−∇f(x)|| ≤ β||y − x||
equivalently, if f is twice differentiable:
||∇2f(x)||op ≤ β
Explaining the operator norm: zT∇2f(x)z ≤ β||z||2

2. α-strongly convex if:
(y − x)T∇2f(x)(y − x) ≥ α||y − x||2
f(y) ≥ f(x) +∇f(x)T (y − x) + α

2 ||y − x||
2
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Intuition: Not only are you convex, but linear approximation grows quadratically. Gives lower
bound as you are further away, intuition for strong convexity. When very far away, you can know
how far off you are from original function.

Note: We want to show that the eigenvalues of the Hessian are sandwiched between β and α; in
other words, that the Hessian has a good condition number.

Theorem 2. (smooth, strongly convex)

If η ≤ 1
2β we have:

f(xt)− f(x∗) ≤ β(q − ηα

2
)t−1||x1 − x∗||2

where x∗ is the unique minimizer.

Key Lemma:

Lemma 3. If f is β-smooth, α-strongly convex, then
∇f(xt)

T (xt − x∗) ≥ α/4||xt − x∗||2 + 1
2β ||∇f(xt)||2

Proof. Proof of Lemma 3:

1. ∇f(x)T (x− x∗) ≥ α/2||x− x∗||2

2. ∇f(x)T (x− x∗) ≥ 1/β||∇f(X)||2.

Let’s prove 1:

f(x∗) ≥ f(x) +∇f(x)T (x∗ − x) +
α

2
||x− x∗||2

Observe f(x) ≥ f(x∗)⇒
∇f(x)T (x− x∗) ≥ α/2||x− x∗||2

Let’s prove 2: We will use miltivariate lagrange remainder:
∇f(x) = ∇f(x∗) +∇2f(x′)(x− x∗)⇒
∇f(x)T (∇2f(x′))−1∇f(x) = ∇f(x)T (x− x∗)

Now 1/2(1) + 1/2(2)

2.3 Using Lemma 3 to prove Theorem 2

Proof. Let α′ = α/4, β′ = 1
2β

||Xt+1 − x∗||2 = ||xt − x∗ − η∇f(xt)||2

= ||xt − x∗||2 − 2η∇(f(xt)
T (xt − x∗)− η2||∇f(xt)||2)

≤ (1− 2ηα′)||xt − x∗||2 + (η2 − 2ηβ′)||∇f(xt)||2

≤ (1− 2ηα′)||xt − x∗||2

Last step:

f(x∗) ≥ f(xt) +∇f(xt)
T (x∗ − xt)
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Rearrange

∇f(xt)
T (xt − x∗) ≥ f(xt)− f(x∗)

(∇f(xt)−∇f(x∗))T (xt0x
∗) ≤ β||xt − x∗||2

Putting it together:

β(||xt − x∗||2 ≤ (1− ηα/2)t−1||xq − x∗||2)

2.4 An Example:

f(x) = ||Ax− b||22 least squares
∇f(x) = 2AT (Ax− b). Ax− b is the remainder of the error.
Gradient Descent is:
xt+1 = xt − 2ηAT ft
rt + 1 = AXt + 1− b

3 Stochastic GD

Useful in Machine Learning optimizations.
Take xt+1 = xt − ηgt, where gt is a random variable. We have E[gt] = ∇f(xt).
This is natural when f(x) =

∑
y∈examples in training set fy(x). y are some parameters for training set

x.
Then, ∇f(x) =

∑
y fy(x), choose gt = random∇fy(x).

4 What if you do GD on a non-convex function?

• Stuck at a local minimum picture.
Oops, there’s not much you can do.
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• Stuck at a saddle point:
Saddle points have Gradient to 0, can add second order derivative or stochastics to get out.
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