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1 Last Time (Gradient Descent)

Gradient descent is a greedy algorithm to minimize a convex function. We showed that, when the
function is β-smooth and α-strongly convex, gradient descent converges to the correct answer at
an exponential rate.

2 Today: Interior Point Methods

Let’s introduce Interior Point Methods, a new way of solving convex optimization problems, fol-
lowing the work of Karmarker, Nestirov, and Nemirovskii [1] [2].

Recall the following optimization problem:

minimize cTx such that x ∈ K where K is convex

For the ellipsoid method we turned this into a feasibility problem where the objective function
becomes a constraint.

Our new approach is to consider a new optimization problem (?) and turn it into the above:

(?) minimize tcTx+ F (x) where t is a scalar and F (x)→∞ as x→ boundary(K)

F (x) is a “barrier” function that acts like a force field preventing us from choosing a point outside
of K. Starting at t = 0 we will only care about the barrier function and would choose x to be the
“analytic center” of K. As we increase t we will care more about the linear objective function and
get closer to the right answer.

Now let’s consider the solution to our new optimization problem:

x?(t) = argmin (?)

and let’s work with the following set:

{x?(t) | 0 ≤ t ≤ ∞}.

This set off solutions under varying values of t is called the “central path”. It interpolates smoothly
from x?(0), the analytic center of K, to the optimal solution of the original problem, which should
be on the boundary of K.
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Example:

Let K = {x | Ax ≤ b} , then we can choose F (x) = −
m∑
i=1

log(bi − (Ax)i)

Clearly as Ax approaches b the term inside the logarithm will go towards 0, making the logarithm
explode towards negative infinity, making the entire term −

∑m
i=1 log(bi−(Ax)i) explode to infinity.

This is a so-called “log barrier”.

Here is a visualization:
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x?(∞)
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3 Main Ingredients for Interior Point Methods

1. Newton’s Method:

If we are close to x?(t), then Newton’s method gives a simple iterative scheme which converges
quadratically to it.

2. From x?(t), we can consider some t′ > t and converge to x?(t′) quickly since the optima won’t
be too far apart.

3. There are fast methods to find x?(0), the analytic center. We will not cover this in class.

4 Traditional Analysis of Newton’s Method

Setup:

Let f : Rn → R be C2. Then from Taylor’s Theorem

f(x+ h) = f(x) + hT∇f(x) +
1

2
hT∇2f(x) + o(‖h‖2)
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The basic idea of Newton’s Method is to throw away the rightmost term of the Taylor expansion,
and we find the h value we need to minimize the quadratic approximation of the function at x. We
claim that:

argminh h
T∇f(x) +

1

2
hT∇2f(x)h = −(∇2f(x))−1 ∇f(x)

When we differentiate hT∇f(x) + 1
2h

T∇2f(x)h with respect to h, set it equal to 0, and solve for h,
we get −(∇2f(x))−1 ∇f(x). We can check that this actually gives a minimum since f(x) is convex
(and thus ∇2f(x) has non-negative eigenvalues).

To run Newton’s method, we update:

xk+1 = xk −
[
∇2f(xk)

]−1
∇f(xk).

We present the following theorem to formally argue that this procedure quickly converges to the
minimum of f(x) as long as x0 isn not too far away.

Theorem 1. (Local quadratic convergence of Newton’s Method) Suppose f satisfies the following
3 conditions:

1. ‖∇2f(x)−∇2f(y)‖2 ≤ R‖x− y‖2

2. ∇2f(x∗) � µI

3. ‖x0 − x∗‖2 ≤ µ
2R

Then: ‖xk+1 − x∗‖2 ≤ R
µ ‖xk − x

∗‖22

The first condition is a condition on the smoothness of f , upper bounding the operator norm of the
difference of two Hessians by the norm of the difference of the two vectors themselves. The second
condition lower bounds all of the eigenvalues of the Hessian at x∗, where this value of x is a local
optima of f . Our final condition simply upper bounds the distance between our initial and optimal
values of x. Using all of these conditions we could prove that the distance between our updated
value of xk+1 from the optimal is converging quadratically.

Proof. We write:

∇f(x+ h)−∇f(x) =

∫ 1

0
∇2f(x+ sh)h ds

For our purposes, x will be the optimal value x∗ and x∗ + h is xk. Because x∗ is optimal, the
gradient of f at this value is zero and we have the following relation:

∇f(xk) =

∫ 1

0
∇2f(x∗ + s(xk − x∗))(xk − x∗)ds

Now if we rewrite our update rule again but subtract x∗ from both sides we have

xk+1 − x∗ = xk − x∗ −
[
∇2f(xk)

]−1
∇f(xk)

3



We will now make two substitutions, using the integral formula for the gradient of f at xk and
rewriting (xk − x∗) = (∇2f(xk))

−1(∇2f(xk))(xk − x∗):

xk+1 − x∗ =
[
∇2f(xk)

]−1[ ∫ 1

0

(
∇2f(xk)−∇2f(x∗ + s(xk − x∗))

)
(xk − x∗)ds

]

We can now use the first condition in Theorem 1 (where y in this case is x∗+ s(xk − x∗)) to upper
bound the norm of the integrand by:

‖
(
∇2f(xk)−∇2f(x∗ + s(xk − x∗))

) (
xk−x∗

)
‖2 ≤ R||(1−s)xk−(1−s)x∗||2 = (1−s)R||xk−x∗||2.

So when we integrate with respect to s from 0 to 1 (applying the triangle inequality), and plug
back into our relation for xk+1 − x∗, we get:

||xk+1 − x∗||2 ≤ ‖
[
∇2f(xk)

]−1
‖2
(R

2
||xk − x∗||22

)
To finish this proof we just need to show the following claim:

Claim 2. ||
[
∇2f(xk)

]−1
||2 ≤ 2

µ

To show this we will start with this simple identity:

∇2f(xk) = ∇2f(x∗)−
(
∇2f(x∗)−∇2f(xk)

)
.

Accordingly,

λmin(∇2f(xk)) ≥ λmin(∇2f(x∗))− λmax
(
∇2f(x∗)−∇2f(xk)

)
.

From the second condition of Theorem 1 we know that

λmin(∇2f(x∗)) ≥ µ.

Additionally, applying the first and third conditions gives:

λmax(∇2f(x∗)−∇2f(xk)) ≤ R||xk − x∗||

λmax(∇2f(x∗)−∇2f(xk)) ≤
µ

2

This allows us to finish the proof for Claim 2:

λmin(∇2f(xk)) ≥
µ

2
=⇒ ||

[
∇2f(xk)

]−1
||2 ≤

2

µ

Which when substituted into the relation we had before claim 2 gives us the quadratic convergence
that we wanted to show:

||xk+1 − x∗|| ≤
R

µ
||xk − x∗||22
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5 Affine Invariant Newton’s Method

The conditions and our proof of Theorem 1 are not affine invariant, but Newton’s method itself
is. To show this, imagine applying the transformation y = Ax (A is invertible) and optimizing the
objective function φ(y) = f(A−1y) = f(x). The gradient is the following

∇φ(y) = (A−1)T∇f(A−1y)

and the Hessian satisfies
∇2φ(y) = (A−1)T∇f(A−1y)A−1.

Accordingly, Newton’s method will apply the step:[
∇2φ(y)

]−1
∇φ(y) = A

(
∇2f(A−1y)

)−1
∇f(A−1y),

which is equivalent to minimizing the objective function in the x space, and then transforming it
by A. So, Newton’s method is invariant to any invertible transformation A.

Interior point methods will rely on a more general affine invariant analysis of Newton’s method,
which we don’t proof for simplicity, but describe below. We begin by defining:

Definition 3. (Newton Decrement) The Newton Decrement, λf (x), is defined as:

λf (x) :=
√
∇f(x)T (∇2f(x))−1∇f(x),

where f : Rn → R is the function that we wish to minimize.

Note that by definition, the Newton Decrement is affine invariant. Intuitively, the Newton Decre-
ment quantifies the radius of fast convergence for Newton’s Method and hence serves as a proxy for
getting to the optimal point. We note that the the Newton Decrement at a locally optimal point
is equal to 0.

In light of this definition, we present the affine invariant guarantees of Newton’s Method.

Theorem 4. (Affine invariant local quadratic convergence of Newton’s Method) Let f : Rn → R
satisfy

∀h ∈ Rn ∇3f(x)[h, h, h] ≤ 2(hT∇2f(x)h)
3
2 (1)

for all x ∈ K. Then, it follows that:

λf (x)
(
x− (∇f(x))−1∇f(x)

)
≤
(

λf (x)

1− λf (x)

)2

(2)

for {x |λf (x) < 1} ≡ “Newton decrement ball.”

Proof. We refer the reader to pages 15-18 of Prof. Nisheeth Vishnoi’s lecture notes [4].

We remark that condition (1) above is called the self-concordance property of function f .

We conclude this section by remarking that Theorem 4 comprises the first main ingredient for
Interior Point methods: understanding how well Newton’s Method performs in an affine invariant
way if we are close to x∗(t).
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6 Analysis of Interior Point Methods

We now proceed to Step 2: if we have an optimal point for t, x∗(t), by how much can we increase t
and still remain within the radius of fast convergence (Newton decrement ball) for? We note that
this natural question arises from the fact that we start off from the analytic center x∗(0) and seek
to reach the optimal solution, x∗(∞), through the central path by iteratively incrementing t.

Define Ft′(x) as follows:
Ft′(x) := t′cTx+ F (x).

Given the minimizer for the old objective value, x∗(t), we want to understand how large can we set
t′ > t so that we remain in the Newton decrement ball, i.e. so that:

λFt′ (x
∗(t)) <

1

4
.

We first simplify the expression for λFt′ (x
∗(t)) by noting that

∇Ft′(x∗(t)) = ∇Ft(x∗(t)) + (t′ − t)c
= (t′ − t)c

where the last equality follows from the fact that Ft(x
∗(t)) = 0 by definition of x∗(t) as the minimizer

of the old objective function Ft(x). Thus, we have

λFt′ (x
∗(t)) = (t′ − t)

√
cT (∇2Ft′(x∗(t)))−1c

= (t′ − t)
√
cT (∇2F (x∗(t)))−1c (3)

Now, in addition to the self-concordance property (1), we need one more condition on the function
to complete the analysis:

∇2F (x) � 1

ν
∇F (x)

(
∇F (x)

)T
. (4)

We collect one more fact in addition to this condition:

∇Ft(x∗(t)) = 0

= tc+∇F (x∗(t))

which implies that

c =
−∇F (x∗(t))

t
.

Combining the above result with the previous condition (4), we simplify (3) to yield:

λFt′ (x
∗(t)) ≤ (t′ − t)

t

√
ν (5)

which is exactly what we were looking for. Now, using (5), we can generate an appropriate value

for t′ such that λFt′ (x
∗(t)) < 1

4 . Namely, note that (t′−t)
t

√
ν < 1

4 if and only if

t′ ≤ t
(
1 +

1

4
√
ν

)
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which is precisely what we wanted to show.

In light of this result pertaining a bound on how large we can boost the value of t at each iteration
while remaining within the Newton decrement ball, we can now assert a bound on the number of
iterations required in order to obtain an ε-approximate solution.

Theorem 5. (Bound on the number of iterations for an ε-approximate solution) ∀ε ∈ R+, an ε-
approximate solution to the original optimization problem can be obtained after k iterations, where
k is:

k = O
(√
ν log

ν

t0ε

)
.

Proof Sketch. It’s not too hard to check that a value of t = ν
ε is sufficiently high to obtain an

ε-approximate solution for our convex optimization problem [4]. With a multiplicative increase of
(1 + 1

4
√
ν
) at each iteration, it would take

k = O
(√
ν log

ν

t0ε

)
iterations to boost from a starting value t0 to ν

ε , which yields the result. Additional work is required
to show that we can find some starting point which minimizes Ft0 for some t0 > 0.

To conclude, we reiterate that conditions 1 and 4 were required to hold in order to establish this
result, i.e.,

(a)∀h ∈ Rn ∇3f(x)[h, h, h] ≤ 2(hT∇2f(x)h)
3
2 (1)

(b)∇2F (x) � 1

ν
∇F (x)

(
∇F (x)

)T
(4)

We call a barrier function that satisfies the two conditions above a ν-self-concordant barrier.
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