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1 Last Time

Last class we talked about multiplicative weights and their application to zero-sum games.

2 Basic Notions from Learning

PAC learning, which was introduced by Valiant [2], stands for probably approximately correct learn-
ing. To define this we first must define a concept class.

Definition 1. A concept class H is a set X along with a set of functions f : X → {±1}.

An easy example of a concept class is the set of emails and functions mapping emails to spam or
not spam. Another example is the set of points and a line `, and a single function determining
which side of the line ` the points are on.

PAC learning is the following problem. We are given a concept class H, a function f ∈ H, and a
hidden distribution D on X. The algorithm is allowed to get m labeled examples (xi, f(xi)) for
1 ≤ i ≤ m, by drawing each xi ∈ X according to the distribution D.

We want that for any constants ε, δ, after getting these m examples, with probability 1 − δ, the
algorithm should ensure that the error on future examples drawn from the distribution D is ≤ ε.
The δ denotes the probably, and the ε denotes the approximately in the name PAC learning.

Our final definition here will be a weak learner.

Definition 2. A weak learner is one that has error at most 1
2 − η for some η > 0.

3 Adaboost

Adaboost is an algorithm introduced by Freund and Schapire [1] that in some sense can take many
weak learners and turn them into a strong learner. The precise algorithm follows.

We will construct distributions D1, D2, . . . , DT+1 on the m example objects.

1. Start with some examples (xi, f(xi)) for 1 ≤ i ≤ m.

2. Set D1 to be the uniform distribution on the examples.

3. Loop from t = 1 to T .
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4. Find a weak learner ht on Dt, with error εt.

5. Set αt = 1
2 log 1−εt

εt
. Afterwards, set Dt+1(x) = Dt(x) exp(−ht(x)f(x)αt). The term ht(x)f(x)

simply denotes whether ht and f agree on x or not. Afterwards, normalize Dt+1. Let this
normalization factor be Zt.

6. After looping all the way through, output

h(x) = sgn

(
T∑
t=1

αtht(x)

)
,

where sgn is a function returning ±1 denoting whether the input is positive or negative.

Theorem 3. Let err(h,D1) denote the error of h on D1. If we let ηt = 1
2 − εt, then

err(h,D1) ≤ exp
(
−2
∑

η2t

)
.

Proof. Expanding Dt+1 we get that

DT+1(xi) =
1

m

exp(−α1h1(xi)f(xi))

Z1
...

exp(−αThT (xi)f(xi))

ZT

Then, we bound the final error

err(h,D1) =
1

m

m∑
i=1

1f(xi)6=h(xi)

≤ 1

m

m∑
i=1

exp(−f(xi)
T∑
t=1

αtht(xi))

≤
m∑
i=1

DT+1(xi)

T∏
t=1

Zt

Now, if we can bound Zt we will complete the proof, since DT+1 is a distribution.

Claim 4. Zt ≤ exp(−2η2t )

Zt ≤
m∑
i=1

Dt(xi) exp(−αtht(xi)f(xi))

=
∑

correct xi

Dt(xi) exp(−αt) +
∑

incorrect xi

Dt(xi) exp(αt)
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Recall that αt = 1
2 log 1−εt

εt

Zt = 2
√
εt(1− εt)

= 2

√(
1

2
− ηt

)(
1

2
+ ηt

)

= 2

√(
1

4
− η2t

)
≤ exp(−2η2t )

But what about err(h,D) ?

Intuition: if we do not have too many rounds of boosting, this means that h(x) does not get too
complicated, so low training error → low true error.

Freunde-Shapire proved the following, where d is the VC-dimension of the weak classifiers.

err(h,D) ≤ err(h,D1) + Õ

(√
Td

m

)

4 Approximating Max Flow

Consider an (unweighted) instance of max flow:

• (P): max
∑

P∈Ps,t
x(P ) such that

∑
P3e x(P ) ≤ 1 and x(P ) ≥ 0.

• (D): min
∑

e l(e) such that
∑

e∈P l(e) ≥ 1 and l(e) ≥ 0.

Let γ denote the optimal flow. Consider the following Zero-Sum Game. We have two players: P
and D, for primal and dual.

• The P-player chooses some s-t path P .

• The D-player chooses edge e.

The payoff for D is 1 if e ∈ P , and 0 otherwise. Note that, for larger min cuts, the game is harder
for D.

Lemma 5. Let ν be the optimal value for D. Then, ν = 1
γ .

Proof. Given an optimal solution for the (fractional) min-cut, then we choose e with probability
l(e)∑
e l(e)

= l(e)
γ . By construction, for all paths,

∑
e∈P P(D chooses e) ≥ 1

γ .
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Conversely, given an optimal solution to P , we choose paths according to x(P ). Since fro each
path p,

∑
P3e x(p) ≤ 1, the chance that dual player catches an edge in the selected path by primal

player is at most 1
γ .

Thus, this primal-dual pair corresponds precisely to this zero-sum game.

Now, if we run multiplicative weights on this zero-sum game, we can find a good solution to max
flow.

For each t = 1 . . . T , use MWU to choose distribution wt on edges for the D-player. Let P t be the
best response to wt, which corresponds to the shortest path. Set the reward vector as rt(e) = Ie∈P t .

Let f be the flow that routes γ
T units of flow on each P 1 . . . P T .

Lemma 6. f routes at most 1 + ε units on each edge, for T = 4γ2 lnm
ε2

. Essentially, scaling f down
slightly gives a valid flow.

Proof. Suppose for contradiction that there exists some e such that f routs more than (1 + ε) on

e. In other words, more than (1+ε)T
γ of the paths P 1, · · · , P T use e.

Then, if the D-player plays this edge in hindsight, he would get larger than 1+ε
γ in average payoff.

However, each step, he gets at most 1
γ in expectation, as P t is a best-response. Then, if we set T

sufficiently large, we get a contradiction with MWU.

Thus, we have a way of solving flow (approximately) with MWU.
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