1 Last Time

Last class we talked about multiplicative weights and their application to zero-sum games.

2 Basic Notions from Learning

PAC learning, which was introduced by Valiant [2], stands for probably approximately correct learning. To define this we first must define a concept class.

Definition 1. A concept class \mathcal{H} is a set X along with a set of functions $f: X \rightarrow\{ \pm 1\}$.

An easy example of a concept class is the set of emails and functions mapping emails to spam or not spam. Another example is the set of points and a line ℓ, and a single function determining which side of the line ℓ the points are on.

PAC learning is the following problem. We are given a concept class \mathcal{H}, a function $f \in \mathcal{H}$, and a hidden distribution D on X. The algorithm is allowed to get m labeled examples ($x_{i}, f\left(x_{i}\right)$) for $1 \leq i \leq m$, by drawing each $x_{i} \in X$ according to the distribution D.

We want that for any constants ϵ, δ, after getting these m examples, with probability $1-\delta$, the algorithm should ensure that the error on future examples drawn from the distribution D is $\leq \epsilon$. The δ denotes the probably, and the ϵ denotes the approximately in the name PAC learning.

Our final definition here will be a weak learner.
Definition 2. A weak learner is one that has error at most $\frac{1}{2}-\eta$ for some $\eta>0$.

3 Adaboost

Adaboost is an algorithm introduced by Freund and Schapire [1] that in some sense can take many weak learners and turn them into a strong learner. The precise algorithm follows.

We will construct distributions $D_{1}, D_{2}, \ldots, D_{T+1}$ on the m example objects.

1. Start with some examples $\left(x_{i}, f\left(x_{i}\right)\right)$ for $1 \leq i \leq m$.

2 . Set D_{1} to be the uniform distribution on the examples.
3. Loop from $t=1$ to T.
4. Find a weak learner h_{t} on D_{t}, with error ϵ_{t}.
5. Set $\alpha_{t}=\frac{1}{2} \log \frac{1-\epsilon_{t}}{\epsilon_{t}}$. Afterwards, set $D_{t+1}(x)=D_{t}(x) \exp \left(-h_{t}(x) f(x) \alpha_{t}\right)$. The term $h_{t}(x) f(x)$ simply denotes whether h_{t} and f agree on x or not. Afterwards, normalize D_{t+1}. Let this normalization factor be Z_{t}.
6. After looping all the way through, output

$$
h(x)=\operatorname{sgn}\left(\sum_{t=1}^{T} \alpha_{t} h_{t}(x)\right),
$$

where sgn is a function returning ± 1 denoting whether the input is positive or negative.
Theorem 3. Let $\operatorname{err}\left(h, D_{1}\right)$ denote the error of h on D_{1}. If we let $\eta_{t}=\frac{1}{2}-\epsilon_{t}$, then

$$
\operatorname{err}\left(h, D_{1}\right) \leq \exp \left(-2 \sum \eta_{t}^{2}\right) .
$$

Proof. Expanding D_{t+1} we get that

$$
D_{T+1}\left(x_{i}\right)=\frac{1}{m} \frac{\exp \left(-\alpha_{1} h_{1}\left(x_{i}\right) f\left(x_{i}\right)\right)}{Z_{1}} \ldots \frac{\exp \left(-\alpha_{T} h_{T}\left(x_{i}\right) f\left(x_{i}\right)\right)}{Z_{T}}
$$

Then, we bound the final error

$$
\begin{aligned}
\operatorname{err}\left(h, D_{1}\right) & =\frac{1}{m} \sum_{i=1}^{m} \mathbb{1}_{f\left(x_{i}\right) \neq h\left(x_{i}\right)} \\
& \leq \frac{1}{m} \sum_{i=1}^{m} \exp \left(-f\left(x_{i}\right) \sum_{t=1}^{T} \alpha_{t} h_{t}\left(x_{i}\right)\right) \\
& \leq \sum_{i=1}^{m} D_{T+1}\left(x_{i}\right) \prod_{t=1}^{T} Z_{t}
\end{aligned}
$$

Now, if we can bound Z_{t} we will complete the proof, since D_{T+1} is a distribution.
Claim 4. $Z_{t} \leq \exp \left(-2 \eta_{t}^{2}\right)$

$$
\begin{aligned}
Z_{t} & \leq \sum_{i=1}^{m} D_{t}\left(x_{i}\right) \exp \left(-\alpha_{t} h_{t}\left(x_{i}\right) f\left(x_{i}\right)\right) \\
& =\sum_{\text {correct } x_{i}} D_{t}\left(x_{i}\right) \exp \left(-\alpha_{t}\right)+\sum_{\text {incorrect } x_{i}} D_{t}\left(x_{i}\right) \exp \left(\alpha_{t}\right)
\end{aligned}
$$

Recall that $\alpha_{t}=\frac{1}{2} \log \frac{1-\epsilon_{t}}{\epsilon_{t}}$

$$
\begin{aligned}
Z_{t} & =2 \sqrt{\epsilon_{t}\left(1-\epsilon_{t}\right)} \\
& =2 \sqrt{\left(\frac{1}{2}-\eta_{t}\right)\left(\frac{1}{2}+\eta_{t}\right)} \\
& =2 \sqrt{\left(\frac{1}{4}-\eta_{t}^{2}\right)} \\
& \leq \exp \left(-2 \eta_{t}^{2}\right)
\end{aligned}
$$

But what about $\operatorname{err}(h, D)$?
Intuition: if we do not have too many rounds of boosting, this means that $h(x)$ does not get too complicated, so low training error \rightarrow low true error.

Freunde-Shapire proved the following, where d is the VC-dimension of the weak classifiers.

$$
\operatorname{err}(h, D) \leq \operatorname{err}\left(h, D_{1}\right)+\tilde{O}\left(\sqrt{\frac{T d}{m}}\right)
$$

4 Approximating Max Flow

Consider an (unweighted) instance of max flow:

- (P): $\max \sum_{P \in \mathcal{P}_{s, t}} x(P)$ such that $\sum_{P \ni e} x(P) \leq 1$ and $x(P) \geq 0$.
- (D): $\min \sum_{e} l(e)$ such that $\sum_{e \in P} l(e) \geq 1$ and $l(e) \geq 0$.

Let γ denote the optimal flow. Consider the following Zero-Sum Game. We have two players: P and D , for primal and dual.

- The P-player chooses some s - t path P.
- The D-player chooses edge e.

The payoff for D is 1 if $e \in P$, and 0 otherwise. Note that, for larger min cuts, the game is harder for D.

Lemma 5. Let ν be the optimal value for D. Then, $\nu=\frac{1}{\gamma}$.
Proof. Given an optimal solution for the (fractional) min-cut, then we choose e with probability $\frac{l(e)}{\sum_{e} l(e)}=\frac{l(e)}{\gamma}$. By construction, for all paths, $\sum_{e \in P} \mathbb{P}(D$ chooses $e) \geq \frac{1}{\gamma}$.

Conversely, given an optimal solution to P, we choose paths according to $x(P)$. Since fro each path $p, \sum_{P \ni e} x(p) \leq 1$, the chance that dual player catches an edge in the selected path by primal player is at most $\frac{1}{\gamma}$.
Thus, this primal-dual pair corresponds precisely to this zero-sum game.
Now, if we run multiplicative weights on this zero-sum game, we can find a good solution to max flow.

For each $t=1 \ldots T$, use MWU to choose distribution w_{t} on edges for the D-player. Let P^{t} be the best response to w_{t}, which corresponds to the shortest path. Set the reward vector as $r^{t}(e)=\mathbb{I}_{e \in P^{t}}$. Let f be the flow that routes $\frac{\gamma}{T}$ units of flow on each $P^{1} \ldots P^{T}$.
Lemma 6. f routes at most $1+\epsilon$ units on each edge, for $T=\frac{4 \gamma^{2} \ln m}{\epsilon^{2}}$. Essentially, scaling f down slightly gives a valid flow.

Proof. Suppose for contradiction that there exists some e such that f routs more than $(1+\epsilon)$ on e. In other words, more than $\frac{(1+\epsilon) T}{\gamma}$ of the paths P^{1}, \cdots, P^{T} use e.

Then, if the D-player plays this edge in hindsight, he would get larger than $\frac{1+\epsilon}{\gamma}$ in average payoff.
However, each step, he gets at most $\frac{1}{\gamma}$ in expectation, as P^{t} is a best-response. Then, if we set T sufficiently large, we get a contradiction with MWU.

Thus, we have a way of solving flow (approximately) with MWU.

References

[1] Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences, 55(1):119-139, 1997.
[2] L. G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134-1142, 1984.

