Spring 2016

Lecture 18 – April 11, 2016

Prof. Ankur Moitra

Scribe: Yang Liu, Lara Araujo, Steven Hao

1 Last Time

Last class we talked about multiplicative weights and their application to zero-sum games.

2 Basic Notions from Learning

PAC learning, which was introduced by Valiant [2], stands for *probably approximately correct* learning. To define this we first must define a *concept class*.

Definition 1. A concept class \mathcal{H} is a set X along with a set of functions $f: X \to \{\pm 1\}$.

An easy example of a concept class is the set of emails and functions mapping emails to spam or not spam. Another example is the set of points and a line ℓ , and a single function determining which side of the line ℓ the points are on.

PAC learning is the following problem. We are given a concept class \mathcal{H} , a function $f \in \mathcal{H}$, and a hidden distribution D on X. The algorithm is allowed to get m labeled examples $(x_i, f(x_i))$ for $1 \leq i \leq m$, by drawing each $x_i \in X$ according to the distribution D.

We want that for any constants ϵ, δ , after getting these *m* examples, with probability $1 - \delta$, the algorithm should ensure that the error on future examples drawn from the distribution *D* is $\leq \epsilon$. The δ denotes the *probably*, and the ϵ denotes the *approximately* in the name PAC learning.

Our final definition here will be a *weak learner*.

Definition 2. A weak learner is one that has error at most $\frac{1}{2} - \eta$ for some $\eta > 0$.

3 Adaboost

A daboost is an algorithm introduced by Freund and Schapire [1] that in some sense can take many weak learners and turn them into a strong learner. The precise algorithm follows.

We will construct distributions $D_1, D_2, \ldots, D_{T+1}$ on the *m* example objects.

- 1. Start with some examples $(x_i, f(x_i))$ for $1 \le i \le m$.
- 2. Set D_1 to be the uniform distribution on the examples.
- 3. Loop from t = 1 to T.

- 4. Find a weak learner h_t on D_t , with error ϵ_t .
- 5. Set $\alpha_t = \frac{1}{2} \log \frac{1-\epsilon_t}{\epsilon_t}$. Afterwards, set $D_{t+1}(x) = D_t(x) \exp(-h_t(x)f(x)\alpha_t)$. The term $h_t(x)f(x)$ simply denotes whether h_t and f agree on x or not. Afterwards, normalize D_{t+1} . Let this normalization factor be Z_t .
- 6. After looping all the way through, output

$$h(x) = \operatorname{sgn}\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right),$$

where sgn is a function returning ± 1 denoting whether the input is positive or negative.

Theorem 3. Let $err(h, D_1)$ denote the error of h on D_1 . If we let $\eta_t = \frac{1}{2} - \epsilon_t$, then

$$err(h, D_1) \le \exp\left(-2\sum \eta_t^2\right).$$

Proof. Expanding D_{t+1} we get that

$$D_{T+1}(x_i) = \frac{1}{m} \frac{\exp(-\alpha_1 h_1(x_i) f(x_i))}{Z_1} \dots \frac{\exp(-\alpha_T h_T(x_i) f(x_i))}{Z_T}$$

Then, we bound the final error

$$err(h, D_1) = \frac{1}{m} \sum_{i=1}^m \mathbb{1}_{f(x_i) \neq h(x_i)}$$

$$\leq \frac{1}{m} \sum_{i=1}^m \exp(-f(x_i) \sum_{t=1}^T \alpha_t h_t(x_i))$$

$$\leq \sum_{i=1}^m D_{T+1}(x_i) \prod_{t=1}^T Z_t$$

Now, if we can bound Z_t we will complete the proof, since D_{T+1} is a distribution. Claim 4. $Z_t \leq \exp(-2\eta_t^2)$

$$Z_t \le \sum_{i=1}^m D_t(x_i) \exp(-\alpha_t h_t(x_i) f(x_i))$$

= $\sum_{\text{correct } x_i} D_t(x_i) \exp(-\alpha_t) + \sum_{\text{incorrect } x_i} D_t(x_i) \exp(\alpha_t)$

Recall that $\alpha_t = \frac{1}{2} \log \frac{1-\epsilon_t}{\epsilon_t}$

$$Z_t = 2\sqrt{\epsilon_t(1-\epsilon_t)}$$
$$= 2\sqrt{\left(\frac{1}{2} - \eta_t\right)\left(\frac{1}{2} + \eta_t\right)}$$
$$= 2\sqrt{\left(\frac{1}{4} - \eta_t^2\right)}$$
$$\leq \exp(-2\eta_t^2)$$

But what about err(h, D)?

Intuition: if we do not have too many rounds of boosting, this means that h(x) does not get too complicated, so low training error \rightarrow low true error.

Freunde-Shapire proved the following, where d is the VC-dimension of the weak classifiers.

$$err(h, D) \le err(h, D_1) + \tilde{O}\left(\sqrt{\frac{Td}{m}}\right)$$

4 Approximating Max Flow

Consider an (unweighted) instance of max flow:

- (P): $\max \sum_{P \in \mathcal{P}_{s,t}} x(P)$ such that $\sum_{P \ni e} x(P) \le 1$ and $x(P) \ge 0$.
- (D): $\min \sum_{e \in P} l(e)$ such that $\sum_{e \in P} l(e) \ge 1$ and $l(e) \ge 0$.

Let γ denote the optimal flow. Consider the following Zero-Sum Game. We have two players: P and D, for primal and dual.

- The P-player chooses some s-t path P.
- The D-player chooses edge e.

The payoff for D is 1 if $e \in P$, and 0 otherwise. Note that, for larger min cuts, the game is harder for D.

Lemma 5. Let ν be the optimal value for D. Then, $\nu = \frac{1}{\gamma}$.

Proof. Given an optimal solution for the (fractional) min-cut, then we choose e with probability $\frac{l(e)}{\sum_e l(e)} = \frac{l(e)}{\gamma}$. By construction, for all paths, $\sum_{e \in P} \mathbb{P}(D \text{ chooses } e) \geq \frac{1}{\gamma}$.

Conversely, given an optimal solution to P, we choose paths according to x(P). Since fro each path $p, \sum_{P \ni e} x(p) \leq 1$, the chance that dual player catches an edge in the selected path by primal player is at most $\frac{1}{\gamma}$.

Thus, this primal-dual pair corresponds precisely to this zero-sum game.

Now, if we run multiplicative weights on this zero-sum game, we can find a good solution to max flow.

For each $t = 1 \dots T$, use MWU to choose distribution w_t on edges for the D-player. Let P^t be the best response to w_t , which corresponds to the shortest path. Set the reward vector as $r^t(e) = \mathbb{I}_{e \in P^t}$.

Let f be the flow that routes $\frac{\gamma}{T}$ units of flow on each $P^1 \dots P^T$.

Lemma 6. f routes at most $1 + \epsilon$ units on each edge, for $T = \frac{4\gamma^2 \ln m}{\epsilon^2}$. Essentially, scaling f down slightly gives a valid flow.

Proof. Suppose for contradiction that there exists some e such that f routs more than $(1 + \epsilon)$ on e. In other words, more than $\frac{(1+\epsilon)T}{\gamma}$ of the paths P^1, \dots, P^T use e.

Then, if the D-player plays this edge in hind sight, he would get larger than $\frac{1+\epsilon}{\gamma}$ in average payoff.

However, each step, he gets at most $\frac{1}{\gamma}$ in expectation, as P^t is a best-response. Then, if we set T sufficiently large, we get a contradiction with MWU.

Thus, we have a way of solving flow (approximately) with MWU.

References

- Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning and an application to boosting. *Journal of computer and system sciences*, 55(1):119–139, 1997.
- [2] L. G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–1142, 1984.