MIT 6.854/18.415: Advanced Algorithms Spring 2016

Lecture 18 — April 11, 2016
Prof. Ankur Moitra Scribe: Yang Liu, Lara Araujo, Steven Hao

1 Last Time

Last class we talked about multiplicative weights and their application to zero-sum games.

2 Basic Notions from Learning

PAC learning, which was introduced by Valiant [2], stands for probably approxzimately correct learn-
ing. To define this we first must define a concept class.

Definition 1. A concept class H is a set X along with a set of functions f : X — {£1}.

An easy example of a concept class is the set of emails and functions mapping emails to spam or
not spam. Another example is the set of points and a line £, and a single function determining
which side of the line ¢ the points are on.

PAC learning is the following problem. We are given a concept class H, a function f € H, and a
hidden distribution D on X. The algorithm is allowed to get m labeled examples (z;, f(x;)) for
1 <14 < 'm, by drawing each x; € X according to the distribution D.

We want that for any constants e, d, after getting these m examples, with probability 1 — §, the
algorithm should ensure that the error on future examples drawn from the distribution D is < e.
The § denotes the probably, and the e denotes the approrimately in the name PAC learning.

Our final definition here will be a weak learner.

Definition 2. A weak learner is one that has error at most % —n for some n > 0.

3 Adaboost

Adaboost is an algorithm introduced by Freund and Schapire [1] that in some sense can take many
weak learners and turn them into a strong learner. The precise algorithm follows.

We will construct distributions D1, Da, ..., Dr+1 on the m example objects.

1. Start with some examples (z;, f(x;)) for 1 <i < m.
2. Set D to be the uniform distribution on the examples.

3. Loop fromt=1to T.

4. Find a weak learner h; on D;, with error ;.

5. Set ay = §log =% . Afterwards, set Dyy1(2) = Dy(x) exp(—hi(z) f(z)aw). The term hy(z) f(z)
simply denotes whether h; and f agree on x or not. Afterwards, normalize D;;q. Let this
normalization factor be Z;.

6. After looping all the way through, output

T
x) = sgn (Z atht(az)> ,
t=1

where sgn is a function returning +1 denoting whether the input is positive or negative.

Theorem 3. Let err(h, D) denote the error of h on Dy. If we let iy = 5 — €, then
err(h,Dy) < exp(22%)

Proof. Expanding D;;1 we get that

Do () = ;exp(—aﬂ;l(l‘i)f(iﬂi)) ‘--exp(_aTZ(xi)f(mi))

Then, we bound the final error

m
67“7" h D1 Z Fflx)#h(x;)
;
Z f(z:) Zatht (x4))
=1 t=1
m T
Z T+1 xz H t
=1 t=1

Now, if we can bound Z; we will complete the proof, since D7y is a distribution.

Claim 4. Z; < exp(—2n?)

Z) exp(—ahy(x:) f(21))

Z Jexp(—an) + Y Dy(a;) exp(oy)

correc incorrect x;

Recall that oy = %log 1;€t

But what about err(h, D) ?

Intuition: if we do not have too many rounds of boosting, this means that h(x) does not get too
complicated, so low training error — low true error.

Freunde-Shapire proved the following, where d is the VC-dimension of the weak classifiers.

err(h, D) < err(h,Dy) + 10) (Td)

m

4 Approximating Max Flow

Consider an (unweighted) instance of max flow:

e (P): max} pcp , #(P) such that } p z(P) <1 and z(P) > 0.

e (D): min})_ I(e) such that > _pl(e) > 1 and I(e) > 0.

Let v denote the optimal flow. Consider the following Zero-Sum Game. We have two players: P
and D, for primal and dual.

e The P-player chooses some s-t path P.

e The D-player chooses edge e.

The payoff for D is 1 if e € P, and 0 otherwise. Note that, for larger min cuts, the game is harder
for D.

Lemma 5. Let v be the optimal value for D. Then, v = %

Proof. Given an optimal solution for the (fractional) min-cut, then we choose e with probability
U(e) U(e)
v

S 1() . By construction, for all paths, > .pP(D chooses e) > %

Conversely, given an optimal solution to P, we choose paths according to z(P). Since fro each
path p, > ps. 2(p) < 1, the chance that dual player catches an edge in the selected path by primal
player is at most %

Thus, this primal-dual pair corresponds precisely to this zero-sum game. O

Now, if we run multiplicative weights on this zero-sum game, we can find a good solution to max
flow.

For each t = 1...T, use MWU to choose distribution w; on edges for the D-player. Let P! be the
best response to wy, which corresponds to the shortest path. Set the reward vector as rt(e) = I.cp:.

Let f be the flow that routes 7 units of flow on each pt.. . pT.

Lemma 6. f routes at most 1+ € units on each edge, for T = 471#. Essentially, scaling f down
slightly gives a valid flow.

Proof. Suppose for contradiction that there exists some e such that f routs more than (1 + €) on

e. In other words, more than % of the paths P',---, PT use e.

€

Then, if the D-player plays this edge in hindsight, he would get larger than 1% in average payoff.

However, each step, he gets at most + in expectation, as P? is a best-response. Then, if we set T
sufficiently large, we get a contradiction with MWU. O

Thus, we have a way of solving flow (approximately) with MWU.

References

[1] Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning and an
application to boosting. Journal of computer and system sciences, 55(1):119-139, 1997.

[2] L. G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134-1142, 1984.

	Last Time
	Basic Notions from Learning
	Adaboost
	Approximating Max Flow

