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1 Semidefinite Programming

Earlier we saw a framework for approximating NP-hard problems by relaxing integer linear pro-
gramming (ILP) to general linear programming (LP). Here we see a problem for which this method
does not work and introduce a more power technique, semidefinite programming, to solve it.

2 MAXCUT

Given G = (V,E) we want to choose a subset U ⊆ V so as to maximize |E(U, V \U)|. I.e. we want
to maximiaze the number of edges connecting a node in U with a node outside of U .

Observe that the maximum cut equals |E| iff G is bipartite.

Let’s give a first attempt at solving this problem via integer linear programming:

Integer Linear Program:

max
∑

(u,v)∈E

Z(u,v)

subject to Z(u,v) ≤ Xu +Xv

Z(u,v) ≤ (1−Xu) + (1−Xv)

Z(u,v), Xv ∈ {0, 1}

Z(u,v) can only be set to 1 when Xu 6= Xv. Setting Xu = 1 corresponds to placing u in U and we
can increase our objective function by 1 for every v where Xv = 0 (i.e. where v was not also placed
in U).

ILP relaxation: If we relax the integer constraint Zu,v, Xv ∈ {0, 1} to Zu,v, Xv ∈ [0, 1] we can
satisfy the LP constraints by setting every Z(u,v) = 1 and every Xv = 1

2 . This achieves a value of

|E|. However, for the complete graph, MAXCUT ≈ |E|2 . Accordingly, we can’t expect any rounding
strategy to achieve better than a 1/2-approximation.

And in fact, we can trivially obtain a 1/2 approximation in expectation: assign each node indepen-
dently with probability 1

2 to U .
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3 Positive Semidefinite Matrices

Let X ∈ Rn×n be symmetric. We say X is positive semidefinite (PSD or X � 0) if the following
equivalent statements are true:

1. ∀a ∈ Rn aTXa ≥ 0

2. X = BTB for some B

3. All of X’s eigenvalues are non-negative

4 Semidefinite Programs (SDP)

The standard form of a semidefinite program is analogous to the standard form of a linear program.
In the following equations, let C, X, and Ai be n× n matrices.

min
X
〈C,X〉 =

∑
i,j

ci,jxi,j (the Frobenius product of C and X)

s.t. 〈Ai, X〉 = bi ∀i ∈ (1, ...,m)

X � 0

Note that this program corresponds exactly to linear programming when all matrices are diagonal.
The feasible region for the SDP is {X | 〈Ai, X〉 = bi ∀i, aTXa ≥ 0 ∀a}. So, the requirement that
X be positive semidefinite effectively creates an infinite number of linear constraints on X.

We can solve semidefinite programs using either the ellipsoid method or interior-point methods.
However, unlike linear programs we can only obtain solutions to within arbitrary accuracy, not
exact solutions. This is because the bit-complexity of solutions to linear programs are bounded
by a function of the size of the original problem, meaning that if we converge “close enough” for
a linear program we can obtain an exact answer. This property does not hold for semidefinite
programs.

4.1 Duality

The dual of the program above can be written as

max
y

bT y

s.t.
m∑
i=1

yiAi + S = C

S � 0

where y is a length-m vector and S is an n× n matrix.
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4.2 Basic Facts

Fact 1 〈A,X〉 = Tr(ATX)
This fact follows from the definition of matrix multiplication.

Fact 2 Tr(AB) = Tr(BA)
More generally, cyclic permutations of the order in which matrices are multiplied do not affect
the trace. E.g. Tr(ABC) = Tr(CAB) = Tr(BCA).

4.3 Weak Duality

Lemma 1. Let X be symmetric, then X � 0⇔ 〈A,X〉 ≥ 0 ∀A � 0

Proof Suppose X � 0. Then aTXa < 0 for some vector a.
Let A = aaT . Clearly, A � 0.
Then 〈A,X〉 = Tr(ATX) = Tr(aaTX) = Tr(aTXa) < 0

Now suppose X � 0
Let A � 0. Then A = BBT =

∑
i bib

T
i for some matrix B with columns b1, b2, ...bn.

Then 〈A,X〉 =
∑

i b
T
i Xbi ≥ 0 by the same logic as above.

Lemma 2 (Weak Duality). If x/y are feasible for (P)/(D) then bT y ≤ 〈C,X〉.

Proof By the feasibility of y, we have

〈C,X〉 =
〈∑

yiAi, X
〉

+ 〈S,X〉 .

By the feasibility of x, we have 〈∑
yiAi, X

〉
= bT y.

And by Lemma 1, we have
〈S,X〉 ≥ 0.

Thus
bT y = 〈C,X〉 − 〈S,X〉 ≤ 〈C,X〉 .

So any solution for the dual lower bounds the minimum of the primal.

4.4 Strong Duality

Warning: We won’t cover details, but strong duality “usually holds” for semidefinite programs.
Specifically, it holds under the following condition:

Proposition 3 (Slater’s condition). Strong duality holds if the feasible region has an interior point.
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5 Goemans-Williamson

Semidefinite programming provides a generalization of linear programming that is often much more
powerful for solving hard approximation problems. Here we will see a famous relax and round
procedure for MAXCUT based on SDPs. Specifically, consider the following program:

max
∑

(u,v)∈E

1

2
− 1

2
Xuv

s.t. Xuu = 1,∀u
X � 0

Why is this a relaxation to MAXCUT?

We can construct a feasible solution to this SDP from a solution to MAXCUT

Let

xu =

{
1, if u ∈ U,
−1, otherwise.

Set X = xxT . The object value is the number of edges across the cut because Xuv is −1 if u and
v are on opposite sides of the cut and Xuv equals 1 otherwise.

6 Hyperplane Rounding

Goemans and Williamson show how to round this semidefinite program to obtain the following
approximation guarantee:

Theorem 4 (Goemans-Williamson [1]). Let

αgw = min
0≤θ≤π

2

π

θ

1− cos θ
≈ 0.87856 . . .

There is an algorithm with obtains an αgw-approximation for MAXCUT in expectation.

We take X which is the optimal solution to the SDP. Since X is positive semidefinite and has
diagonal entries equal to 1, it can be written as X = Y Y T for some Y . Accordingly, there are
vectors {yu} so that Xuv = 〈yu, yv〉.

Choose a vector a uniformly on the sphere.

Set xu = sgn(〈a, yu〉).

We want to analyze the expected contribution of each edge (u, v) to our rounded solution.

The contribution to the SDP is 1
2 −

1
2 〈yu, yv〉 = 1

2 cos θ where θ is the angle between vectors yu and
yv.

For a contribution to the cut, we have that a cuts edge (u, v) if and only if its orthogonal hyperplane
lies between the vectors yu and yv. If we assume, without loss of generality, that 0 ≤ θ ≤ π, then
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this occurs with probability θ
π . Accordingly, the expected contribution of (u, v) to our cut value is

θ
π .

Thus, the worst case contribution for the edge as a fraction of its contribution to the SDP is:

min
0≤θ≤π

θ
π

1−cos θ
2

= min
0≤θ≤π

2θ

π(1− cos θ)

as desired.

The Goemans-Williamson rounding scheme gives the best known approximation to MAXCUT and
it may be the best approximation possible via any efficient algorithm.

Theorem 5 (Knot, Kindler, Mossel, O’Donnell [2])(Mossel, O’Donnell, Oleszkiewicz [3]). Assum-
ing the “Unique Games Conjecture” it is NP-hard to approximate MAXCUT better than αgw

The UGC, or Unique Games Conjecture, is a controversial, far-reaching conjecture in complexity
theory. It states that there exist constant limits for the best approximation algorithms for certain
NP-hard problems, and makes some statements about what those bounds are. Many believe it to
be true in some form, many believe it to be false in some form.
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