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In this lecture, we analyze the problem of scheduling n equal size tasks arriving online to n different
machines. This could easily be solved with a centralized server that knows which machines are
occupied and assigns all n tasks to unique machines. Instead, we want to see if it’s possible to
distribute the tasks without without such coordination among the tasks. In this problem, the
metric we care about is the maximum load on any given machine.

We will consider two such approaches: naive random assignment, and the “power of two choice”.

1 Random Assignment

One approach might be that each task chooses a machine independently at random. This is the
classic “balls-in-bins” (ball = task, bin = machine). Let zi be the number of balls (tasks) assigned
to bin (machine) i. There are a couple ways we might try to put a bound on the maximum load.

1.1 Markov’s inequality

Theorem 1. Markov’s inequality: If X is a nonnegative random variable, then for any a > 0

P[X ≥ a] ≤ E[X]

a

Using Markov’s inequality, since E[zi] = 1 (on average, each machine will receive 1 task) we get,
for some k, P(zi ≥ k) ≤ 1

k , and using the union bound P(∃i : zi ≥ k) ≤ n
k , which is not very useful

(for all practical values of k, it tells us that the probability is at most 1).

1.2 Chebyshev’s inequality

Theorem 2. Chebyshev’s inequality: Let X be a random variable with expectation µ and variance
σ2. Then

P[|X − µ| ≥ kσ] ≤ 1

k2

Let yi,j be random indicator variable, defined so that yi,j = 1 if the j-th ball is thrown into the
i-th bin, and yi,j = 0 otherwise. Note that yi,j = 1 with probability of 1

n , and Var(yi,j) = 1
n −

1
n2 .
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Then for zi =
∑n

j=1 yi,j , we get E[zi] = 1 and

Var(zi) =
n∑
j=1

Var(yi,n)

= n(1/n− 1/n2)

= 1− 1

n
< 1.

Using Chebyshev’s inequality and a union bound:

P(zi − 1 ≥ k) ≤ P(zi − µ ≥ kσ) ≤ 1

k2

P(∃i : zi ≥ k + 1) ≤ n

k2

(1)

and so we can place a constant bound on the probability that any bin has more than k balls, if
k >
√
n.

1.3 Direct analysis

In a more direct analysis, we take a union bound over all possible subsets of k balls that might be
sent to machine i:

P(zi ≥ k) ≤
∑

S⊂[n],‖S‖=k

P(all balls in S sent to machine i) =

(
n

k

)
1

nk
≤
( e
k

)k
(2)

Here, we used the fact that
(
n
k

)
≤
(
ne
k

)k
.

The bound
(
e
k

)k
is on the order of 1

n when k = Θ
(

logn
log logn

)
, so we can put a constant bound on

the probability that no bin will have more than Θ
(

logn
log logn

)
balls.

1.4 Chernoff bound

Theorem 3. Upper tail of Chernoff bound: Let Xi be independent Bernoulli random variables with
E[
∑
Xi] = µ. Then

P
(∑

Xi ≥ (1 + δ)µ
)
≤
(

eδ

(1 + δ)1+δ

)µ
≤ exp

(
−δ2µ
2 + δ

)

In this case the Xi are whether or not each ball falls into a particular bin, so µ = 1, k = 1+δ, and so
we get P(

∑
Xi ≥ k) ≤ ek−1

kk
, which gives the same result as in direct analysis – P(

∑
Xi ≥ k) = O

(
1
n

)
when k = Θ

(
logn

log logn

)
.
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2 Power of Two Choices

This is a simple variation on the fully random method: instead of picking one machine at random,
each task picks two random machines, and assigns itself to the machine with the lower load. This

simple change will drastically lower the expected max load from Θ
(

logn
log logn

)
to Θ(log log n).

We’ll start with a heuristic justification of this improvement, before giving a more rigorous proof.

2.1 Heuristic Analysis

Consider this nonrigorous analysis to help understand where the Θ(log log n) bound arises.

Let βi be an upper bound on the number of bins with at least i balls at the end of the process.
Now, consider the number of bins which will contain at least i + 1 balls. When a ball arrives, in
order for it to increase a bin to i + 1, both random bins picked must have at least i balls. The
probability of a given random choice ending up that way would be at most βi

n ; since that must

happen twice independently of such an increase would be at most
(
βi
n

)2
. We’d then expect, over

all n arrivals, at most n
(
βi
n

)2
=

β2
i
n bins containing at least i+ 1 balls, and thus set βi+1 =

β2
i
n .

Let β6 = n
2e <

n
6 (must be true by pigeonhole principle), then by induction βi ≤ n

(2e)2i−6 , therefore

the lowest ic such that βic < 1 will be O(log log n).

Note that this heuristic is not a formal proof, since it assumes that the βi bounds always hold (while
in reality there must be some small failure probability) and since we bounded the expectation of βi+1

but we will want a bound that holds with high probability. However, the full proof is conceptually
essentially the same.

2.2 Rigorous Proof

Theorem 4. Suppose that n balls are distributed to n bins, according to the “power of two choices”
method. Then in the end, with high probability the most loaded bin contains at most O(log log n)
balls.

If d ≥ 2 choices are used instead, then the load is at most O
(
log logn
log d

)
balls.

Proof: We shall give the proof for general d. First we define a few notations.

• Let t be the time right after the t-th ball is placed.

• Define h(t), the height of the t-th ball be the number of balls in the same bin as the tth ball
immediately after it is placed (including the tth ball itself).

• Define β6 = n
2e and βi+1 =

eβd
i

nd−1 for i ≥ 6. Note that we can bound βi+1 ≤ cn(βin )d for some
constant c, so with j = O(log log n) we have βj < 1.

• Let B(n, p) be a Bernoulli random variable denoting the total number of heads resulting from
flipping n coins, each flip with probability of heads p.
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• Let νi(t) be the number of bins with load of at least i, and µi(t) be the number of balls of
height at least i. Obviously νi(t) ≤ µi(t).

• Let Ei be the event that νi(n) ≤ βi. Since β6 = n
2e <

n
6 , the event E6 holds with certainty.

Fix an integer i. Let Yi be a random binary variable such that

Yt = 1 iff h(t) ≥ i+ 1 and νi(t− 1) ≤ βi

That is, Yt = 1 iff the height of the t-th ball is at least i + 1, and at time t − 1 there are at most
βi bins of load at least i.

Let ωj be the bin selected by the j-th ball. Then

P[Yt = 1|ω1, .., ωt−1] ≤
βdi
nd

:= pi

The proof will also use the concept of (first-order) stochastic dominance. A random variable x is
said to stochastically dominate another random variable y if for all k,

P(x ≥ k) ≥ P(y ≥ k)

We use the following theorem on stochastic dominance:

Theorem 5. Stochastic Dominance: If X1, X2, . . . Xn are i.i.d. random variables Yi = fi(X1, X2, . . . Xi),
and P(Yi = 1|X1, X2, . . . Xi−1) ≤ p, then

∑
i Yi is stochastically dominated by B(n, p).

Using the Stochastic Dominance theorem

P[
n∑
t=1

Yt ≥ k] ≤ P[B(n, pi) ≥ k]

With respect to Ei it follows µi+1(n) =
∑n

t=1 Yt. Thus

P[νi+1 ≥ k|Ei] ≤ P[µi+1 ≥ k|Ei] = P[
n∑
t=1

Yt ≥ k|Ei] ≤
P[
∑n

t=1 Yt ≥ k]

P[Ei]
≤ P[B(n, pi) ≥ k]

P[Ei]

By the Chernoff bound, with k = βi+1

P[νi+1 ≥ βi+1|Ei] ≤
P[B(n, pi) ≥ enpi]

P[Ei]
≤ 1

epin P[Ei]

If pin ≥ 2 log n, we can rewrite the above expression as P[¬Ei+1|Ei] ≤ 1
n2 P[Ei] . That implies with

high probability νi(n) ≤ βi for large enough i.

However, if pin ≤ 2 log n, we show with high probability that there is no ball at height i + 2. Let

i∗ be the smallest i such that
βd
i

nd ≤ 2 log n. Since βi+6 ≤ n

2d
i , by induction i∗ ≤ log logn

log d +O(1).

We have

P[νi∗+1(n) ≥ 6 log n|Ei∗ ] ≤ P[B(n, 2 log n/n) ≥ 6 log n]

P[Ei∗ ]
≤ 1

n2 P[Ei∗ ]
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also

P[µi∗+2 ≥ 1|µi∗+1 ≤ 6 log n] ≤ P[B(n, (6 log n/n)d) ≥ 1]

P[µi∗+1 ≤ 6 log n]
≤ n(6 log n/n)d

P[µi∗+1 ≤ 6 log n]

Apply the inequality
P[¬Ei+1] ≤ P[¬Ei+1|Ei]P[Ei] + P[¬Ei]

we obtain

P[µi∗+2 ≥ 1] ≤ (6 log n)d

nd−1
+
i∗ + 1

n2
= O

(
1

n

)
That is, with high probability there’s no ball at height i∗ + 2 = O

(
log logn
log d

)
. That concludes the

proof.
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