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1 Compressed Sensing

In compressed sensing, we want to solve

min ‖x‖0 s.t. Ax = b. (P0)

‖x‖0 refers to the number of nonzero entries in x.

Here A is m × n and m � n, so there are many solutions. Among the solutions, we want to find
the sparsest. This problem has a huge number of applications: MRI, single pixel camera, etc.

It is NP-hard, but we’ll give conditions under which we can solve it anyway. Let’s start by consid-
ering a relaxed version of the problem that we can solve efficiently:

min ‖x‖1 s.t. Ax = b (P1)

This can be rewritten as
min

∑
yi s.t. Ax = b, x ≤ y,−x ≤ y

If A has certain properties, the optimal solution to (P1) will also be an optimal solution to (P0),
allowing us to solve (P0) easily.

2 Restricted Isometry Property

We say that A has restricted isometry property (RIP) (k, δk) if for all x with ‖x‖0 ≤ k we have

(1− δk)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δk)‖x‖22

Roughly, this means that on sparse vectors, A behaves similarly to an orthogonal matrix. Recall
that if Q is an orthogonal matrix, ‖x‖22 = ‖Qx‖22 ∀x.

3 Sample Compressed Sensing Theorem

Theorem 1 (Candes-Tao [1]). If Ax = b and ‖x‖0 ≤ k, and A has the RIP for (2k, δ2k) and for
(3k, δ3k), and δ2k + δ3k < 1, the uniquely optimal solution to (P1) is x.

Fact: Random m × n matrix A (independent, Gaussian entries), when scaled appropriately, will
satisfy the above RIP with m = Θ(k log n

k ).
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4 Almost Euclidean Subspace

In what follows, we care about the subspace which is the kernel of A.

We say that a subspace Γ ⊆ Rn is C-Almost Euclidean (C-AE) if for all v ∈ Γ we have

1√
n
‖v‖1 ≤ ‖v‖2 ≤

C√
n
‖v‖1

Informally, we want Γ ∩ {x
∣∣ ‖x‖1 ≤ 1} to be approximately a sphere

Claim 2. 1√
n
‖v‖1 ≤ ‖v‖2 for all v, regardless of Γ.

Proof. If ui = sign(vi), then ‖v‖1 = 〈v, u〉 ≤ ‖v‖2 · ‖u‖2 ≤ ‖v‖2
√
|supp(v)| ≤ ‖v‖2

√
n

Consider v ∈ Γ, v 6= 0, S = n
C2 .

Lemma 3. If v ∈ Γ, v 6= 0, then |supp(v)| ≥ S

Proof. From above,

‖v‖1 ≤ ‖v‖2
√
|supp(v)| ≤ C√

n
‖v‖1

√
|supp(v)| (1)

so it must be that
√
|supp(v)| ≥

√
n/C.

Analogy: linear error correcting codes

e = {Ax
∣∣x ∈ {0, 1}k}

over GF (2) need all nonzero Ax’s to have many 1’s.

Lemma 4. Let v ∈ Γ, v 6= 0, T ⊂ [n], |T | ≤ S
16 . Then,

‖vT ‖1 ≤
‖v‖1

4
(2)

where vT is v restricted to T .

In words, this lemma says that the `1 norm of v cannot be concentrated in too small a set of
vertices.

Proof. We have

‖vT ‖1 ≤
√
|T |‖vT ‖2 ≤

√
|T |‖v‖2 ≤

C
√
|T |√
n
‖v‖1 ≤

C
√

n
16C2√
n
‖v‖1 =

‖v‖1
4

(3)

Theorem 5. If Ax = b and ‖x‖0 ≤ S
16 = n

16C2 and Γ = ker(A) is C-AE then x is the uniquely
optimal solution to (P1).
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Proof. Let w be any other potential solution to (P1). We can write w = x + v, v ∈ Γ since
Γ = ker(A). Let T = supp(x). Then, we have

‖w‖1 = ‖wT ‖1 + ‖wT ‖1 ≥ ‖xT ‖1 − ‖vT ‖1 + ‖vT ‖1
= ‖x1‖ − 2‖vT ‖1 + ‖v‖1

≥ ‖x‖1 +
‖v‖1

2
≥ ‖x‖1

The second to last last inequality follows because v ∈ Γ and so ‖vT ‖1 ≤ ‖v‖14 .

Theorem 6 (Kashin [3], Garnaev-Gluskin [2]). A random subspace Γ ⊂ Rn of dim(Γ) = n−m is
C-AE (whp) with

C ≤
√
n

m
log

n

m
(4)

Proof. By Theorem 5 we can obtain sparse recovery up to sparsity:

‖x‖0 =
S

16
=

n

16C2
= Ω(

m

log n
m

)

What happens if x is not exactly k-sparse? Let σk(x) = min
‖w‖0≤k

‖x− w‖1

This measures how far x is, in the l1 norm, from being k-sparse.

Theorem 7. Let Ax = b, with Γ = ker(A) is C-AE. Let S = n
C2 . If w is an optimal solution to

(P1), then
‖x− w‖1 ≤ 4σ S

16
(x) (5)

So, even when x is not exactly k-sparse we can recover a vector that well approximates x in the
sense that does nearly as well as the best k-sparse approximation to x.

Proof. Let T be the S
16 largest magnitude coordinates of x. Then

‖x− w‖1 = ‖(x− w)T ‖1 + ‖(x− w)T ‖1 ≤ ‖(x− w)T ‖1 + ‖xT ‖1 + ‖wT ‖1 (6)

Because w is optimal for (P1),

‖wT ‖1 = ‖w‖1 − ‖wT ‖1 ≤ ‖x‖1 − ‖wT ‖1 (7)

So, we get
‖x− w‖1 ≤ ‖(x− w)T ‖1 + ‖xT ‖1 + ‖x‖1 − ‖wT ‖1 (8)

Note that

‖xT ‖1 + ‖x‖1 − ‖wT ‖1 = 2‖xT ‖1 + ‖xT ‖1 − ‖wT ‖1 ≤ 2‖xT ‖1 + ‖(x− w)T ‖1 (9)
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Combining all the above gives

‖x− w‖1 ≤ 2‖(x− w)T ‖1 + 2‖xT ‖1 ≤
‖x− w‖1

2
+ 2σ S

16
(x) (10)

The last inequality uses Lemma 4. Finally, we conclude that

‖x− w‖1
2

≤ 2σ S
16

(x) (11)

which gives the result.
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