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1 Compressed Sensing

In compressed sensing, we want to solve

min ||z||p s.t. Az =b. (Po)

||z||o refers to the number of nonzero entries in x.

Here A is m x n and m < n, so there are many solutions. Among the solutions, we want to find
the sparsest. This problem has a huge number of applications: MRI, single pixel camera, etc.

It is NP-hard, but we’ll give conditions under which we can solve it anyway. Let’s start by consid-
ering a relaxed version of the problem that we can solve efficiently:

min ||z]|; s.t. Az =10 (P1)

This can be rewritten as
minZyi st. Ar=bx<y,—x <y

If A has certain properties, the optimal solution to (P;) will also be an optimal solution to (Fp),
allowing us to solve (Fy) easily.

2 Restricted Isometry Property

We say that A has restricted isometry property (RIP) (k,dy) if for all z with ||z|jo < k we have

(1= o) lll3 < Az]3 < (1 + &0)l]3

Roughly, this means that on sparse vectors, A behaves similarly to an orthogonal matrix. Recall
that if Q is an orthogonal matrix, ||z||3 = ||Qz||3 Va.

3 Sample Compressed Sensing Theorem

Theorem 1 (Candes-Tao [1]). If Ax = b and ||z||o < k, and A has the RIP for (2k,dox) and for
(3K, d3k), and 09y + 03 < 1, the uniquely optimal solution to (P;) is x.

Fact: Random m x n matrix A (independent, Gaussian entries), when scaled appropriately, will
satisfy the above RIP with m = ©(klog 7).



4 Almost Euclidean Subspace

In what follows, we care about the subspace which is the kernel of A.

We say that a subspace I' € R" is C-Almost Euclidean (C-AE) if for all v € I" we have

1 C
i < < —
Tl < vl < ol

Informally, we want T' N {z ‘ lz|l1 < 1} to be approximately a sphere

Claim 2. ﬁ”v”l < ||v|l2 for all v, regardless of T.

Proof. 1f u; = sign(vi), then ||v[ly = (v, u) < |[vll2 - lull2 < |[vll2y/[supp(v)| < [[v]2v/n O
Consider v € I', v # 0, S = F5.

Lemma 3. Ifv el v+#0, then |supp(v)| > S

Proof. From above,

C
[ollr < llvll2v/Isupp(v)] < EHUHM/ |supp(v)] (1)
so it must be that \/|supp(v)| > +/n/C. O

Analogy: linear error correcting codes
e = {Az|z € {0,1}"}
over GF'(2) need all nonzero Az’s to have many 1’s.

Lemma 4. Letv e, v#0, T C [n], |T| < &. Then,

[v]l1
lorll < = (2)

where v 18 v restricted to T.

In words, this lemma says that the ¢; norm of v cannot be concentrated in too small a set of
vertices.

Proof. We have

C\/|T C\/imz v
ferls < VTlorlle < VTl < SV ol < S8 o, = 12 )

O]

Theorem 5. If Az = b and ||z[o < & = T6cz and ' = ker(A) is C-AE then x is the uniquely
optimal solution to (P ).



Proof. Let w be any other potential solution to (P;). We can write w = = + v, v € I since
I' = ker(A). Let T' = supp(z). Then, we have

[wlle = flwrll + lwzll = ezl = llorl + ozl

= [lzall = 2for(l + (o]l

o1
> AN
> oy + 12
> [lz]lx
The second to last last inequality follows because v € I" and so |jvp||; < ”v4”1. O

Theorem 6 (Kashin [3], Garnaev-Gluskin [2]). A random subspace I' C R" of dim(I') =n —m is

C-AE (whp) with
C< n log n (4)
Vm " m

Proof. By Theorem 5 we can obtain sparse recovery up to sparsity:

el = 5% = o = i)
€T = — = =
716 16C7 log 2
[
What happens if = is not exactly k-sparse? Let ox(z) = min ||z — w|)

l[wlo<k

This measures how far x is, in the /1 norm, from being k-sparse.

Theorem 7. Let Az = b, with I = ker(A) is C-AE. Let S = &. If w is an optimal solution to
(P1), then
lz —wl[i < 405 (2) (5)

So, even when x is not exactly k-sparse we can recover a vector that well approximates = in the
sense that does nearly as well as the best k-sparse approximation to x.

Proof. Let T be the % largest magnitude coordinates of x. Then
[z = wli = [[(z —w)rlh + [(z —w)zlh < [[(z = w)rl + ozl + [wzll (6)

Because w is optimal for (P;),

|wrlli = wlly = lwrll < |zl — lwr| (7)

So, we get
|z — w1 < |[(x —w)rlli + |zl + 2] = lwrlh (8)

Note that
lzzllt + |zl = lwrlls = 2[lzzll + lzrll — [lwrll < 2(zzl + (2 —w)7h 9)



Combining all the above gives

le=wlls o ¢ () (10)

Iz = wlh < 2l - wyrlh + 2ozl <

The last inequality uses Lemma 4. Finally, we conclude that

lz = wily <205 () (11)
2 16

which gives the result. O
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