1 Compressed Sensing

In compressed sensing, we want to solve

$$
\begin{equation*}
\min \|x\|_{0} \text { s.t. } A x=b \tag{0}
\end{equation*}
$$

$\|x\|_{0}$ refers to the number of nonzero entries in x.
Here A is $m \times n$ and $m \ll n$, so there are many solutions. Among the solutions, we want to find the sparsest. This problem has a huge number of applications: MRI, single pixel camera, etc.
It is NP-hard, but we'll give conditions under which we can solve it anyway. Let's start by considering a relaxed version of the problem that we can solve efficiently:

$$
\begin{equation*}
\min \|x\|_{1} \text { s.t. } A x=b \tag{1}
\end{equation*}
$$

This can be rewritten as

$$
\min \sum y_{i} \text { s.t. } A x=b, x \leq y,-x \leq y
$$

If A has certain properties, the optimal solution to $\left(P_{1}\right)$ will also be an optimal solution to $\left(P_{0}\right)$, allowing us to solve (P_{0}) easily.

2 Restricted Isometry Property

We say that A has restricted isometry property (RIP) $\left(k, \delta_{k}\right)$ if for all x with $\|x\|_{0} \leq k$ we have

$$
\left(1-\delta_{k}\right)\|x\|_{2}^{2} \leq\|A x\|_{2}^{2} \leq\left(1+\delta_{k}\right)\|x\|_{2}^{2}
$$

Roughly, this means that on sparse vectors, A behaves similarly to an orthogonal matrix. Recall that if Q is an orthogonal matrix, $\|x\|_{2}^{2}=\|Q x\|_{2}^{2} \forall x$.

3 Sample Compressed Sensing Theorem

Theorem 1 (Candes-Tao [1]). If $A x=b$ and $\|x\|_{0} \leq k$, and A has the RIP for $\left(2 k, \delta_{2 k}\right)$ and for $\left(3 k, \delta_{3 k}\right)$, and $\delta_{2 k}+\delta_{3 k}<1$, the uniquely optimal solution to $\left(P_{1}\right)$ is x.

Fact: Random $m \times n$ matrix A (independent, Gaussian entries), when scaled appropriately, will satisfy the above RIP with $m=\Theta\left(k \log \frac{n}{k}\right)$.

4 Almost Euclidean Subspace

In what follows, we care about the subspace which is the kernel of A.
We say that a subspace $\Gamma \subseteq \mathbb{R}^{n}$ is C-Almost Euclidean (C-AE) if for all $v \in \Gamma$ we have

$$
\frac{1}{\sqrt{n}}\|v\|_{1} \leq\|v\|_{2} \leq \frac{C}{\sqrt{n}}\|v\|_{1}
$$

Informally, we want $\Gamma \cap\left\{x \mid\|x\|_{1} \leq 1\right\}$ to be approximately a sphere
Claim 2. $\frac{1}{\sqrt{n}}\|v\|_{1} \leq\|v\|_{2}$ for all v, regardless of Γ.
Proof. If $u_{i}=\operatorname{sign}\left(v_{i}\right)$, then $\|v\|_{1}=\langle v, u\rangle \leq\|v\|_{2} \cdot\|u\|_{2} \leq\|v\|_{2} \sqrt{|\operatorname{supp}(v)|} \leq\|v\|_{2} \sqrt{n}$
Consider $v \in \Gamma, v \neq 0, S=\frac{n}{C^{2}}$.
Lemma 3. If $v \in \Gamma, v \neq 0$, then $|\operatorname{supp}(v)| \geq S$

Proof. From above,

$$
\begin{equation*}
\|v\|_{1} \leq\|v\|_{2} \sqrt{|\operatorname{supp}(v)|} \leq \frac{C}{\sqrt{n}}\|v\|_{1} \sqrt{|\operatorname{supp}(v)|} \tag{1}
\end{equation*}
$$

so it must be that $\sqrt{|\operatorname{supp}(v)|} \geq \sqrt{n} / C$.
Analogy: linear error correcting codes

$$
e=\left\{A x \mid x \in\{0,1\}^{k}\right\}
$$

over $G F(2)$ need all nonzero $A x$'s to have many 1's.
Lemma 4. Let $v \in \Gamma, v \neq 0, T \subset[n],|T| \leq \frac{S}{16}$. Then,

$$
\begin{equation*}
\left\|v_{T}\right\|_{1} \leq \frac{\|v\|_{1}}{4} \tag{2}
\end{equation*}
$$

where v_{T} is v restricted to T.

In words, this lemma says that the ℓ_{1} norm of v cannot be concentrated in too small a set of vertices.

Proof. We have

$$
\begin{equation*}
\left\|v_{T}\right\|_{1} \leq \sqrt{|T|}\left\|v_{T}\right\|_{2} \leq \sqrt{|T|}\|v\|_{2} \leq \frac{C \sqrt{|T|}}{\sqrt{n}}\|v\|_{1} \leq \frac{C \sqrt{\frac{n}{16 C^{2}}}}{\sqrt{n}}\|v\|_{1}=\frac{\|v\|_{1}}{4} \tag{3}
\end{equation*}
$$

Theorem 5. If $A x=b$ and $\|x\|_{0} \leq \frac{S}{16}=\frac{n}{16 C^{2}}$ and $\Gamma=\operatorname{ker}(A)$ is $C-A E$ then x is the uniquely optimal solution to (P_{1}).

Proof. Let w be any other potential solution to $\left(P_{1}\right)$. We can write $w=x+v, v \in \Gamma$ since $\Gamma=\operatorname{ker}(A)$. Let $T=\operatorname{supp}(x)$. Then, we have

$$
\begin{aligned}
\|w\|_{1} & =\left\|w_{T}\right\|_{1}+\left\|w_{\bar{T}}\right\|_{1} \geq\left\|x_{T}\right\|_{1}-\left\|v_{T}\right\|_{1}+\left\|v_{\bar{T}}\right\|_{1} \\
& =\left\|x_{1}\right\|-2\left\|v_{T}\right\|_{1}+\|v\|_{1} \\
& \geq\|x\|_{1}+\frac{\|v\|_{1}}{2} \\
& \geq\|x\|_{1}
\end{aligned}
$$

The second to last last inequality follows because $v \in \Gamma$ and so $\left\|v_{T}\right\|_{1} \leq \frac{\|v\|_{1}}{4}$.
Theorem 6 (Kashin [3], Garnaev-Gluskin [2]). A random subspace $\Gamma \subset \mathbb{R}^{n}$ of $\operatorname{dim}(\Gamma)=n-m$ is C-AE (whp) with

$$
\begin{equation*}
C \leq \sqrt{\frac{n}{m} \log \frac{n}{m}} \tag{4}
\end{equation*}
$$

Proof. By Theorem 5 we can obtain sparse recovery up to sparsity:

$$
\|x\|_{0}=\frac{S}{16}=\frac{n}{16 C^{2}}=\Omega\left(\frac{m}{\log \frac{n}{m}}\right)
$$

What happens if x is not exactly k-sparse? Let $\sigma_{k}(x)=\min _{\|w\|_{0} \leq k}\|x-w\|_{1}$
This measures how far x is, in the l_{1} norm, from being k-sparse.
Theorem 7. Let $A x=b$, with $\Gamma=\operatorname{ker}(A)$ is $C-A E$. Let $S=\frac{n}{C^{2}}$. If w is an optimal solution to $\left(P_{1}\right)$, then

$$
\begin{equation*}
\|x-w\|_{1} \leq 4 \sigma_{\frac{S}{16}}(x) \tag{5}
\end{equation*}
$$

So, even when x is not exactly k-sparse we can recover a vector that well approximates x in the sense that does nearly as well as the best k-sparse approximation to x.

Proof. Let T be the $\frac{S}{16}$ largest magnitude coordinates of x. Then

$$
\begin{equation*}
\|x-w\|_{1}=\left\|(x-w)_{T}\right\|_{1}+\left\|(x-w)_{\bar{T}}\right\|_{1} \leq\left\|(x-w)_{T}\right\|_{1}+\left\|x_{\bar{T}}\right\|_{1}+\left\|w_{\bar{T}}\right\|_{1} \tag{6}
\end{equation*}
$$

Because w is optimal for $\left(P_{1}\right)$,

$$
\begin{equation*}
\left\|w_{\bar{T}}\right\|_{1}=\|w\|_{1}-\left\|w_{T}\right\|_{1} \leq\|x\|_{1}-\left\|w_{T}\right\|_{1} \tag{7}
\end{equation*}
$$

So, we get

$$
\begin{equation*}
\|x-w\|_{1} \leq\left\|(x-w)_{T}\right\|_{1}+\left\|x_{\bar{T}}\right\|_{1}+\|x\|_{1}-\left\|w_{T}\right\|_{1} \tag{8}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\left\|x_{\bar{T}}\right\|_{1}+\|x\|_{1}-\left\|w_{T}\right\|_{1}=2\left\|x_{\bar{T}}\right\|_{1}+\left\|x_{T}\right\|_{1}-\left\|w_{T}\right\|_{1} \leq 2\left\|x_{\bar{T}}\right\|_{1}+\left\|(x-w)_{T}\right\|_{1} \tag{9}
\end{equation*}
$$

Combining all the above gives

$$
\begin{equation*}
\|x-w\|_{1} \leq 2\left\|(x-w)_{T}\right\|_{1}+2\left\|x_{\bar{T}}\right\|_{1} \leq \frac{\|x-w\|_{1}}{2}+2 \sigma_{\frac{S}{16}}(x) \tag{10}
\end{equation*}
$$

The last inequality uses Lemma 4. Finally, we conclude that

$$
\begin{equation*}
\frac{\|x-w\|_{1}}{2} \leq 2 \sigma_{\frac{S}{16}}(x) \tag{11}
\end{equation*}
$$

which gives the result.

References

[1] Emmanuel Candes and Terence Tao. Decoding by linear programming. IEEE Trans. on Information Theory, 51(12):4204-4215, 2005.
[2] Andrey Garnaev and Efim Gluskin. The widths of a Euclidean ball. Sovieth Math. Dokl., pages 200-204, 1984.
[3] Boris S. Kashin. Diameters of certain finite-dimensional sets in classes of smooth functions. Izv. Akad. Nauk SSSR, Ser. Mat., 41 (1977), pp. 334-351.

