1 Previous Lecture

We talked about using compressed sensing to recover almost k-sparse vectors in $O(k \log(n/k))$ measurements.

2 Today: Smoothed Analysis

The worst-case analysis is often too pessimistic, and the average case analysis is sensitive to the distribution.

Smoothed Analysis: [1]

$$\max_x \mathbb{E}_\sigma[\text{time}(\text{Alg}(x + \sigma))], \text{ where } \sigma \text{ is a Gaussian Perturbation}$$

We have three approaches to LPs: (1) Simplex, (2) Ellipsoid, (3) Interior Point

Theorem 1. *(The simplex method runs in smoothed polynomial time)*

Smoothed analysis has been applied to Mathematical Programming, Numerical Analysis, Learning, Approximation Algorithms, etc.

Today we will cover knapsack, following [2]

Given Values $v_i \in \text{Values}$, and weights $w_i \in \text{Weights}$, Find:

$$\max \sum x_i v_i \text{ s.t. } \sum x_i w_i \leq W; \ x_o \in \{0, 1\}$$

Knapsack is NP-Hard, but often easy.

3 Namhauser-Ullman Algorithm

Set $P_0 = \emptyset$

For $i = 1$ to n:

----- Let $T\{A\}_{A \in P_{i-1}} \cup \{A \cup \{i\}\}_{A \in P_{i-1}}$

----- Remove every set from from T if the set is strictly dominated by any other

Find $A \in P_n$ with $\sum_{i \in A} w_i \leq W$, that maximizes $\sum_{i \in A} v_i$

This algorithm constructs Pareto Curves, e.g.
Lemma: Each P_i is the Pareto curve for 2^i

Proof: By induction P_{i-1} is the Pareto Curve for 2^i
Consider $B \leq [i]$ with $i \in B$. Then if $B \setminus \{i\} \notin P_{i-1}$, B cannot be on P_i because:
If $A \subset [i-1]$ and A strictly dominates $B \setminus \{i\}$, then $A \cup \{i\}$ strictly dominates B.
Thus all feasible candidates for P_i are considered, and P_i is the Pareto curve for 2^i.

Corollary: Namhauser-Ullman Algorithm returns the optimal solution

Proof: P_n is the Pareto curve for 2^n

When is the NU-Algorithm efficient?

Worst Case: $|P_n| \geq C^n$

Theorem: (informal)[2] The expected size of each Pareto Curve P_i is polynomial in the smoothed analysis model.
Moreover, it is easy to see that P_i can be computed in linear time from P_{i-1}

Corollary: The NU-Algorithm runs in expected smoothed polynomial time.

New let’s define the relevant smoothed model:

• Let Z_i be independent r.v.s whose pdf is bounded by \emptyset, supported in $[0,1]$
• Let $v_i = v'_i + z_i$, $v_i \in [0,1]$, and v'_i is the worst case.
• Let w_i be worst case; arbitrary but distinct.

Our Goal is to build up a family of events that will let us bound the size of the Pareto Curve (P_O)

Step 1: A definition of Pareto Optimal, via sweeping
Consider sweeping from low to high weight.
Observation: A point X is Pareto Optimal iff when it arrives, it has strictly largest value.

Aside: If 2^n points had been Gaussian values (average case unstructured rather than smoothed) we immediately have:

$$E[|PO|] = \sum_{i=1}^{2^n} 1/i \approx n \ln(2)$$

Step 2: Find an event to blame when $x \in PO$
Divide $[0, 2n]$ into intervals of width ϵ
Now if $x \in PO$, we can continue to sweep and find the next point $y \in PO$

Let i be a coordinate s.t. $x_i \neq y_i$. To keep things simple, suppose $x_i = 1, y_i = 0$ (other case is basically the same)
Now we are ready to define the family of events, E, specified by interval I and index i, and a bit a.

$$E \triangleq \text{There is an } x \in PO \text{ with } x \in I, \text{ and if } y \text{ is the next point on } PO, x_i = a, y_i = \bar{a}$$

How many events are there? $(2n/\epsilon)(n)(2) = 4n^2/\epsilon$

Claim: If no two points land in the same interval,

$$|PO| \leq \sum E 1_E + 1$$

The 1 represents the last point on PO with no y.

Step 3: Bound the probability of each event.
Lets consider the $x_i = 1, y_i = 0$ case, and do some backwards reasoning:

Lemma: If $v_1, v_2, ..., v_{i+1}, ..., v_n$ are fixed, there is a unique x that can cause E
Proof: Let $I = (b, b + \epsilon)$. Then the point y must be the point with smallest weight among those with $val(y) > b + \epsilon$.
Note: if $y_i = 1$, we already know E does not occur.

Now x is the point among those with $x_i = 0$, $weight(x) < weight(y)$ that has largest value.
Why? For any other point x' we have:
Furthermore, if $x' \in I$, then $val(x) > b + \epsilon$ (no two points in the same interval), but all other points y' with $val(y') > b + \epsilon$ and $y'_i = 1$ are right of y.

Thus the next PO point after x' cannot have the i^{th} coordinate equal to zero, so E does not happen.

To finish, v_i is still random, so there is at most an $\emptyset\epsilon$ change x lands in i. Thus:

Lemma: $Pr[E] \leq \epsilon\emptyset$

Putting it all together we have: ($\epsilon \to 0$, so no two in same interval a.s.)

\[
\mathbb{E}(|PO|) \leq 4n^2\emptyset + 1
\]

The exciting takeaway is that the explanatory power of theory is not necessarily limited to the worst case or average case. When faced with a hard problem, explore it in weaker models.

References
