Spring 2016

Lecture 23 – May 2, 2016

Prof. Ankur Moitra

Scribe: David Ashpole

1 Previous Lecture

We talked about using compressed sensing to recover almost k-sparse vectors in O(klog(n/k)) measurements.

2 Today: Smoothed Analysis

The worst-case analysis is often too pessimistic, and the average case analysis is sensitive to the distribution.

Smoothed Analysis: [1]

 $\max_{x} \mathbb{E}_{\sigma}[\operatorname{time}(Alg(x+\sigma))], \text{ where } \sigma \text{ is a Gaussian Perturbation}$

We have three approaches to LPs: (1) Simplex, (2) Ellipsoid, (3) Interior Point

Theorem 1. (The simplex method runs in smoothed polynomial time)

Smoothed analysis has been applied to Mathematical Programming, Numerical Analysis, Learning, Approximation Algorithms, etc.

Today we will cover knapsack, following [2] Given Values $v_i \in Values$, and weights $w_i \in Weights$, Find:

 $\max \sum x_i v_i \text{ s.t. } \sum x_o w_i \le W; x_o \in \{0, 1\}$

Knapsack is NP-Hard, but often easy.

3 Namhauser-Ullman Algorithm

Set $P_o = \emptyset$ For i = 1 to n: ---- Let $T\{A\}_{A \in P_{i-1}} \cup \{A \cup \{i\}\}_{A \in P_{i-1}}$ ---- Remove every set from from T if the set is strictly dominated by any other Find $A \in P_n$ with $\sum_{i \in A} w_i \leq W$, that maximizes $\sum_{i \in A} v_i$

This algorithm constructs Pareto Curves, e.g.

6 Vall 0 Pareto curue 0 ZVIL ZVI

Lemma: Each P_i is the Pareto curve for $2^{[i]}$ **Proof:** By induction P_{i-1} is the Pareto Curve for $2^{[i]}$ Consider $B \leq [i]$ with $i \in B$. Then if $B \setminus \{i\} \notin P_{i-1}$, B cannot be on P_i because: If $A \subset [i-1]$ and A strictly dominates $B \setminus \{i\}$, then $A \cup \{i\}$ strictly dominates B. Thus all feasible candidates for P_i are considered, and P_i is the Pareto curve for $2^{[i]}$

Corrilary: Namhauser-Ullman Algorithm returns the optimal solution **Proof:** P_n is the pareto curve for $2^{[n]}$

When is the NU-Algorithm efficient?

Worst Case: $|P_n| \ge C^n$

Theorem: (informal)[2] The expected size of each Pareto Curve P_i is polynomial in the smoothed analysis model.

Moreover, it is easy to see that P_i can be computed in <u>linear time</u> from P_{i-1}

Corollary: The NU-Algorithm runs in expected smoothed polynomial time. New let's define the relevant smoothed model:

- Let Z_i be independent r.vs whose pdf is bounded by \emptyset , supported in [0,1]
- Let $v_i = v'_i + z_i$, $v_i \in [0, 1]$, and v'_i is the worst case.
- Let w_i be worst case; arbitrary but distinct.

Our Goal is to build up a family of events that will let us bound the size of the Pareto Curve (P_O) **Step 1:** A definition of Pareto Optimal, via sweeping Consider sweeping from low to high weight.

Observation: A point X is Pareto Optimal iff when it arrives, it has strictly largest value. **Aside:** If 2^n points had been Gaussian values (average case unstructured rather than smoothed) we immediately have:

$$\mathbb{E}[|PO|] = \sum_{i=1}^{2^n} 1/i \approx n \ln(2)$$

Step 2: Find an event to blame when $x \in PO$ Divide [0, 2n] into intervals of width ϵ Now if $x \in PO$, we can continue to sweep and find the next point $y \in PO$

Let i be a coordinate s.t. $x_i \neq y_i$. To keep things simple, suppose $x_i = 1$, $y_i = 0$ (other case is basically the same)

New we are ready to define the family of events, E, specified by interval I and index i, and a bit \underline{a} .

 $E \triangleq$ There is an $x \in PO$ with $x \in I$, and if y is the next point on PO, $x_i = a, y_i = \bar{a}$ How many events are there? $(2n/\epsilon)(n)(2) = 4n^2/\epsilon$

Claim: If no two points land in the same interval,

$$|PO| \leq \sum_E \mathbb{1}_E + 1$$

The 1 represents the last point on PO with no y.

Step 3: Bound the probability of each event. Lets consider the $x_i = 1$, $y_i = 0$ case, and do some <u>backwards</u> reasoning:

Lemma: If $v_1, v_2, ..., v_{i+1}, ..., v_n$ are fixed, there is a unique x that can cause E **Proof:** Let $I = (b, b + \epsilon)$. Then the point y must be the point with smallest weight among those with $val(y) > b + \epsilon$. **Note:** if $y_i = 1$, we already know E does not occur.

Now x is the point among those with $x_i = 0$, weight(x) < weight(y) that has largest value. Why? For any other point x' we have:

Furthermore, if $x' \in I$, then $val(x) > b + \epsilon$ (no two points in the same interval), but all other points y' with $val(y') > b + \epsilon$ and $y'_i = 1$ are right of y.

Thus the next PO point after x' cannot have the i^{th} coordinate equal to zero, so E does not happen.

To finish, v_i is still random, so there is at most an $\emptyset \epsilon$ change x lands in i. Thus: **Lemma:** $Pr[E] \leq \epsilon \emptyset$ Putting it all together we have: ($\epsilon \to 0$, so no two in same interval a.s.)

$$\mathbb{E}[|PO|] \le 4n^2\emptyset + 1$$

The exciting takeaway is that the <u>explanatory power</u> of theory is not necessarily limited to the worst case or average case. When faced with a hard problem, explore it in weaker models.

References

- Spielman, D. and Teng, S. 2004. Smoothed Analysis of Algorithms. Journal of the ACM. 79:385–463.
- [2] Beier, R. and Vöcking, B. 2004. An Experimental Study of Random Knapsack Problems. Springer Berlin Heidelberg. pp. 616-627.