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1 Previous Lecture

We talked about using compressed sensing to recover almost k-sparse vectors in O(klog(n/k))
measurements.

2 Today: Smoothed Analysis

The worst-case analysis is often too pessimistic, and the average case analysis is sensitive to the
distribution.

Smoothed Analysis: [1]

maxxEσ[time(Alg(x+ σ))], where σ is a Gaussian Perturbation

We have three approaches to LPs: (1) Simplex, (2) Ellipsoid, (3) Interior Point

Theorem 1. (The simplex method runs in smoothed polynomial time)

Smoothed analysis has been applied to Mathematical Programming, Numerical Analysis, Learning,
Approximation Algorithms, etc.

Today we will cover knapsack, following [2]
Given Values vi ∈ V alues, and weights wi ∈Weights, Find:

max
∑
xivi s.t.

∑
xowi ≤W ; xo ∈ {0, 1}

Knapsack is NP-Hard, but often easy.

3 Namhauser-Ullman Algorithm

Set Po = ∅
For i = 1 to n:

Let T{A}A∈Pi−1 ∪ {A ∪ {i}}A∈Pi−1

Remove every set from from T if the set is strictly dominated by any other
Find A ∈ Pn with

∑
i∈Awi ≤W , that maximizes

∑
i∈A vi

This algorithm constructs Pareto Curves, e.g.
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Lemma: Each Pi is the Pareto curve for 2[i]

Proof: By induction Pi−1 is the Pareto Curve for 2[i]

Consider B ≤ [i] with i ∈ B. Then if B\{i} 6∈ Pi−1, B cannot be on Pi because:
If A ⊂ [i− 1] and A strictly dominates B\{i}, then A ∪ {i} strictly dominates B.
Thus all feasible candidates for Pi are considered, and
Pi is the Pareto curve for 2[i]

Corrilary: Namhauser-Ullman Algorithm returns the optimal solution
Proof: Pn is the pareto curve for 2[n]

When is the NU-Algorithm efficient?
Worst Case: |Pn| ≥ Cn
Theorem: (informal)[2] The expected size of each Pareto Curve Pi is polynomial in the smoothed
analysis model.
Moreover, it is easy to see that Pi can be computed in linear time from Pi−1

Corollary: The NU-Algorithm runs in expected smoothed polynomial time.
New let’s define the relevant smoothed model:

• Let Zi be independent r.vs whose pdf is bounded by ∅, supported in [0,1]

• Let vi = v′i + zi, vi ∈ [0, 1], and v′i is the worst case.

• Let wi be worst case; arbitrary but distinct.

Our Goal is to build up a family of events that will let us bound the size of the Pareto Curve (PO)
Step 1: A definition of Pareto Optimal, via sweeping
Consider sweeping from low to high weight.
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Observation: A point X is Pareto Optimal iff when it arrives, it has strictly largest value.
Aside: If 2n points had been Gaussian values (average case unstructured rather than smoothed)
we immediately have:

E[|PO|] =
∑2n

i=1 1/i ≈ n ln(2)

Step 2: Find an event to blame when x ∈ PO
Divide [0, 2n] into intervals of width ε
Now if x ∈ PO, we can continue to sweep and find the next point y ∈ PO

Let i be a coordinate s.t. xi 6= yi. To keep things simple, suppose xi = 1, yi = 0 (other case is
basically the same)
New we are ready to define the family of events, E, specified by interval I and index i, and a bit a.

E , There is an x ∈ PO with x ∈ I, and if y is the next point on PO, xi = a, yi = ā
How many events are there? (2n/ε)(n)(2) = 4n2/ε

Claim: If no two points land in the same interval,

|PO| ≤
∑

E 1E + 1

The 1 represents the last point on PO with no y.

Step 3: Bound the probability of each event.
Lets consider the xi = 1, yi = 0 case, and do some backwards reasoning:

Lemma: If v1, v2, ..., vi+1, ..., vn are fixed, there is a unique x that can cause E
Proof: Let I = (b, b+ ε). Then the point y must be the point with smallest weight among those
with val(y) > b+ ε.
Note: if yi = 1, we already know E does not occur.

Now x is the point among those with xi = 0, weight(x) < weight(y) that has largest value.
Why? For any other point x’ we have:
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Furthermore, if x′ ∈ I, then val(x) > b+ ε (no two points in the same interval), but all other points
y’ with val(y′) > b+ ε and y′i = 1 are right of y.
Thus the next PO point after x’ cannot have the ith coordinate equal to zero, so E does not happen.

To finish, vi is still random, so there is at most an ∅ε change x lands in i. Thus:
Lemma: Pr[E] ≤ ε∅
Putting it all together we have: (ε→ 0, so no two in same interval a.s.)

E[|PO|] ≤ 4n2∅+ 1

The exciting takeaway is that the explanatory power of theory is not necessarily limited to the
worst case or average case. When faced with a hard problem, explore it in weaker models.
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