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1 Last Time

• Consistent Hashing - hash functions that “evolve” well

• Random Trees - routing schemes that deal with inconsistent views

Today: Distinct Elements and Count-Min Sketch. “What can we do if we can’t store data, only
stream it?”

2 Distinct Elements

Problem: Count the number of distinct elements in a sequence X1, X2, . . . , Xn. For example, how
many unique words did Shakespeare use?

Naively this problem takes O(N) space, where N is the number of distinct elements in the sequence.
For Shakespeare’s total vocabulary, N ≈ 35, 000. However, it turns out that you can do much better
than the naive method if you are willing to accept some level of approximation. There’s a famous
quote from a 2003 paper by Marianne Durand and Philippe Flajolet:

Using only memory equivalent to 5 lines of printed text, you can estimate with a typical
accuracy of 5% and in a single pass the total vocabulary of Shakespeare.

2.1 Using a Single Hash Function

Idea: Choose a random hash function h : U → [0, 1] and pass once through the data, hashing each
item and storing only the minimum of h(X1), h(X2), . . . , h(Xi), . . ..

Let Y , mini{h(Xi)} be the minimum, and let N be the true number of distinct elements.

Lemma 1.

E[Y ] =
1

N + 1
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Proof.

E[Y ] =

∫ 1

0
P[Y ≥ z]dz

=

∫ 1

0
(1− z)Ndz

=

[
− (1− z)N+1

N + 1

]1

0

=
1

N + 1

With some thought, you can confirm that E[Y ] is the same as the probability of choosing N + 1
numbers in the interval [0, 1] and having the last number be the minimum. By symmetry, this
probability is 1

N+1 .

So, if we estimate N by 1
Y − 1, we’ll at least get the right answer in expectation.

To show that we also get the right answer with good probability, we’re going to use the Chebyshev
tail bound to bound the probability that our estimate for Y is close to its expectation. To do this,
we must first compute the variance of Y .

Lemma 2.

V ar[Y ] ≤
(

1

N + 1

)2

Proof.

V ar[Y ] = E[Y 2]− E[Y ]2

=

∫ 1

0
z2N(1− z)N−1dz −

(
1

N + 1

)2

=
2

(N + 1)(N + 2)
− 1

(N + 1)(N + 1)

≤ 2

(N + 1)(N + 1)
− 1

(N + 1)(N + 1)

=

(
1

N + 1

)2

Unfortunately, we cannot apply Chebyshev directly because the variance of Y is too large. In
particular, Chebyshev only gives error “resolution” down to size of Y ’s standard deviation (i.e.√
V ar[Y ]). Zero is one standard deviation below E[Y ], so Chebyshev would only tell us that

P[Y = 0] is some constant. This is bad because we cannot solve N = 1
Y − 1 when Y = 0. We want

P[Y = 0] to be very small.
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2.2 k Hash Functions

Fortunately, we can apply the standard technique of reducing the variance of our estimate via
repetition.

Idea [Flajolet-Martin]: Use k hash functions h1, . . . , hk : U → [0, 1].

Now, evaluate each hash function on each item in the sequence, storing the minimum for each hash
function separately. Let Ȳ , 1

k

∑k
i=1 Yi be the average minimum. The variance of the sum of

independent random variables is the sum of their variances. Thus, V ar[Ȳ ] = 1
k

∑k
i=1 Yi ≤

1
k(N+1)2

,

where we’ve used Lemma 2 for the inequality.

Applying Chebyshev:

P
[
|Ȳ − 1

N + 1
| ≥ ε

N + 1

]
≤ V ar[Ȳ ](

ε
N+1

)2 ≤ 1

kε2

Thus, our estimate for the number of distinct elements, 1
Ȳ

, satisfies N+1
1+ε ≤

1
Ȳ
≤ N+1

1−ε with proba-

bility at least 1− 1
kε2

. For small ε, this guarantee is equivalent to:

(1−O(ε))N ≤ 1

Y
− 1 ≤ (1 +O(ε))N

We need to set k = O(1/ε2) to get an ε accurate estimate with probability 9/10, for example.

In practice, we don’t need our hash functions to map to arbitrary real numbers. It is sufficient to
use length O(log n) binary strings. For more details, see [1].

3 Heavy Hitters

We can compute many statistics about a stream of data beyond the number of distinct elements.
One particularly popular and practically useful goal is to find elements that appear frequently in
the stream. These items are simply called “frequent items” or sometimes “heavy hitters”.

3.1 Misra-Gries, 1982 [3]

We begin with a straight forward version of the heavy hitters problem:

Given a sequence of elements X1, X2, ..., Xn, output a list with at most k values, ensuring that
every element which occurs at least n

k+1 + 1 times in the sequence is on the list. Note that there
can only be k such items, although there could be fewer. We allow false positives in the list.

Here’s the algorithm:

initialize empty list

for each item

if item on list

increment its counter

else if length(list) < k
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add item to list

set item’s counter to 1

else

throw away item

decrement counter of every item in list

delete items in list with counter = 0

Fact: Since the Misra-Gries algorithm stores k counters with value at most n, it uses O(k log n)
space.

Lemma 3. Let fx denote the frequency of item x. When Misra Gries terminates, the counter for
x is at least fx − n

k+1 .

Note that x could have a counter equal to 0, in which case it will not be on the list.

Proof. The final value of x’s counter is equal to the number of times it appears in our sequence,
fx, minus the number of times x was thrown out because the list was full at the time. We argue
that this number can’t be higher than n

k+1 .

When an item is thrown out, each element contained in the list is decremented. Additionally, x’s
“virtual counter” is effectively decremented from 1 to 0. Since the entire list must be filled, this
corresponds to k + 1 tokens being destroyed every time x is thrown out. There are a total of n
tokens received, so this event can occur at most n

k+1 times.

We conclude that the counter for x is at least fx − n
k+1 . So, if fx >

n
k+1 , it will appear on the list

at the end of the algorithm, as desired.

3.2 Count-Min Sketch

We can also solve a more ambitious version of the heavy hitters problem:

Given a sequence X1, X2, ..., Xn, compute fx to within additive error εn.

Note that an additive approximation is more meaningful for heavier items in the list and becomes
meaningless when fx ≤ εn.

We will use the Count-Min Sketch (Cormode, Muthukrishnan 2005 [2]). Choose ` random hash
functions h1, ..., h` : U → {1, 2, ..., b}. Initialize an ` × b array CMS[`][b] with zeros. Then, as
elements Xi in the sequence are streamed in, for each hash function hj(·), increment the (j, hj(Xi))
entry of the table.

To estimate the frequency of item x, compute

Count(x) = min
j
{ CMS[j][hj(x)] }

Claim 4. For any fixed item x and index j, CMS[j][hj(x)] ≥ fx.

Proof. We increment CMS[j][hj(x)] each time we see x. However, this entry will be incremented if
hj(y) = hj(x) for some other item y 6= x that also appears in the stream. Hence the inequality.
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3.2.1 Analysis

Let zj , CMS[j][hj(x)], and note that zj = fx +
∑

y 6=x,hj(y)=hj(x) fy. We want to examine the
expected value of zj :

E[zj ] = fx +
∑
y 6=x

fy P[hj(x) = hj(y)]

= fx +
1

b

∑
y 6=x

fy

≤ fx +
1

b

∑
y

fy

= fx +
n

b

Note that zj is a biased estimator : its expected value is greater than fx, the quantity we hope to
estimate.

Now, we want to show that zj is close to fx. Using the Markov Bound when b = 2
ε ,

P[zj ≥ εn] ≤ 1

2

When we have ` hash functions, our estimate is the minimum zj . Our estimate is bad iff every zj
is much larger than fx:

P[(min
j
zj) ≥ fx + εn] = P[∀j, zj ≥ fx + εn]

≤ 1

2`

Setting ` = O(log(n)), we get P[(minj zj) ≥ fx + εn] ≤ 1
n . Accordingly, our estimate is accurate up

to εn error with high probability.

3.2.2 Comparison with Misra Gries

By setting ε = 1
2k , the Count-Min sketch solves almost the same problem as Misra-Gries. The key

difference is that the Count-Min sketch guarantees that for every x, if Count(x) is large then x is
a heavy hitter. In Misra-Gries, an item on the returned list might not be a heavy hitter.

We pay for this guarantee in space. Misra-Gries takes O(k log(n)) space, while the Count-Min
sketch requires O(k log2(n)) space (setting ε = 1

2k and noting that each counter stores a value of at
most n). Also note that Count-Min only obtains its solution with high probability. Misra-Gries is
deterministic and so it always succeeds.
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