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1 Last Time

Last time we talked about flow decomposition and Ford-Fulkerson, and we proved that the max
flow equals the min cut.

When applying Ford-Fulkerson last time, we faced the problem of how to pick the augmenting path
at every step. Given adversarial path selection, we found that on real valued capacity graphs, the
algorithm could run forever without terminating. Worse, the flow value might even converge to a
value less than the actual max flow. On integer capacity graphs with m edges and values bounded
by U , the algorithm could take Θ(mU) iterations.

This is pseudopolynomial in the input, since it is exponential in the number of bits lgU and
polynomial in the size of m. Note that for graphs with integer valued capacities, the algorithm
always outputs an integer valued max flow. We will leverage this fact in our development of a
better integer max-flow algorithm with a Capacity Scaling technique.

2 Capacity Scaling

The idea behind capacity scaling is to augment the highest flow paths first to reach our maximum
flow faster. We do this by limiting our scope to a D-residual graph, i.e. a residual graph with
all edges with < D capacity removed.

2.1 Framework

Our capacity scaling algorithm works as follows:

Set D = U
While D ≥ 1:

Let Hf (D) be the D-residual graph

While ∃ s− t path w in Hf (D):
Augment along w by lowest edge capacity (i.e. Ford-Fulkerson step)

Update D-residual

Set D = D
2

2.2 Analysis

Let m = |E|, n = |V |, f∗ be a maximum flow, and f be the current flow produced by a given step
in the algorithm. We now prove the following theorem:

1



Theorem [Edmonds-Karp, Dinitz] Capacity scaling (1) computes a maximum flow and (2) can be
implemented in O(m2(1 + lg |U |)) time.

To prove (1), we have the following lemma:

Lemma 1. When a capacity scaling algorithm terminates, it produces a max flow f∗.

Proof. When running Ford-Fulkerson any regular residual graph H, we are guaranteed to achieve
a max flow f∗ (proven in last lecture). When D = 1, Hf (D) = H, i.e. our inner loop in the
capacity scaling framework becomes an instance of the Ford-Fulkerson algorithm running on a
regular residual. Therefore, at termination, we are guaranteed to achieve f∗.

Finally, to prove (2), we have:

Lemma 2. When the outer loop terminates for some D,

|f∗| ≤ |f |+ Dm

Proof. We know there is an s− t in residual H of value |f∗| − |f |. Let S be the nodes reachable
from s in Hf (D). Clearly, the capacity of the cut between S and its complement ≤ Dm. Since
max flow ≤ any cut, we’re done.

Finally, each augmentation must increase the flow value by at least D, since it’s along a path in
the D-residual graph. Thus there can be at most O(m) augmentations per iteration of the outer
loop.

2.2.1 Remarks

The running time of O(m2(1+ lgU)) is indeed polynomial in the number of bits needed to describe
our problem (i.e. “description length”)—however, this is only weakly polynomial.

A strongly polynomial algorithm depends only on the number of values used to describe the
problem (i.e. m and n) and is independent of the size the values can take on.

There exist many strongly polynomial time algorithms for the max flow problem. One simple
algorithm is to use BFS to find the shortest augmenting path on each iteration of Ford-Fulkersons,
resulting in an O(m2n) running time. Consult the 6.854 Notes from Fall 2013 [Karger] for the
formal proof.

3 Min-Cost Flows

In the problem of Min-Cost Flow, each edge has both a capacity and a real number cost, c, associated
with it. The goal is now to find the max s− t flow that minimizes

∑
(a,b)∈E f(a, b)c(a, b).
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3.1 A Simpler Problem: Min-Cost Bipartite Matching

Just for review, a matching M ∈ E is a set of edges such that each vertex in the graph G is
incident on at most one edge e ∈M .

The Bipartite Perfect Matching problem is as follows: We are given a bipartite graph G =
(V,E), where V = A ∪ B, |A| = |B| = n, and E ⊂ A × B. We want to find out whether or
not ∃ a perfect matching M such that M covers all the vertices in the graph. Just to be clear,
∀e ∈ E, e = (a, b) for a ∈ A, b ∈ B, and the edges are undirected.

We can construct a reduction to a max flow problem. Create a new vertex s, and ∀ai ∈ A, construct
an edge (s, ai) in a new graph G′. Then, ∀e = (ai, bi) ∈ E, construct a directed edge (ai, bi) in G′.
Then, construct another new vertex t, and add new edges (bi, t), ∀bi ∈ B. Let each of the edges in
our new graph have capacity equal to 1. Remember that |A| = |B| = n. So in our new graph G′,
if ∃ flow f, |f | = n, then there exists a perfect bipartite matching in our graph; the contrapositive
of this statement is therefore also true.

3.2 Back to Min-Cost Flow

So how does our Min-Cost problem relate to the Bipartite Perfect Matching problem? Essentially,
in the case of a bipartite graph, we want to find the perfect matching with the minimum possible
cost.

Let us present the following algorithm: Given some perfect matching M , construct the residual
graph HM according to the following rules:

• If (a, b) /∈M : add the directed edge (a, b) to HM , with ch(a, b) = c(a, b).

• If (a, b) ∈M : add the directed edge (b, a) to HM , with ch(b, a) = −c(a, b).

We now present the following Lemma:

Lemma. Let M be a perfect matching. Then the constructed residual HM has a cycle of negative
total cost iff M is not a min cost perfect matching.

Proof. Let C be a negative cost cycle in HM : c(C) < 0. Then, augmenting along C in HM will
give us a new perfect matching M ′, according to the following rules:

To construct M ′, begin with M . Then, for each edge e = (ai, bi) ∈ HM that is included in C, add
the undirected e to M ′. And for each edge e = (bi, ai) ∈ HM that is in the cycle, remove (ai, bi)
from M ′. Once you have done this for all edges in the cycle, you will be left with a new perfect
matching.

Additionally, the new cost c(M ′) = c(M) + c(C) < c(M). Let M ′ be any lower cost perfect
matching. Then we will define the symmetric difference M∆M ′ = {e ∈ E : e ∈ M ⊕ e ∈ M ′};
basically, these are the edges that are in either M or M ′, but not both.

Note that
∑k

i=1 cHM
(Ci) = c(M ′)−c(M) < 0. Therefore, the cycle containing precisely these edges

has a negative total cost, and we are done.
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3.3 Klein’s Cycle Cancelling Algorithm

Find a max s− t flow in G;
while ∃ a negative cost cycle C do

augment along the cycle by ∆HM
(C);

end

The question of how to choose the cycle remains, however.
Choosing any negative cost cycle via Bellman-Ford results in pseudopolynomial runtime.
Choosing the most negative cycle is NP-Hard!

3.3.1 Next Time

We will see how to choose cycles to execute Klein’s Cycle Cancelling Algorithm efficiently for a
perfect matching, then look at the general case.
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