Lecture 14

Last Class: Submodular Functions

These functions can be minimized efficiently. We didn’t finish the details about how
exactly how to do this, but we started piecing things together by showing that there’s a
continuous, convex function the Lovasz Extension for every discrete sub modular
function. It turns out that minimizing the Lovasz extension (which can be done efficiently
using i.e. Ellipsoid) gives a way to minimize the original problem.

Today we’re going to do something superficially similar. We’re going to map discrete
combinatorial optimization problems to continuous optimization problems. And
specifically, to something you’re all very familiar with: linear programs.

This Class: Linear Programming Relaxations for
Combinatorial Problems

Let’s jump into an example:

Vertex Cover:
Undirected graph G=(V,E)

Goal:

Find vertex set C c V.

min ICI

such that for every edge e = (u, v) in E
eitherue CorveC.

This problem is NP-Hard: One of Karp’s 21 Original NP-complete problems.

Let’s write this in a form that looks more like the optimization problems we’ve been
looking at:

Find some vector x with length IVI. Each entry in x is going to correspond to a node and
will take value 1 if the node is in C, 0 otherwise.

Vertex Cover IP

min Z{v in V} X_V — min 1AT x
s.t.

for all v, x_v € {0,1}

foralluvx u+x_v>=1 — Ax>=b



This is an integer linear program because it involves the {0,1} constraint on x. Many
hard optimization problems can be written in this way.

What'’s a natural relaxation of the vertex cover problem?

Relaxed Vertex Cover LP

min Z{V in V) X_V — 1ATx
s.t.
forallv, 0<=x<=1 — actually we can just drop the <= constraint

foralluvx u+x v>=1
Fact: Any solution to the ILP is feasible for the LP

But: LP doesn’t necessarily have an integral solution.
opt(Vertex Cover ILP) <= opt(Relaxed Vertex Cover LP)

What are the optimum assignments for this problem?
LP opt: 3/2
Vertex cover opt: 2

In many cases a fractional solution can still be helpful.
Procedure:

1) Solve LP to obtain (possibly non-integral) solution x*
2) Round x* to integral solution x~

3) Argue that cost(x~) isn’t much greater than cost(x*)

As we’ll see soon, the exact rounding procedure that works is problem dependent. For
vertex cover it happens to be very simple.

X~ v=1ifx* v>=1/2
X~ v=0ifx* v<1i1/2

Claim: The rounded x~ is a valid solution to the vertex cover problem.



Can anyone tell me why this is true? It’s a short argument.

If x*_u+ x*_v>=1, it must be that one of x*_u, x*_v >= 1/2 so then one of x~_u,
x~_v = 1. So we have a vertex incident to edge (u,v)

Claim: x~ gives a 2 approximation to vertex cover

Forallv, x~ v<=2x*_ v
SO
2 X~_Vv<=23 x*_v<=2*opt(Vertex Cover)

Could we have come up with a more clever rounding scheme that does better than a
factor of 27

| claim that from our triangle example, we certainly couldn’t have done better than a
factor of 4/3.
Can someone tell me why?

- opt(LP) = 3/2

-3/2*loss <2 if loss <4/3

- but we know that we can’t actually do better than 2 with an integer solution —>
contradiction

Think about the complete graph with > 3 vertices.

Optimal non-integer solutions = n/2 (put 1/2 on every vertex)
Optimal integer solution = n-1 (need to include all but one node in the cover)

We can find examples where opt(IP)/opt(LP) = 2(n-1)/n —> 2

For these examples, we certainly won’t be able to lose less than a factor of two when
rounding or we’ll get a solution better than optimal.

This limitation is called the integrality gap = sup opt(Integer Program)/opt(Linear
Program)

So even before you come up with a good rounding scheme, you can use the integrality
gap to get a good sense of how tight your relaxation is. In theory, you could imagine a
rounding scheme that bounds the distance of the rounded solution from the optimal
integer solution, instead of from the optimal LP solution. However, virtually all known
rounding schemes are analyzed like ours.

It turns out that a 2 factor approximation is basically the best you can do for vertex
cover.

- some complicated techniques get 2 - O(1/sqrt(loglVI))



- it can be show that beating 1.3606 is NP-hard [Dinur, Safra 2005]
- unique games conjecture implies 2-c is hard for any fixed € [Khot, Regev 2008]

In general LP relaxation techniques are very powerful.
However we lucked out with vertex cover in that it has a very simple deterministic
rounding scheme.

Randomized Rounding
Set Cover:

Vertex Cover is actually a special case of this

Given: Some set of elements {1,2,... n} and a collection of subsets
$1,S 2,..,S m
i.e. {{1,2,3}, {2,4} , {3,4}, {4, 5}, {5}}

Want to select the smallest number of subsets that covers every elements {1,2,... n}
Again we’re going to have an x_i for each S_i
Integer Program:

min z|=1 ‘m X_i

for all ] in {1,... n} Z{I: l in S_l} x_i>=1
foralliin{1,... m} x_i € {0,1}

Relaxation:
min 2;_q.m X_i

for all jin {1,... n} Z{i: jinS_i} x_i>=1
foralliin{1,...m} O<=x_i<=1

Naively, deterministic Rounding does not work for this problem:
subsets =

{1,2,3 }

{ 2,34}

{1, 3,4}

{1,2, 4}

opt puts each x_i at 1/3 —> everything setto 0



You could lower your threshold, but taking this to the extreme:
{1,2,...n-1}
{2,3, ... n}

You can get all of the weights down to 1/n. And you only need to select 2 subsets!
In fact, when ever set x~_i has a low weight, it must be that its elements are covered in
other sets.

Attempt 1:
Set x~_i =1 with probability x*_i

This does something:
El2s j:jins iX -1 =25 j:jins jj EIx _iI>=1
So, the expected number of sets covering element j is 1.

But we want to get every set covered with good probability. So let’s set things to 1 with
higher probability.

Attempt 2:

Set x~_i= 1 with probability alpha x*_i
What’s the probability element j is not covered?
letY_j=2: jin s_jy X~

E[Y_j] >= alpha

Prob j not covered =

PriY_j<1]=

PrlY_j <1/E[Y_i] * E[Y_il]

<=exp( (1-1/E[Y_i]) 2 E[Y_i)/2 )

delta = (1-1/E[Y_li])

Which is <= 1/n7*2 as long as E[Y_i]>c logn

Choose alpha = O(log n)

Union bounding over {1,..., n} our rounded solution is a valid vertex cover with
probability 1/n

What'’s our approximation factor?



E[2 x~] = alpha * 3 x*]

cost(x~) <= O(log n) cost(x*) <= O(log n)*opt

Get O(log n) approximation in expectation.

By Markov’s inequality, with probability 1/2 you’ll be <= 2*O(log n)*opt, so we can just

repeatedly retry and take the minimum solution to get an O(log n) approximation with
high probability.
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