Lecture #7

Last Time: nearest neighbor search and LSH

i.e. how to exploit collisions, to get sublinear search time

Today: Maximum Flow (seen before?)

Input: (1) directed graph $G=(V,E)$

(2) capacity fcn $u: A \rightarrow \mathbb{R}^+$

(3) source s, sink t ($s,t \in V$

Goal: Send as much flow as possible from s to t, without violating constraints

\[
\max |f| = \sum_{a} f(s,a) - \sum_{a} f(a,s)
\]

s.t.

(1) $\sum_{a} f(v,a) - \sum_{a} f(a,v) = 0 \forall v \neq s,t$

(2) $0 \leq f(a,b) \leq u(a,b) \forall (a,b) \in A$

(1) is called conservation, (2) is called capacity constraints
Examples? Packets in computer network, cars/trains in transportation network

Generalizations? multiple sources/sinks if we will study these

Many applications in combinatorial optimization e.g. matching, scheduling, partitioning, etc

Powerful tool for reasoning about flows.
* Assume no arc into \(s \) has flow, no arc out of \(t \) has flow.

Flow decomposition: Any \(s \rightarrow t \) flow can be decomposed into at most \(m = |A| \) \(s \rightarrow t \) paths and cycles

Proof: Induction on number of arcs with non-zero flow.

Let \((a,b) \) be any arc with \(f(a,b) > 0 \). Then trace backwards from \(a \) and forwards from \(b \)

\[
\begin{align*}
\text{flow out of } a \quad + \quad \text{conservation of flow} \quad \Rightarrow \quad \text{flow into } a
\end{align*}
\]

\[
\begin{align*}
\text{flow into } b \quad + \quad \text{flow out of } b
\end{align*}
\]

Thus we can trace backwards from \(a \) and forwards from \(b \) until we (1) reach a cycle or (2) reach both \(s \) and \(t \)
Let W be the arcs in the cycle, or in the s-t path

$$\Delta(W) = \min_{(a, b) \in W} f(a, b)$$

Decrease flow on cycle/path by $\Delta(W)$ on each arc; add cycle/path with $\Delta(W)$ flow to flow decomposition.

The # of edges with positive flow has strictly Decreased Δ.

Question: If s-t flow \Rightarrow s-t paths + cycles, what if we zero out cycles? Would we get on s-t flow? And of what value?

Now let's apply flow decomposition.

def: An s-t cut is a set $S \subseteq V$ where $s \in S$ and $t \in V \setminus S$. The capacity is

$$\text{cap}(S, V \setminus S) = \sum_{(a, b) \in A} \min\{u(a, b)\}$$

Lemma: max flow \leq min cut

$$(\max |S|)$$

$$(\min \text{cap}(S, V \setminus S))$$

Proof: Take any max flow, and decompose it into paths and cycles.

(1) Each s-t path must cross the cut $(S, V \setminus S)$ at least once.
Hence a path that contributes \(p \) to total flow uses up at least \(p \) units of capacity in \((S,V)\).

(2) cycles do not contribute to \(|f| \)

(If flow > cut, we used up more capacity than is available)

Max-Flow Attempt #1

If \(W \) is a path, let \(\delta(W) = \min_{(a,b) \in W} u(a,b) - f(a,b) \)

while \(\exists \) s-t path \(W \) with \(\delta(W) > 0 \)

increase flow on each arc in \(W \) by \(\delta(W) \)

Does this algorithm succeed in finding the max flow? What can go wrong?

![Diagram](image.png)

augment along one path, but when we're done no more s-t paths left

This motivates the notion of residual graph
Residual Graph: Given instance of max flow problem

\[G = (V, A) \] and s-t flow \(f \)

\[\text{arc } u(a, b) \Rightarrow \text{arc } u(a, b) - f(a, b) \]

The meaning of \(\text{arc } (b, a) \) is that \(f(a, b) \) units of flow in \(f \) can be undone.

Max Flow Attempt #2:

Let \(\Delta_H(w) = \min_{(a, b) \in W} u_{H}(a, b) \)

While \(\exists \) s-t path \(W \) in \(H \) with \(\Delta_H(W) > 0 \)

- augment along \(W \) by \(\Delta_H(W) \)
- update residual

What if we reach a point where there is no path in the residual?

Let \(S \) be the set of nodes reachable (in residual) from s. Then

1. Every arc \((a, b) \) with \(a \in S \) has \(f(a, b) = u(a, b) \) (else we could reach b in residual)
2. Every arc \((b, a) \) with \(a \in S \) has \(f(b, a) = 0 \) (else there would be an arc \((a, b) \) in residual)
Thus \(\text{cap}(S, V \setminus S) = \sum_{(a, b) \in S, \bar{b} \in V} f(a, b) \)

This proves \(\text{max flow} = \text{min cut} \)

The following conditions are equivalent:

1. \(f \) is a max flow.
2. There is no \(s-t \) path with \(\Delta_{\text{res}}(u) \leq 0 \) in residual.
3. \(1f \) = \(\text{cap}(S, V \setminus S) \) for some \(s-t \) cut.

Clearly \((3) \Rightarrow (1) \).

\(- (2) \Rightarrow - (1) \)

and \((2) \Rightarrow (3) \) by claim.

There are many complications to how you choose augmenting paths.

Table: Path and Flow

<table>
<thead>
<tr>
<th>Path</th>
<th>Sent flow</th>
<th>Residual capacities</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(e_1)</td>
<td>(e_2)</td>
</tr>
<tr>
<td>(s \rightarrow 2 \rightarrow 3 \rightarrow t)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(P_1)</td>
<td>(r)</td>
<td>(r^2)</td>
</tr>
<tr>
<td>(P_2)</td>
<td>(r)</td>
<td>(r^2)</td>
</tr>
<tr>
<td>(P_3)</td>
<td>(r^2)</td>
<td>0</td>
</tr>
</tbody>
</table>

\(P_1 = s \rightarrow 3 \rightarrow 2 \rightarrow 1 \rightarrow t \)

\(P_2 = s \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow t \)

\(P_3 = s \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow t \)

Flow converges to \(1 + 2 \frac{r^2}{r} = 3 + 2r \leq 2m^2 - 1 \).
For irrational capacities, augmenting paths need not converge.

But for integer capacities, it always finds an integer-valued max flow, and this is important in many settings.