
Massachusetts Institute of Technology
6.854J/18.415J: Advanced Algorithms Monday, April 4, 2016
Ankur Moitra

Final Project

Proposal Due: Monday, April 18, 2016

Report Due: Wednesday, May 11, 2016

Key Points

Collaboration: You can work either individually or in groups of up to 3 students.

Proposal: 1-2 paragraph email to Professor Moitra and the TAs describing your project
and listing references to relevant papers. One email per group.

Final Report: ≤ 10 page project report, with optional appendix of unlimited length in-
cluding extra code, figures, proofs, exposition, etc. One per group.

Resources: Although not required, we encourage you to discuss project ideas before or
after the proposal deadline with Professor Moitra or one of the TAs. Please email us
to set up a time to chat.

Types of Projects

The goal of this project is to independently explore an advanced theoretical topic in algorithm
design. This can be done in a number of ways, but we expect projects to fall into roughly 3
categories.

Reading Project: Find one or several research papers on an algorithm, class of algorithms,
or algorithmic topic that you find interesting. The papers should be new enough or challeng-
ing enough so that their main results have not already been synthesized for books or lecture
notes1. Write an exposition of the theoretical results.

This exposition should not simply compile theorems nor should it reprove every step of
an analysis in detail. Instead, try to imagine you’re preparing a lecture or series of lectures
for our class. You want to explain and motivate the key ideas and techniques in the papers
you study. You might include expositions of required background material, simplified proofs,
motivating examples, open questions, etc. Your target audience is a student of this class and
you’ll be graded on the accuracy and clarity of your exposition.

1 With a few exceptions: some of the suggested topics have been simplified in notes, books, and lectures
before. However, they are sufficiently important that a fresh exposition would be interesting and valuable.



2 Final Project

Theoretical Research Project: Find an open research question in algorithms and attack
it. You might present a new algorithm for a studied problem or adapt a known algorithm or
technique to an interesting new problem. You might improve the analysis of an existing algo-
rithm or show that it can be improved for a certain special (and interesting) class of inputs.
You might prove additional properties of an algorithm – e.g. that it can be implemented in
small space or works under relaxed problem assumptions.

As with any research project, you’ll need to prepare for the possibility that you don’t solve
the problem you set out to solve! This is perfectly fine – in that case you can present partial
results, a clear exposition of the papers you’ve been studying, a discussion of promising
avenues for future work, examples of hard input cases for a new analysis, etc. Imagine that
you’re writing a primer for anyone getting started on the problem you set out to solve.

Course projects are a great way to get started on longer term research, so we definitely
encourage these sorts of projects. If you have a topic you like but are having trouble finding
a concrete question or direction in the area, please see us. If we can’t help, it is likely that
we can point you to someone else in Cambridge who can.

Implementation Project: Yes, even though this is a theory course, your final project can
involve coding! In fact, implementation is often one of the best ways to truly “learn” an algo-
rithm and can provide invaluable insight into problem assumptions, potential optimizations,
and new directions.

However, you should not simply implement one of the algorithms we discussed in class and
show that it works. Instead, try to guide your project with an underlying question. Do two
alternative algorithms for the same problem perform differently on different types of data?
Do experiments suggest that the theoretical analysis of an algorithm could be tightened? Or
do they rule out a tighter analysis or provable guarantees for a known heuristic? You can
also propose and test optimizations that improve performance for some inputs, even if they
do not provide any theoretical runtime improvements.

Implementation projects can be very time consuming, so make sure you choose a manage-
able algorithm or piece of an algorithm to work with. Your report should include a discussion
of your goals, background material on the algorithm(s) implemented, experimental data, and
a discussion of conclusions and future work. If the algorithm is not especially well known or
studied, it might be a good idea to give some exposition on the main techniques involved.

FAQs

Can my project be related to my current research?
Yes, but we do not want you to present something you have already been working on.

If you work in a field other than algorithms, you could apply ideas or techniques from this
class (or other algorithmic papers) to a specific problem in your field. If your research
involves algorithms already, you could explore an entirely new approach or use the project
as motivation to learn a different sub-area. If you have any doubt about whether or not a
project overlaps too much with your current work, please talk to Professor Moitra or a TA.



Final Project 3

None of the suggested project topics are grabbing my interest. Where can I look
for alternative topics and papers?

One good option is to look through the proceedings of recent algorithms conferences.
If you want to refine your search even further, look for award winning papers2 at these
conferences or papers that seem well cited on Google Scholar. Do be aware of paper difficulty.
Some papers will be written for a general theoretical computer science audience while some
will cater to researchers in a very specific sub-area. These papers might be tough to read
without a lot of background and prior knowledge. Again, check with us if you have any
doubts. Some good starting places are:

• ACM-SIAM Symposium on Discrete Algorithms (SODA) – theoretical algorithms con-
ference, with many relevant papers.

• ACM Symposium on Theory of Computing (STOC) – theoretical computer science
conference, with many algorithms papers.

• IEEE Symposium on Foundations of Computer Science (FOCS) – theoretical computer
science conference, with many algorithms papers.

• International Colloquium on Automata, Languages and Programming (ICALP) – the-
oretical computer science conference, with many algorithms papers.

• International Workshop on Approximation Algorithms for Combinatorial Optimiza-
tion Problems and International Workshop on Randomization and Computation (AP-
PROX/RANDOM) – algorithms conference with a number of theoretical papers.

• European Symposia on Algorithms (ESA) – algorithms conference with a number of
theoretical papers.

• Advances in Neural Information Processing Systems (NIPS) – machine learning con-
ference with an increasing number of papers on algorithms for data problems. Do be
aware that we want you to study an algorithm with some sort of theoretical guarantee.

• International Conference on Machine Learning (ICML) – machine learning conference
with a number of papers on algorithms for data problems.

• Conference on Computational Learning Theory (COLT) – machine learning conference
with a number of papers on algorithms for data problems.

These are only the broadest relevant conferences. If you’re interested in a more specific area,
we can point you to other venues.

I am having trouble finding/accessing papers online.
Many newer computer science papers are available for free online through arxiv.org or

author websites. Google Scholar is a good place to check for links to freely available PDFs.

2 See http://jeffhuang.com/best_paper_awards.html for a list of conference best paper awards.

arxiv.org
http://jeffhuang.com/best_paper_awards.html


4 Final Project

If you’re on an MIT network, you can also access papers through publisher websites like
dl.acm.org, ieeexplore.ieee.org, epubs.siam.org, link.springer.com, etc. However,
if you live/work off-campus, you’ll find these sites unavailable. You’ll need to access them
through the MIT Library Proxy server. See for instructions.

Specific Project Ideas

Below we’ve included a list of potential project topics. We’ve also included citations to
seminal papers or standard references on each topic. These papers are probably good starting
points for reading projections. However, if you’re doing a research project, you might have
search a bit wider to find tackle-able open problems. One good approach is to look up the
paper below on Google Scholar and then look at more recent papers that cite them.

Streaming Algorithms, Sketching, Dimensionality Reduction, etc.

• This is a very active area of research. There’s a cool list of open research problems at:
http://sublinear.info/

Linear Sketches for Graph Problems

• Ahn, Guha, McGregor, 2012, “Analyzing Graph Structure via Linear Measurements”.

• Ahn, Guha, McGregor, 2012, “Graph Sketches: Sparsification, Spanners, and Sub-
graphs”.

Frequent Directions Sketches: Misra-Gries for Matrices

• Ghashami, Liberty, Phillips, Woodruff, 2015, “Frequent Directions : Simple and De-
terministic Matrix Sketching”

Subspace Embeddings / Johnson-Lindenstrauss for Fast Linear Algebra

• Sarlós, 2006, “Improved approximation algorithms for large matrices via random pro-
jections”

• Clarkson, Woodruff, 2013, “Low Rank Approximation and Regression in Input Sparsity
Time”

• Nelson, Nguyen, 2013, “OSNAP: Faster Numerical Linear Algebra Algorithms via
Sparser Subspace Embeddings”

Even Faster JL / Restricted Isometry Property

• Khramer, Ward, 2010, “New and improved Johnson-Lindenstrauss embeddings via the
Restricted Isometry Property”

dl.acm.org
ieeexplore.ieee.org
epubs.siam.org
link.springer.com
https://libraries.mit.edu/research-support/connect/
http://sublinear.info/


Final Project 5

• Haviv, Regev, 2016, “The Restricted Isometry Property of Subsampled Fourier Matri-
ces”

Metric Embeddings

• Bourgain, 1985, “On Lipschitz embeddings of finite metric spaces in Hilbert space”

• Linial, London, Rabinovich, 1995, “The geometry of graphs and some of its algorithmic
applications”

Metric Embeddings II – Tree Embeddings

• Fakcharoenphol, Rao, Talwar, 2004, ‘A tight bound on approximating arbitrary metrics
by tree metrics”

• Mendel, Schob, 2009, “Fast C-K-R Partitions of Sparse Graphs”

• Abraham, Neiman, 2009, “Using Petal-Decompositions to Build a Low Stretch Span-
ning Tree”

Locality Sensitive Hashing / Nearest Neighbors

• Har-Peled, Indyk, Motwani, 2012, “Approximate Nearest Neighbor: Towards Remov-
ing the Curse of Dimensionality”

• Charikar, 2002, “Similarity Estimation Techniques from Rounding Algorithms”

Extended Formulations for Combinatorial Optimization

• Conforti, Cornuéjols, Zambelli, 2009, “Extended formulations in Combinatorial Opti-
mization”

• Goemans, 2015, “Smallest Compact Formulation for the Permutahedron”

Matroids

Primal-Dual Approximation Algorithms

• Goemans, Williamson, 1997, “The Primal-Dual Method for Approximation Algorithms
and its Application to Network Design Problems”

• Devanur, Jain, Kleinberg, “Randomized Primal-Dual Analysis of RANKING for Online
Bipartite Matching”

Iterative Rounding for Approximation Algorithms

• Jain, 1998, “A Factor 2 Approximation Algorithm for the Generalized Steiner Network
Problem”



6 Final Project

• Singh, Lau, 2007, “Approximating Minimum Bounded Degree Spanning Trees to within
One of Optimal”

Online Convex Optimization / Follow-the-leader Methods

• Kalai, Vempala, 2005, “Efficient algorithms for online decision problems”

• Hazan, Kalai, Kale, Agarwal, 2006, “Logarithmic Regret Algorithms for Online Convex
Optimization”

Accelerated Gradient Descent

• Nesterov, 2004, “Introductory Lectures on Convex Optimization”

• Bubeck, 2014, “Convex Optimization: Algorithms and Complexity”

• Bubeck, Lee, Singh, 2015, “A geometric alternative to Nesterov’s accelerated gradient
descent”

• Allen-Zhu, Orecchia, 2014, Linear Coupling: An Ultimate Unification of Gradient and
Mirror Descent

Theory of Stochastic Gradient Descent

• Hazan, Kale, 2011, “ Beyond the regret minimization barrier: An optimal algorithm
for stochastic strongly-convex optimization”

• Rakhlin, Shamir, Sridharan, 2011, “Making Gradient Descent Optimal for Strongly
Convex Stochastic Optimization”

• Johnson, Zhang, 2013, “Accelerating stochastic gradient descent using predictive vari-
ance reduction”

Approximate Graph Coloring

• Karger, Motwani, Sudan, 1998, “Approximate Graph Coloring by Semidefinite Pro-
gramming”

Cheeger’s Inequality / Spectral Graph Partitioning

• Good starting place for references: http://cstheory.stackexchange.com/questions/
3245/papers-to-credit-for-spectral-partitioning-of-graphs

• Spielman, Teng, 2007, “Spectral Partitioning Works: Planar graphs and finite element
meshes”

Approximate Counting

• Dyer, 2003, “Approximate counting by dynamic programming”

http://cstheory.stackexchange.com/questions/3245/papers-to-credit-for-spectral-partitioning-of-graphs
http://cstheory.stackexchange.com/questions/3245/papers-to-credit-for-spectral-partitioning-of-graphs


Final Project 7

Community Detection

• Feige, Kilian, 1998, “Heuristics for finding large independent sets, with applications to
coloring semi-random graphs”

• Abbe, Bandeira, Hall, 2016, “Exact Recovery in the Stochastic Block Model”


