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(1)    Overview of theoretical foundations of RL

(2)    Gaps in our algorithmic understanding

(3)    Deep dive into some success stories, emphasizing
connections to other areas
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INTRODUCTION

Success stories of reinforcement learning:

robotic manipulation

playing strategic games

personalized treatment in medicine
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� Action Space

� State Space    , start at

� Horizon

R = 2

R = 0

R = -2

R = 1

R = 1

� Rewards

� Transition Probabilities

Goal: Find a strategy that maximizes expected reward

policy i.e. choice of action doesn’t depend on past
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MAIN PROBLEMS

Given full description 
of the MDP, compute 

an optimal policy

Given budget of interactions 
with the environment, 
learn an optimal policy

Planning 
(computational)

Learning 
(statistical)

Uses planning as a subroutine
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VALUE FUNCTIONS

Definition: The value function of a policy is

i.e. it gives the expected future reward starting from state s at
timestep h

Bellman Optimality: An optimal policy π* must satisfy

for every state s, i.e. value function must be consistent
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VALUE ITERATION

This gives an efficient algorithm for planning:

Repeat until convergence

Initialize V = 0 (assuming no rewards at step H)

Scan through states, update any 
violated V constraint

Of course, this is just dynamic programming

Moreover can find the optimal policy from the          values
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EXPLORATION VS EXPLOITATION

First non-asymptotic result:

Theorem [Kearns, Singh ‘02]: There is an algorithm that has
polynomial running time and sample complexity that outputs 
an   -suboptimal policy in tabular MDPs 

(1)    Build a partial model on known states

(2)    Trade off playing the optimal policy in current
model vs. discovering new states

Tight regret bounds given by [Azar, Osband, Munos ‘17]
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POLICY GRADIENTS

Suppose we parameterize the class of policies by θ --- i.e. we
want to maximize

random trajectory under πθ

How can we compute the gradient without full knowledge of 
the environment?

Policy Gradient Theorem: In fact

probability of trajectory under πθ
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POLICY GRADIENTS

Thus we can approximate the gradient through samples

Many challenges both in theory and practice, e.g. delayed
feedback can cause gradients to be extremely small

e.g. see [Agarwal, Kakade, Lee, Mahajan ‘19] 

Theorem: With softmax parameterization, there are no spurrious
critical points
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MAIN PROBLEMS

e.g. value iteration,
policy iteration,

linear programming

Given full description 
of the MDP, compute 

an optimal policy

Given budget of interactions 
with the environment, 
learn an optimal policy

Planning 
(computational)

Learning 
(statistical)

e.g. model based,
Q-learning, actor-critic

policy gradient
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BEYOND TABULAR?

What do we want from our theoretical models?

(1)    Allow for very large, or even infinitely many states

(2)    Be able to learn a near optimal policy from a small
number of interactions

(3)    Have computationally efficient algorithms

Existing theory is built around (1) and (2) but what do we miss
out on by ignoring (3)?



WHAT ABOUT COMPUTATIONAL COMPLEXITY?

Returning to our earlier picture

Agent

Environment
ActionReward State

P

NP coNP
PSPACE

Are there computationally efficient algorithms with strong
end-to-end provable guarantees?
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PARTIALLY OBSERVABLE MDPS (POMDPS)

R = 2

R = 0

R = -2

R = 1

R = 1

� Observation Space      and

probabilities …

� Action Space

� State Space    , start at

� Horizon

� Rewards

� Transition Probabilities



PLANNING IS HARD

Theorem [Papadimitriou, Tsitsiklis]: Optimal planning in a POMDP 
is PSPACE hard

Classic lower bound:
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THE CURSE OF HISTORY

Can you succinctly represent an optimal policy?

MDPs POMDPs

Optimal action only
depends on current state

Optimal action depends on
action/observation history

Alternatively, it depends
on the current belief

Natural approaches use exponential space or
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PLANNING IS EVEN HARDER

Even worse news:

Why should real-world POMDPs have succinct descriptions of
good policies?

Theorem [Golowich, Moitra, Rohatgi ‘23]: Unless the exponential
time hierarchy collapses, there is no polynomial sized description
of an approximately optimal policy
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The hard instances have a curious feature:

“The observations don’t tell you anything about the state”

But what if they are at least somewhat informative?

“The observations leak some information about the state”

Could this enable tractable planning/learning?
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BEYOND WORST-CASE ANALYSIS

Definition: We say the POMDP is    -observable if for all     and all 
distributions    ,    on states we have

i.e. well-separated distributions on states lead to well-separated
distributions on observations

Introduced by [Even-Dar, Kakade, Mansour] for understanding
stability of beliefs in HMMs under misspecification

Key Point: No assumption on transition dynamics like e.g. 
deterministic transitions or mixing (under every possible policy)
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PLANNING VIA STABILITY

There is a quasi-polynomial time algorithm for planning under
observability:

that outputs an   -suboptimal policy

Key Idea: The Bayes filter is exponentially stable

compute posterior on states, given actions/observations

Parallels well-known stability results for Kalman filtering

Theorem [Golowich, Moitra, Rohatgi ‘23]: Given description of
a    -observable POMDP there is an algorithm running in time
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LOWER BOUNDS

Moreover these results are tight

Theorem [Golowich, Moitra, Rohatgi ‘23]: Under the Exponential
Time Hypothesis, there is no algorithm running in time

for finding an   -suboptimal policy in a    -observable POMDP

It’s hard even in the lossy case, where you observe the state with 
probability     independently at each step
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BELIEF CONTRACTION

Theorem: Fix any    -observable POMDP and policy     . Then

posterior, starting from 
arbitrary belief state 

posterior, starting from 
uniform belief state 

where     is the trajectory from the POMDP by playing

Thus, we could ignore all but the most recent history
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TOWARDS A WEAKER BOUND

From the data processing inequality, we have that for any action

But for some observations, the Bayes operator can increase
the KL-divergence

Do we make progress in expectation?



Lemma: Given beliefs    ,



Lemma: Given beliefs    ,

Notation: Let                ,                   and                                      . 



Lemma: Given beliefs    ,

and
Notation: Let                ,                   and                                      . 



Lemma: Given beliefs    ,

and

Proof:

Notation: Let                ,                   and                                      . 



Lemma: Given beliefs    ,

and

Proof:

..using the chain rule

Notation: Let                ,                   and                                      . 



Lemma: Given beliefs    ,

and

Proof:

Notation: Let                ,                   and                                      . 

zero

..using the chain rule, and the fact that



Proof:

Lemma: Given beliefs    ,

and
Notation: Let                ,                   and                                      . 



Proof:
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and
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Does this imply fast enough convergence?

Lemma: Given beliefs    ,
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Using reverse Pinsker’s inequality, we get

provided that                   is bounded

Using Pinsker’s inequality (1) and observability (2), we have
(1)

(2)
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Theorem [Even-Dar et al.]: Fix any    -observable POMDP and 
policy     . Then we have

provided that

Inverse polynomial, rather than exponential convergence :(

Unfortunately there are cases where progress can be slow, but…
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A WIN-WIN ARGUMENT

We show that either

(1)  A stronger reverse Pinsker holds, i.e.

or instead

(2) Progress is anti-concentrated, i.e. for some event
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A WIN-WIN ARGUMENT

As a result, we get:

Corollary: For any    -observable POMDP

Variations on this argument lead to different rates of contraction

Open: Prove sharp rates that match Chernoff bounds



BELLMAN UPDATES

Value(x) = Reward(a) +E[ ]Value(x’)

current action/obs. sequence new action/obs. sequence

How does this lead to better algorithms for planning?

latent state sampled from current belief,
stochastic transition based on chosen action

Max
actions a
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TRUNCATED BELLMAN UPDATES

Value(x) = Reward(a) +E[ ]Value(x’)

latent state sampled from truncated belief, with uniform prior
length t window length t window

Belief contraction allows us to truncate

Max
actions a

We only need a quasi-polynomial number of belief states
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WHAT ABOUT LEARNING?

In observable POMDPs:

Agent

Environment
ActionReward Observation

P

NP coNP
PSPACE

Can belief contraction be used for learning too?

Quasi-polynomial
time planning
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SAMPLE EFFICIENT LEARNING

Assumption 1: The POMDP is undercomplete, i.e.
And moreover for all

samples and finds an   -suboptimal policy under Assumption 1

i.e. given a constrained, non-convex set of POMDPs, find the
maximum value achievable by any policy in the set

But optimism is very hard!

Theorem [Jin, Kakade, Krishnamurthy, Liu ‘20]: Given access to an
optimistic planning oracle, there is an algorithm that uses



[Lin, Chung, Szepesvari, Jin ‘23] gave a framework based on 
optimistic maximum likelihood estimation
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Alternatively:

[Lin, Chung, Szepesvari, Jin ‘23] gave a framework based on 
optimistic maximum likelihood estimation



i.e. given sample trajectories, find a POMDP that gets maximum 
value conditioned on approximately maximizing the likelihood

Alternatively:

Can we circumvent optimism?

[Lin, Chung, Szepesvari, Jin ‘23] gave a framework based on 
optimistic maximum likelihood estimation



COMPUTATIONALLY EFFICIENT LEARNING

We show:

Theorem [Golowich, Moitra, Rohatgi ’23]: There is an algorithm 
with running time and sample complexity

that outputs an   -suboptimal policy in a    -observable POMDP
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APPROXIMATION BY MDPS

Corollary: Any   -observable POMDP P can be approximated by
an MDP M with a quasi-polynomial number of states

(1) P can be thought of as an MDP on belief states 

(2) Construct M as follows:

states = length L sequences of actions/observations

transitions = shift in/out the newest/oldest actions/obs.

(3) States in M can mapped to beliefs (using a uniform prior).

By belief contraction, M and P approximate each other
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APPROXIMATION BY MDPS

Corollary: Any   -observable POMDP P can be approximated by
an MDP M with a quasi-polynomial number of states

Can we learn M efficiently?

Reachability: For any latent state x in P, and any timestep h, there
is some policy      that visits x at h with nonnegligible probability

How can we find a mixture of policies that visits all latent states?



BARYCENTRIC SPANNERS

Definition: Given a set                  , a    -approximate barycentric
spanner is a set                of size d such that every point in
can be expressed as a linear combination of points in     with
coefficients in the range 



BARYCENTRIC SPANNERS

Definition: Given a set                  , a    -approximate barycentric
spanner is a set                of size d such that every point in
can be expressed as a linear combination of points in     with
coefficients in the range 

Theorem [Awerbuch, Kleinberg ‘04]: Given an oracle for optimizing
linear functions over    , there is a polynomial time algorithm for
constructing a   -approximate barycentric spanner with

calls to the optimization oracle (assuming      is compact) 
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POLICY COVERS

Now let

set of all distributions on observations
at step h that can be obtained by a policy

Claim: By observability, if we can construct policies

whose induced distributions on observations at step h are an
approximate barycentric spanner, we must visit each latent
state with nonnegligible probability
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ITERATIVE EXPLORATION

Our approach is:

Mh+1
MDP that 

approximates
P up to step h+1

Barycentric spanner
for observation 

distributions at step h

Xh

Reaches all 
latent states

“explorability”

Estimate next
layer of transitions

Without explorability, need more complex measure of progress
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LOOKING FORWARD

To get end-to-end algorithmic guarantees, we need to explore
new assumptions and frameworks

“Can you improve Q-learning with advice?”

Takeaway: Improved regret bounds, where you only need to 
explore state-action pairs with substantially inaccurate predictions,
even without knowing which ones are accurate in advance

e.g. in [Golowich, Moitra ‘22], we took a learning-augmented 
algorithms approach:
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Thanks! Any Questions?

Summary:
� Modern RL is built on computationally intractable

oracles. Are there end-to-end guarantees?
� Quasi-polynomial time algorithm for planning in

observable POMDPs, no assumption on dynamics
� New framework for learning without optimism


