Algorithmic Aspects of Reinforcement Learning II

Ankur Moitra (MIT)

February 24th, ITA+ALT Tutorial

OUTLINE

Part V: Linear MDPs

- Least Squares and the Elliptic Potential
- Feature Selection and Sparsity

Part VII: Sparse Linear MDPs

- Sparse Linear Regression
- Greedy Covers
- Emulators and their Algorithmic Applications

Part VI: Block MDPs

• The View from Supervised Learning

OUTLINE

Part V: Linear MDPs

- Least Squares and the Elliptic Potential
- Feature Selection and Sparsity

Part VII: Sparse Linear MDPs

- Sparse Linear Regression
- Greedy Covers
- Emulators and their Algorithmic Applications

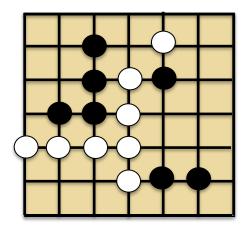
Part VI: Block MDPs

• The View from Supervised Learning

FUNCTION APPROXIMATION

Suppose there are too many states to write down/visit

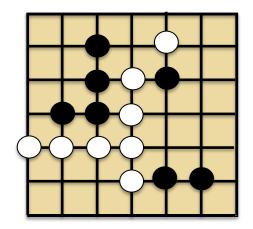
e.g.



FUNCTION APPROXIMATION

Suppose there are too many states to write down/visit

e.g.



Can we distill the relevant properties of the state into a high-dimensional feature vector?

Assumption: There is a known feature mapping

$$\phi_h: \mathcal{S} \times \mathcal{A} \to \mathbb{R}^d$$

and rewards/transitions are linear in this representation, i.e.

Assumption: There is a known feature mapping

$$\phi_h: \mathcal{S} \times \mathcal{A} \to \mathbb{R}^d$$

and rewards/transitions are linear in this representation, i.e.

(1)
$$R_h(s,a) = \langle \phi_h(s,a), \theta_h \rangle$$
 and
(2) $\mathbb{T}_h(s'|s,a) = \langle \phi_h(s,a), \mu_{h+1}(s') \rangle$

Assumption: There is a known feature mapping

$$\phi_h: \mathcal{S} \times \mathcal{A} \to \mathbb{R}^d$$

and rewards/transitions are linear in this representation, i.e.

(1)
$$R_h(s,a) = \langle \phi_h(s,a), \theta_h \rangle$$
 and
(2) $\mathbb{T}_h(s'|s,a) = \langle \phi_h(s,a), \mu_{h+1}(s') \rangle$

Note: There can be an infinite number of states and parameters defining the model

Assumption: There is a known feature mapping

$$\phi_h: \mathcal{S} \times \mathcal{A} \to \mathbb{R}^d$$

and rewards/transitions are linear in this representation, i.e.

(1)
$$R_h(s, a) = \langle \phi_h(s, a), \theta_h \rangle$$
 and
(2) $\mathbb{T}_h(s'|s, a) = \langle \phi_h(s, a), \mu_{h+1}(s') \rangle$

Note: There can be an infinite number of states and parameters defining the model

So how do we even represent a policy? Or its value function?

Key: The closure properties, e.g. of dynamic programming

Proposition: An MDP is linear with respect to the feature mapping iff for any function $g: S \to \mathbb{R}$ we have that

$$R_h(s,a) + \mathbb{E}_{s'|s,a}[g(s')] = \langle \phi_h(s,a), \theta \rangle$$

for some vector θ

Proposition: An MDP is linear with respect to the feature mapping iff for any function $g: S \to \mathbb{R}$ we have that

$$R_h(s,a) + \mathbb{E}_{s'|s,a}[g(s')] = \langle \phi_h(s,a), \theta \rangle$$

for some vector θ

Now consider the **Q-function** and **V-function** for any policy:

$$Q_h^{\pi}(s,a) = R_h(s,a) + \mathbb{E}_{s'|s,a}[V_{h+1}^{\pi}(s')]$$
$$V_h^{\pi}(s) = \mathbb{E}_{a \sim \pi}[Q_h^{\pi}(s,a)]$$

Proposition: An MDP is linear with respect to the feature mapping iff for any function $g: S \to \mathbb{R}$ we have that

$$R_h(s,a) + \mathbb{E}_{s'|s,a}[g(s')] = \langle \phi_h(s,a), \theta \rangle$$

for some vector θ

Now consider the **Q-function** and **V-function** for any policy:

$$Q_h^{\pi}(s,a) = R_h(s,a) + \mathbb{E}_{s'|s,a}[V_{h+1}^{\pi}(s')]$$
$$V_h^{\pi}(s) = \mathbb{E}_{a \sim \pi}[Q_h^{\pi}(s,a)]$$

Corollary: The Q-function of any policy is linear

FINDING AN OPTIMAL POLICY

Consider policies of the form

$$\pi(s) = \arg\max_{a} \langle \phi_h(s, a), \theta \rangle$$

FINDING AN OPTIMAL POLICY

Consider policies of the form

$$\pi(s) = \arg\max_{a} \langle \phi_h(s, a), \theta \rangle$$

Now use linear regression to fit the Q-function to the observed rewards

$$\widehat{\theta} = \arg\min_{\theta} \sum_{i} (\phi(s_i, a_i)^\top \theta - y_i)^2 + \|\theta\|^2$$

immediate reward + estimated opt. future reward + expl. bonus

FINDING AN OPTIMAL POLICY

Consider policies of the form

$$\pi(s) = \arg\max_{a} \langle \phi_h(s, a), \theta \rangle$$

Now use linear regression to fit the Q-function to the observed rewards

$$\widehat{\theta} = \arg\min_{\theta} \sum_{i} (\phi(s_i, a_i)^\top \theta - y_i)^2 + \|\theta\|^2$$

immediate reward + estimated opt. future reward + expl. bonus

Need a bonus to maintain optimism

CHOOSING A BONUS

Natural bonus function depends on form of error bounds for linear regression; called the **elliptic potential**

$$\sqrt{\phi(s,a)^{\top}\Lambda^{-1}\phi(s,a)}$$

which accounts for errors in unexplored directions, where

$$\Lambda = I + \sum_{i} \phi(s_i, a_i) \phi(s_i, a_i)^{\top}$$

THE LSVI ALGORITHM

Theorem [Jin, Yang, Wang, Jordan '19]: LSVI has

running time: $poly(d, |\mathcal{A}|, H)$ No dependencesample complexity: poly(d, H)No dependence

and returns a near optimal policy in a linear MDP

THE LSVI ALGORITHM

Theorem [Jin, Yang, Wang, Jordan '19]: LSVI has

running time: $poly(d, |\mathcal{A}|, H)$ No dependencesample complexity: poly(d, H)No dependence

and returns a near optimal policy in a linear MDP

Notes: Does not attempt to estimate model parameters **model-free vs. model-based**

THE LSVI ALGORITHM

Theorem [Jin, Yang, Wang, Jordan '19]: LSVI has

running time: $poly(d, |\mathcal{A}|, H)$ sample complexity: poly(d, H) No dependence on the # of states

and returns a near optimal policy in a linear MDP

Notes: Does not attempt to estimate model parameters **model-free vs. model-based**

Later improvements get **optimal sample complexity**

OUTLINE

Part V: Linear MDPs

- Least Squares and the Elliptic Potential
- Feature Selection and Sparsity

Part VII: Sparse Linear MDPs

- Sparse Linear Regression
- Greedy Covers
- Emulators and their Algorithmic Applications

Part VI: Block MDPs

• The View from Supervised Learning

OUTLINE

Part V: Linear MDPs

- Least Squares and the Elliptic Potential
- Feature Selection and Sparsity

Part VII: Sparse Linear MDPs

- Sparse Linear Regression
- Greedy Covers
- Emulators and their Algorithmic Applications

Part VI: Block MDPs

• The View from Supervised Learning

How do we find a good feature mapping in the first place?

How do we find a good feature mapping in the first place?

Natural approach is to throw in the kitchen sink

domain expertise

heuristics

learned features

How do we find a good feature mapping in the first place?

Natural approach is to throw in the kitchen sink

But we would pay a steep price in terms of sample complexity for using more features than we truly need

Can we automatically discover the relevant dimensions?

Sparsity Assumption: There is an unknown $S \subseteq [d]$ of size k and the rewards/transitions are linear functions of

$\phi(s,a)\Big|_S$

which is a k-dimensional representation

Can we automatically discover the relevant dimensions?

Sparsity Assumption: There is an unknown $S \subseteq [d]$ of size k and the rewards/transitions are linear functions of

$$\phi(s,a)\Big|_S$$

which is a k-dimensional representation

Are there efficient algorithms for learning sparse linear MDPs?

Can we automatically discover the relevant dimensions?

Sparsity Assumption: There is an unknown $S \subseteq [d]$ of size k and the rewards/transitions are linear functions of

$$\phi(s,a)\Big|_S$$

which is a k-dimensional representation

Are there efficient algorithms for learning sparse linear MDPs?

i.e. $poly(k, \log d)$ sample complexity

Prior work relies on assumptions that obviate the need for exploration

(1) [Hao, Lattimore, Szepesvari, Wang '21]: assumes we're given an exploratory policy up front

Prior work relies on assumptions that obviate the need for exploration

- (1) [Hao, Lattimore, Szepesvari, Wang '21]: assumes we're given an exploratory policy up front
- (2) [Zhu, Wang, Lee '23]: assumes every policy induces a well-conditioned feature distribution

Prior work relies on assumptions that obviate the need for exploration

- (1) [Hao, Lattimore, Szepesvari, Wang '21]: assumes we're given an exploratory policy up front
- (2) [Zhu, Wang, Lee '23]: assumes every policy induces a well-conditioned feature distribution

But ignoring computational efficiency, we know such assumptions are unnecessary

(3) [Jiang, Krishnamurthy, Agarwal, Langford, Schapire '16]: statistically efficient algorithm under low Bellman rank, but oracle is known to be NP-hard to implement

COMPUTATIONALLY EFFICIENT LEARNING

First end-to-end algorithmic guarantees in general

Theorem [Golowich, Moitra, Rohatgi '24]: An algorithm with

running time: $poly(d, |\mathcal{A}|, H)$ sample complexity: $poly(k, |\mathcal{A}|, H, \log d)$

that returns a near optimal policy in a sparse linear MDP

COMPUTATIONALLY EFFICIENT LEARNING

First end-to-end algorithmic guarantees in general

Theorem [Golowich, Moitra, Rohatgi '24]: An algorithm with

running time: $poly(d, |\mathcal{A}|, H)$ sample complexity: $poly(k, |\mathcal{A}|, H, \log d)$

that returns a near optimal policy in a sparse linear MDP

Based on a new abstraction we call an emulator

"Even though a linear MDP is non-parametric, can we find a parametric approximation to it?"

OUTLINE

Part V: Linear MDPs

- Least Squares and the Elliptic Potential
- Feature Selection and Sparsity

Part VII: Sparse Linear MDPs

- Sparse Linear Regression
- Greedy Covers
- Emulators and their Algorithmic Applications

Part VI: Block MDPs

• The View from Supervised Learning

OUTLINE

Part V: Linear MDPs

- Least Squares and the Elliptic Potential
- Feature Selection and Sparsity

Part VII: Sparse Linear MDPs

- Sparse Linear Regression
- Greedy Covers
- Emulators and their Algorithmic Applications

Part VI: Block MDPs

• The View from Supervised Learning

SPARSE LINEAR REGRESSION

An aspirational example where sparsity helps:

Setup: We are given samples of the form

 $y = \langle x, \theta^* \rangle + \xi$ with $x \sim \nu$, $\mathbb{E}[\xi] = 0$ and $|\xi| \leq \sigma$ where $\|\theta^*\|_1 \leq k$

An aspirational example where sparsity helps:

Setup: We are given samples of the form

$$y = \langle x, \theta^* \rangle + \xi \text{ with } x \sim \nu, \mathbb{E}[\xi] = 0 \text{ and } |\xi| \leq \sigma$$
 where $\|\theta^*\|_1 \leq k$

Definition [Tibshirani]: The Lasso estimator is

$$\widehat{\theta} = \underset{\|\theta\|_{1} \leq k}{\operatorname{arg\,min}} \sum_{i=1}^{n} (\langle x_{i}, \theta \rangle - y_{i})^{2}$$

An aspirational example where sparsity helps:

Theorem: With probability $1 - \delta$, the Lasso satisfies

$$\mathbb{E}_{x \sim \nu}[\langle x, \theta^* - \widehat{\theta} \rangle^2] \leq \frac{C(k + \sigma)k\sqrt{\log d/\delta}}{\sqrt{n}}$$
risk

An aspirational example where sparsity helps:

Theorem: With probability $1 - \delta$, the Lasso satisfies

$$\mathbb{E}_{x \sim \nu}[\langle x, \theta^* - \widehat{\theta} \rangle^2] \leq \frac{C(k + \sigma)k\sqrt{\log d/\delta}}{\sqrt{n}}$$
risk

This is the kind of improvement we are hoping for in SLMDPs

An aspirational example where sparsity helps:

Theorem: With probability $1 - \delta$, the Lasso satisfies

$$\mathbb{E}_{x \sim \nu}[\langle x, \theta^* - \widehat{\theta} \rangle^2] \leq \frac{C(k + \sigma)k\sqrt{\log d/\delta}}{\sqrt{n}}$$
risk

This is the kind of improvement we are hoping for in SLMDPs

But in RL, there is no one fixed distribution --- it depends on the policy we play

OUTLINE

Part V: Linear MDPs

- Least Squares and the Elliptic Potential
- Feature Selection and Sparsity

Part VII: Sparse Linear MDPs

- Sparse Linear Regression
- Greedy Covers
- Emulators and their Algorithmic Applications

Part VI: Block MDPs

• The View from Supervised Learning

OUTLINE

Part V: Linear MDPs

- Least Squares and the Elliptic Potential
- Feature Selection and Sparsity

Part VII: Sparse Linear MDPs

- Sparse Linear Regression
- Greedy Covers
- Emulators and their Algorithmic Applications

Part VI: Block MDPs

• The View from Supervised Learning

POLICY COVERS

How does sparsity help in reinforcement learning?

POLICY COVERS

How does sparsity help in reinforcement learning?

Definition: A collection of policies Ψ is an α -approximate policy cover at step h if for all states x

$$\frac{1}{|\Psi|} \sum_{\pi' \in \Psi} \mathbb{P}_{\pi'}[x_h = x] \ge \alpha \max_{\pi} \mathbb{P}_{\pi}[x_h = x]$$

POLICY COVERS

How does sparsity help in reinforcement learning?

Definition: A collection of policies Ψ is an α -approximate policy cover at step h if for all states x

$$\frac{1}{|\Psi|} \sum_{\pi' \in \Psi} \mathbb{P}_{\pi'}[x_h = x] \ge \alpha \max_{\pi} \mathbb{P}_{\pi}[x_h = x]$$

Can we show size of our policy cover improves with sparsity?

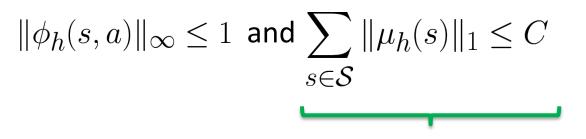
REACHABILITY

Assumption (normalization): For all s, a and h we have

$$\|\phi_h(s,a)\|_{\infty} \leq 1 \text{ and } \sum_{s \in \mathcal{S}} \|\mu_h(s)\|_1 \leq C$$

REACHABILITY

Assumption (normalization): For all s, a and h we have



analytic notion of sparsity

Assumption (normalization): For all s, a and h we have

$$\|\phi_h(s,a)\|_{\infty} \leq 1 \text{ and } \sum_{s \in \mathcal{S}} \|\mu_h(s)\|_1 \leq C$$

For now, we will assume all states are reachable:

Definition: A linear MDP is η -reachable if for all s and h we have

$$\max_{\pi} \mathbb{P}_{\pi}[x_h = x] \ge \eta \|\mu_h(s)\|_1$$

Assumption (normalization): For all s, a and h we have

$$\|\phi_h(s,a)\|_{\infty} \leq 1 \text{ and } \sum_{s \in \mathcal{S}} \|\mu_h(s)\|_1 \leq C$$

For now, we will assume all states are reachable:

Definition: A linear MDP is η -reachable if for all s and h we have

$$\max_{\pi} \mathbb{P}_{\pi}[x_h = x] \ge \eta \|\mu_h(s)\|_1$$

Assumption can be removed, but highly technical to do so

We will build a policy cover greedily

(0) Initialize policy cover $\Psi = \emptyset$ and uncovered states $\mathcal{B} = \mathcal{S}$

We will build a policy cover greedily

- (0) Initialize policy cover $\Psi = \emptyset$ and uncovered states $\mathcal{B} = \mathcal{S}$
- In each step, find a policy that maximizes the probability of reaching uncovered states

We will build a policy cover greedily

- (0) Initialize policy cover $\Psi = \emptyset$ and uncovered states $\mathcal{B} = \mathcal{S}$
- In each step, find a policy that maximizes the probability of reaching uncovered states

Set
$$\mu \leftarrow \sum_{x \in \mathcal{B}} \mu_{h+1}(s)$$
, find $\widehat{\pi} = \arg \max_{\pi} \mathbb{E}[\langle \phi_h(s_h, a_h), \mu \rangle]$

We will build a policy cover greedily

- (0) Initialize policy cover $\Psi = \emptyset$ and uncovered states $\mathcal{B} = \mathcal{S}$
- In each step, find a policy that maximizes the probability of reaching uncovered states

Set
$$\mu \leftarrow \sum_{x \in \mathcal{B}} \mu_{h+1}(s)$$
, find $\widehat{\pi} = \arg \max_{\pi} \mathbb{E}[\langle \phi_h(s_h, a_h), \mu \rangle]$

(2) Break if total probability is small, i.e $\mathbb{E}[\langle \phi_h(s_h, a_h), \mu \rangle] < \xi$

We will build a policy cover greedily

- (0) Initialize policy cover $\Psi = \emptyset$ and uncovered states $\mathcal{B} = \mathcal{S}$
- In each step, find a policy that maximizes the probability of reaching uncovered states

Set
$$\mu \leftarrow \sum_{x \in \mathcal{B}} \mu_{h+1}(s)$$
, find $\widehat{\pi} = \arg \max_{\pi} \mathbb{E}[\langle \phi_h(s_h, a_h), \mu \rangle]$

(2) Break if total probability is small, i.e $\mathbb{E}[\langle \phi_h(s_h, a_h), \mu \rangle] < \xi$

Otherwise, update $\Psi \leftarrow \Psi \cup \{\widehat{\pi}\}$ and set

$$\mathcal{B} \leftarrow \mathcal{B} \setminus \left\{ s \left| \mathbb{E}_{\widehat{\pi}}[\langle \phi_h(s_h, a_h), \mu_{h+1}(s) \rangle] \ge \frac{\xi}{2C} \|\mu_{h+1}(s)\|_1 \right\} \right\}$$

Claim 1 [informal]: No policy π reaches the set of uncovered states with nonnegligible probability

Claim 1: For any policy π , we have $\mathbb{P}_{\pi}[s_{h+1} \in \mathcal{B}] < \xi$

Claim 1: For any policy π , we have $\mathbb{P}_{\pi}[s_{h+1} \in \mathcal{B}] < \xi$

Proof: We choose $\hat{\pi}$ to maximize this probability, and we only break when it is small.

Claim 1: For any policy π , we have $\mathbb{P}_{\pi}[s_{h+1} \in \mathcal{B}] < \xi$

Proof: We choose $\hat{\pi}$ to maximize this probability, and we only break when it is small.

Claim 2 [informal]: For any covered state s, no policy π reaches it with much larger probability than our cover does

Claim 1: For any policy π , we have $\mathbb{P}_{\pi}[s_{h+1} \in \mathcal{B}] < \xi$

Proof: We choose $\hat{\pi}$ to maximize this probability, and we only break when it is small.

Claim 2: For all $s \in \mathcal{S} \setminus \mathcal{B}$ there is some $\pi' \in \Psi$ so that

$$\mathbb{P}_{\pi'}[s_{h+1} = s] \ge \frac{\xi}{2C} \max_{\pi} \mathbb{P}_{\pi}[s_{h+1} = s]$$

Claim 1: For any policy π , we have $\mathbb{P}_{\pi}[s_{h+1} \in \mathcal{B}] < \xi$

Proof: We choose $\hat{\pi}$ to maximize this probability, and we only break when it is small.

Claim 2: For all $s \in \mathcal{S} \setminus \mathcal{B}$ there is some $\pi' \in \Psi$ so that

$$\mathbb{P}_{\pi'}[s_{h+1} = s] \ge \frac{\xi}{2C} \max_{\pi} \mathbb{P}_{\pi}[s_{h+1} = s]$$

Proof: First $\mathbb{P}_{\pi}[s_{h+1} = s] = \mathbb{E}_{\pi}[\langle \phi_h(s_h, a_h), \mu_{h+1}(s)]$

Claim 1: For any policy π , we have $\mathbb{P}_{\pi}[s_{h+1} \in \mathcal{B}] < \xi$

Proof: We choose $\hat{\pi}$ to maximize this probability, and we only break when it is small.

Claim 2: For all $s \in \mathcal{S} \setminus \mathcal{B}$ there is some $\pi' \in \Psi$ so that

$$\mathbb{P}_{\pi'}[s_{h+1} = s] \ge \frac{\xi}{2C} \max_{\pi} \mathbb{P}_{\pi}[s_{h+1} = s]$$

Proof: First $\mathbb{P}_{\pi}[s_{h+1} = s] = \mathbb{E}_{\pi}[\langle \phi_h(s_h, a_h), \mu_{h+1}(s)]$ $\leq \|\mu_{h+1}(s)\|_1$ (by normalization)

Claim 1: For any policy π , we have $\mathbb{P}_{\pi}[s_{h+1} \in \mathcal{B}] < \xi$

Proof: We choose $\hat{\pi}$ to maximize this probability, and we only break when it is small.

Claim 2: For all $s \in \mathcal{S} \setminus \mathcal{B}$ there is some $\pi' \in \Psi$ so that

$$\mathbb{P}_{\pi'}[s_{h+1} = s] \ge \frac{\xi}{2C} \max_{\pi} \mathbb{P}_{\pi}[s_{h+1} = s]$$

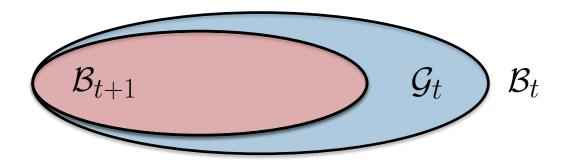
Proof: First $\mathbb{P}_{\pi}[s_{h+1} = s] = \mathbb{E}_{\pi}[\langle \phi_h(s_h, a_h), \mu_{h+1}(s)]$ $\leq \|\mu_{h+1}(s)\|_1$ (by normalization)

Claim now follows from rule for removing states from \mathcal{B}

Claim 3: Finally
$$|\Psi| \leq \frac{2C}{\xi}$$

Claim 3: Finally
$$|\Psi| \leq rac{2C}{\xi}$$

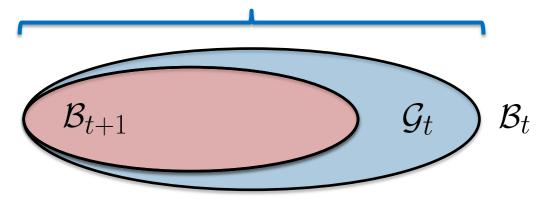
Proof: Suppose $\widehat{\pi}$ was added to the policy cover in iteration t



Claim 3: Finally $|\Psi| \leq \frac{2C}{\xi}$

Proof: Suppose $\widehat{\pi}$ was added to the policy cover in iteration t

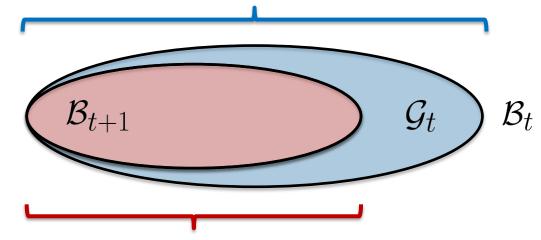
 $\mathbb{P}_{\widehat{\pi}}[s_{h+1} \in \mathcal{B}_t] \geq \xi$ because we didn't break



Claim 3: Finally $|\Psi| \leq \frac{2C}{\xi}$

Proof: Suppose $\widehat{\pi}$ was added to the policy cover in iteration t

 $\mathbb{P}_{\widehat{\pi}}[s_{h+1} \in \mathcal{B}_t] \geq \xi$ because we didn't break



 $\mathbb{P}_{\widehat{\pi}}[s_{h+1} \in \mathcal{B}_{t+1}]$, want to upper bound

Claim 3: Finally $|\Psi| \leq \frac{2C}{\xi}$

Proof: Suppose $\widehat{\pi}$ was added to the policy cover in iteration t

 \mathcal{G}_t \mathcal{B}_t (1) by rule for constructing \mathcal{B}_{t+1} $\mathbb{P}_{\widehat{\pi}}[s_{h+1} \in \mathcal{B}_{t+1}] \stackrel{\textbf{(1)}}{\leq} \frac{\xi}{2C} \sum_{s \in \mathcal{B}_{t+1}} \|\mu_{h+1}(s)\|_1$

 $\mathbb{P}_{\widehat{\pi}}[s_{h+1} \in \mathcal{B}_t] \geq \xi$ because we didn't break

Claim 3: Finally $|\Psi| \leq \frac{2C}{\xi}$

Proof: Suppose $\widehat{\pi}$ was added to the policy cover in iteration t

 $\mathbb{P}_{\widehat{\pi}}[s_{h+1} \in \mathcal{B}_{t+1}] \stackrel{\textbf{(1)}}{\leq} \frac{\xi}{2C} \sum_{s \in \mathcal{B}_{t+1}} \|\mu_{h+1}(s)\|_1 \stackrel{\textbf{(2)}}{\leq} \frac{\xi}{2}$

 $\mathbb{P}_{\widehat{\pi}}[s_{h+1} \in \mathcal{B}_t] \geq \xi$ because we didn't break

Claim 3: Finally
$$|\Psi| \leq \frac{2C}{\xi}$$

Proof: Suppose $\widehat{\pi}$ was added to the policy cover in iteration t

Claim 3: Finally $|\Psi| \leq \frac{2C}{\xi}$

Proof: Suppose $\widehat{\pi}$ was added to the policy cover in iteration t

$$\Rightarrow \sum_{s \in \mathcal{G}_t} \|\mu_{h+1}(s)\|_1 \ge \mathbb{P}_{\widehat{\pi}}[s_{h+1} \in \mathcal{G}_t] \ge \frac{\xi}{2}$$

Claim 3: Finally $|\Psi| \leq \frac{2C}{\xi}$

Proof: Suppose $\widehat{\pi}$ was added to the policy cover in iteration t

$$\Rightarrow \sum_{s \in \mathcal{G}_t} \|\mu_{h+1}(s)\|_1 \ge \mathbb{P}_{\widehat{\pi}}[s_{h+1} \in \mathcal{G}_t] \ge \frac{\xi}{2}$$

But since the sets $\mathcal{G}_1, \mathcal{G}_2, \ldots$ are disjoint, we have

$$C \ge \sum_{s \in \mathcal{S}} \|\mu_{h+1}(s)\|_1 \ge \sum_{s \in \mathcal{G}_1 \cup \mathcal{G}_2 \dots} \|\mu_{h+1}(s)\|_1 \ge \frac{t\xi}{2}$$

Claim 3: Finally $|\Psi| \leq \frac{2C}{\xi}$

Proof: Suppose $\widehat{\pi}$ was added to the policy cover in iteration t

$$\Rightarrow \sum_{s \in \mathcal{G}_t} \|\mu_{h+1}(s)\|_1 \ge \mathbb{P}_{\widehat{\pi}}[s_{h+1} \in \mathcal{G}_t] \ge \frac{\xi}{2}$$

But since the sets $\mathcal{G}_1, \mathcal{G}_2, \ldots$ are disjoint, we have

$$C \ge \sum_{s \in \mathcal{S}} \|\mu_{h+1}(s)\|_1 \ge \sum_{s \in \mathcal{G}_1 \cup \mathcal{G}_2 \dots} \|\mu_{h+1}(s)\|_1 \ge \frac{t\xi}{2}$$

Now rearranging completes the proof.

In general Ψ is not a policy cover but...

In general Ψ is not a policy cover but...

Lemma [informal]: Under reachability, the collection

 $\Psi \circ_{h+1} \operatorname{unif}(\mathcal{A})$

is a policy cover at step h+2

There are two main issues with our approach:

(1) We can't afford to iterate over all the states

There are two main issues with our approach:

(1) We can't afford to iterate over all the states

E.g. when we updated the set of uncovered states

There are two main issues with our approach:

(1) We can't afford to iterate over all the states

E.g. when we updated the set of uncovered states

(2) We don't know the features $\mu_h(s)$

There are two main issues with our approach:

(1) We can't afford to iterate over all the states

E.g. when we updated the set of uncovered states

(2) We don't know the features $\mu_h(s)$

Since the model is non-parametric, it's not even possible to estimate all these parameters

OUTLINE

Part V: Linear MDPs

- Least Squares and the Elliptic Potential
- Feature Selection and Sparsity

Part VII: Sparse Linear MDPs

- Sparse Linear Regression
- Greedy Covers
- Emulators and their Algorithmic Applications

Part VI: Block MDPs

• The View from Supervised Learning

OUTLINE

Part V: Linear MDPs

- Least Squares and the Elliptic Potential
- Feature Selection and Sparsity

Part VII: Sparse Linear MDPs

- Sparse Linear Regression
- Greedy Covers
- Emulators and their Algorithmic Applications

Part VI: Block MDPs

• The View from Supervised Learning

Can we construct a tabular MDP that approximates a linear MDP well enough to be used in Greedy Cover instead?

Definition: An **emulator at step h** for a sparse linear MDP is a collection of synthetic features that satisfy...

Definition: An **emulator at step h** for a sparse linear MDP is a collection of synthetic features that satisfy

(1) they are analytically sparse

Definition: An **emulator at step h** for a sparse linear MDP is a collection of vectors $\hat{\mu}_{h+1}^1, \hat{\mu}_{h+1}^2, \dots, \hat{\mu}_{h+1}^m$ that satisfy

(1)
$$\sum_{j} \|\widehat{\mu}_{h+1}^{j}\|_{1} \leq C'$$

Definition: An **emulator at step h** for a sparse linear MDP is a collection of vectors $\hat{\mu}_{h+1}^1, \hat{\mu}_{h+1}^2, \dots, \hat{\mu}_{h+1}^m$ that satisfy

(1)
$$\sum_{j} \|\widehat{\mu}_{h+1}^{j}\|_{1} \leq C'$$

(2) they have **nonnegative** inner-products with feature maps

Definition: An **emulator at step h** for a sparse linear MDP is a collection of vectors $\hat{\mu}_{h+1}^1, \hat{\mu}_{h+1}^2, \dots, \hat{\mu}_{h+1}^m$ that satisfy

(1)
$$\sum_{j} \|\widehat{\mu}_{h+1}^{j}\|_{1} \leq C'$$

(2) $\langle \mathbb{E}_{\pi}[\phi_{h}(s_{h}, a_{h})], \widehat{\mu}_{h+1}^{j} \rangle \geq 0$ for all π and

Definition: An **emulator at step h** for a sparse linear MDP is a collection of vectors $\hat{\mu}_{h+1}^1, \hat{\mu}_{h+1}^2, \dots, \hat{\mu}_{h+1}^m$ that satisfy

(1)
$$\sum_{j} \|\widehat{\mu}_{h+1}^{j}\|_{1} \leq C'$$

(2) $\langle \mathbb{E}_{\pi}[\phi_{h}(s_{h}, a_{h})], \widehat{\mu}_{h+1}^{j} \rangle \geq 0$ for all π and .

(3) they determine the same **input-output behavior** as the true MDP, for any policy π

Definition: An emulator at step h for a sparse linear MDP is a collection of vectors $\hat{\mu}_{h+1}^1, \hat{\mu}_{h+1}^2, \dots, \hat{\mu}_{h+1}^m$ that satisfy

(1)
$$\sum_{j} \|\widehat{\mu}_{h+1}^{j}\|_{1} \leq C'$$

(2) $\langle \mathbb{E}_{\pi}[\phi_{h}(s_{h}, a_{h})], \widehat{\mu}_{h+1}^{j} \rangle \geq 0$ for all π and j

(3) There are states $\tilde{s}^1, \tilde{s}^2, \ldots, \tilde{s}^m$ so that for all π

true input-output

$$\sum_{s \in \mathcal{S}} \langle \mathbb{E}_{\pi}[\phi_{h}(s_{h}, a_{h})], \mu_{h+1}(s) \rangle \phi_{h+1}^{\text{avg}}(s_{h+1}) \rangle \langle \psi_{h+1}(s_{h}) \rangle \langle \psi_{h}(s_{h}) \rangle \langle \psi_{h}(s_{h}) \rangle \langle \psi_{h+1}(s_{h}) \rangle \langle \psi_$$

$$\begin{array}{ll} \overbrace{}{} & \sum_{j=1}^{m} \langle \mathbb{E}_{\pi}[\phi_{h}(s_{h},a_{h})], \widehat{\mu}_{h+1}^{j} \rangle \phi_{h+1}^{\text{avg}}(\widetilde{s}^{j}) \\ & \text{synthetic input-output} \end{array}$$

Let's run Greedy Cover on the $\widehat{\mu}$'s instead!

Let's run Greedy Cover on the $\widehat{\mu}$'s instead!

uncovered states:
$$\mathcal{B} = [m] \iff \widetilde{s}^1, \widetilde{s}^2, \dots, \widetilde{s}^m$$

target vector: $\mu \leftarrow \sum_{j \in \mathcal{B}} \widehat{\mu}_{h+1}^j$

Let's run Greedy Cover on the $\widehat{\mu}$'s instead!

uncovered states:
$$\mathcal{B} = [m] \iff \widetilde{s}^1, \widetilde{s}^2, \dots, \widetilde{s}^m$$

target vector: $\mu \leftarrow \sum_{j \in \mathcal{B}} \widehat{\mu}_{h+1}^j$

Essentially, the emulator gives us a tabular approximation, now **Greedy Cover** is efficient

In the analysis of Idealized Greedy Cover we needed to show

$$\sum_{s \in \mathcal{S} \setminus \mathcal{B}} \langle \mathbb{E}_{\pi}[\phi_{h}(s_{h}, a_{h})], \mu_{h+1}(s) \rangle \langle \phi_{h+1}^{\text{avg}}(s), \mu_{h+2}(s') \rangle$$

$$\leq \frac{4C^2}{\xi^2} \mathbb{E}_{\widehat{\pi} \sim \Psi} \Big[\sum_{s \in \mathcal{S} \setminus \mathcal{B}} \langle \mathbb{E}_{\widehat{\pi}} [\phi_h(s_h, a_h)], \mu_{h+1}(s) \rangle \langle \phi_{h+1}^{\text{avg}}(s), \mu_{h+2}(s') \rangle \Big]$$

i.e. can't reach any state s' much more often than the cover does

In the analysis of Idealized Greedy Cover we needed to show

$$\sum_{s \in \mathcal{S} \setminus \mathcal{B}} \langle \mathbb{E}_{\pi}[\phi_{h}(s_{h}, a_{h})], \mu_{h+1}(s) \rangle \langle \phi_{h+1}^{\text{avg}}(s), \mu_{h+2}(s') \rangle$$

$$\leq \frac{4C^2}{\xi^2} \mathbb{E}_{\widehat{\pi} \sim \Psi} \Big[\sum_{s \in \mathcal{S} \setminus \mathcal{B}} \langle \mathbb{E}_{\widehat{\pi}} [\phi_h(s_h, a_h)], \mu_{h+1}(s) \rangle \langle \phi_{h+1}^{\text{avg}}(s), \mu_{h+2}(s') \rangle \Big]$$

i.e. can't reach any state s' much more often than the cover does

The properties of an emulator allow us to replace the μ 's with $\widehat{\mu}$'s in the expressions above, and the analysis goes through

We use convex programming

We use convex programming

Main Idea: Instead of a constraint for each policy, i.e. for all π

true input-output ≈ synthetic input-output

We use convex programming

Main Idea: Instead of a constraint for each policy, i.e. for all π

true input-output 📯 synthetic input-output

We will draw samples from a policy cover at step h, and ask for synthetic features that are good predictors for the output

Input: Samples drawn from a policy cover Ψ at step h

Input: Samples drawn from a policy cover Ψ at step h

(1) Solve a linear regression problem for all $\ell \in [d]$

$$\widehat{w}_{\ell} = \underset{\|w\|_{1} \leq C}{\operatorname{arg\,min}} \sum_{i=1}^{n} \left(\langle \phi_{h}(s_{h}^{i}, a_{h}^{i}), w \rangle - \phi_{h+1}^{\text{avg}}(s_{h+1}^{i})_{\ell} \right)^{2}$$

Input: Samples drawn from a policy cover Ψ at step h

(1) Solve a linear regression problem for all $\ell \in [d]$

$$\widehat{w}_{\ell} = \underset{\|w\|_{1} \leq C}{\operatorname{arg\,min}} \sum_{i=1}^{n} \left(\langle \phi_{h}(s_{h}^{i}, a_{h}^{i}), w \rangle - \phi_{h+1}^{\text{avg}}(s_{h+1}^{i})_{\ell} \right)^{2}$$

Find synthetic features that satisfy *e₁* boundedness, nonnegativity, and are also good predictors i.e.

Input: Samples drawn from a policy cover Ψ at step h

(1) Solve a linear regression problem for all $\ell \in [d]$

$$\widehat{w}_{\ell} = \underset{\|w\|_{1} \leq C}{\operatorname{arg\,min}} \sum_{i=1}^{n} \left(\langle \phi_{h}(s_{h}^{i}, a_{h}^{i}), w \rangle - \phi_{h+1}^{\text{avg}}(s_{h+1}^{i})_{\ell} \right)^{2}$$

Find synthetic features that satisfy *e₁* boundedness, nonnegativity, and are also good predictors i.e.

$$\frac{1}{n}\sum_{i=1}^{n}\left(\langle\phi_{h}(s_{h}^{i},a_{h}^{i}),\widehat{w}_{\ell}\rangle-\sum_{j=1}^{m}\langle\phi_{h}(s_{h}^{i},a_{h}^{i}),\widehat{\mu}_{h+1}^{j}\rangle\phi_{h+1}^{\mathrm{avg}}(\widetilde{s}_{h+1}^{j})_{\ell}\right)^{2}\leq\epsilon$$

Can establish feasibility and correctness

Can establish feasibility and correctness

Intuition: The true features, with importance-weighting are feasible with high probability

Can establish feasibility and correctness

Intuition: The true features, with importance-weighting are feasible with high probability

Proof of correctness uses a net on policies, argues that checking constrains on a representative set (i.e. cover) of policies suffices

Can establish feasibility and correctness

Intuition: The true features, with importance-weighting are feasible with high probability

Proof of correctness uses a net on policies, argues that checking constrains on a representative set (i.e. cover) of policies suffices

Ultimately we use policy covers at steps ≤ h to (1) build an emulator and (2) solve the optimization problem in Greedy Cover, together which gives a small cover at step h+2

OUTLINE

Part V: Linear MDPs

- Least Squares and the Elliptic Potential
- Feature Selection and Sparsity

Part VII: Sparse Linear MDPs

- Sparse Linear Regression
- Greedy Covers
- Emulators and their Algorithmic Applications

Part VI: Block MDPs

• The View from Supervised Learning

OUTLINE

Part V: Linear MDPs

- Least Squares and the Elliptic Potential
- Feature Selection and Sparsity

Part VII: Sparse Linear MDPs

- Sparse Linear Regression
- Greedy Covers
- Emulators and their Algorithmic Applications

Part VI: Block MDPs

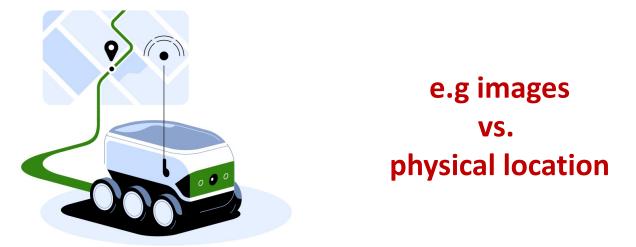
• The View from Supervised Learning

BLOCK MDPS

Settings with rich observations (\mathcal{X}) but simpler latent state (\mathcal{S})

e.g images vs. physical location

Settings with rich observations (\mathcal{X}) but simpler latent state (\mathcal{S})



Assumption: There is an unknown decoding function

$$\rho^*: \mathcal{X} \to \mathcal{S}$$

in some known class Φ of functions

Key result:

Theorem [Du, Krishnamurthy, Jiang, Agarwal, Dudik, Langford '19]: There is a framework with

sample complexity: $poly(|\mathcal{S}|, |\mathcal{A}|, H, \log |\Phi|)$

that returns a near optimal policy in a sparse linear MDP

Key result:

Theorem [Du, Krishnamurthy, Jiang, Agarwal, Dudik, Langford '19]: There is a framework with

sample complexity: $poly(|\mathcal{S}|, |\mathcal{A}|, H, \log |\Phi|)$

that returns a near optimal policy in a sparse linear MDP

But it relies on computationally hard oracles

Key result:

Theorem [Du, Krishnamurthy, Jiang, Agarwal, Dudik, Langford '19]: There is a framework with

sample complexity: $poly(|\mathcal{S}|, |\mathcal{A}|, H, \log |\Phi|)$

that returns a near optimal policy in a sparse linear MDP

But it relies on computationally hard oracles

When can we get algorithmic guarantees?

Not hard to show:

Observation: For some class Φ of decoding functions, if the associated noisy supervised learning problem is hard, then the RL problem is hard too

Not hard to show:

Observation: For some class Φ of decoding functions, if the associated noisy supervised learning problem is hard, then the RL problem is hard too

e.g. if the decoder is a parity function

Not hard to show:

Observation: For some class Φ of decoding functions, if the associated noisy supervised learning problem is hard, then the RL problem is hard too

e.g. if the decoder is a parity function

What if we start with a class Φ that can be PAC learned?

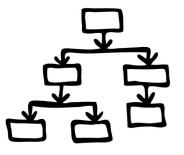
Not hard to show:

Observation: For some class Φ of decoding functions, if the associated noisy supervised learning problem is hard, then the RL problem is hard too

e.g. if the decoder is a parity function

What if we start with a class Φ that can be PAC learned?

e.g. bounded-depth decision trees



simple, interpretable

MORE ALGORITHMIC APPLICATIONS

By interpreting decision trees as sparse regressors:

Corollary: There is a quasi-polynomial time algorithm for learning a near optimal policy in any block MDP with a bounded depth decision tree decoder

MORE ALGORITHMIC APPLICATIONS

By interpreting decision trees as sparse regressors:

Corollary: There is a quasi-polynomial time algorithm for learning a near optimal policy in any block MDP with a bounded depth decision tree decoder

This gives an RL-style generalization of a classic result in supervised learning

Summary:

- First computationally efficient algorithm for learning in sparse linear MDPs
- Applications to Block MDPs, including an RL-style generalization of learning decision trees
- Meaningful way to approximate nonparametric models through emulators

Summary:

- First computationally efficient algorithm for learning in sparse linear MDPs
- Applications to Block MDPs, including an RL-style generalization of learning decision trees
- Meaningful way to approximate nonparametric models through emulators

Thanks! Any Questions?