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The normalized intensity is called an Airy disk
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Definition: The Airy disk is the function

where      is a Bessel function of the first kind and     is the blur
and is determined by physical properties (e.g. numerical aperture)  

Interpretation: It is the infinitesimal probability of detecting a
photon at some position in the observation plane

First explicitly computed by Sir George Biddell Airy in 1835
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THE DIFFRACTION LIMIT
For more than a century and a half it has been widely believed
that physics imposes fundamental limits to resolution

Main Question: Are there statistical/algorithmic limitations to 
how accurately we can estimate a mixture of Airy disks?
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Which, if any, of these criteria is the right one?
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A PERSISTENT DEBATE

In 1879 Lord Rayleigh proposed a heuristic that is still widely used

“
”

The rule is convenient on account of its simplicity and is 
sufficiently accurate in view of the necessary uncertainty
as to what exactly is meant by resolution.

“

”

It is obvious that the undulation condition should set an
upper limit to the resolving power … My own observations
on this point have been checked by a number of friends
and colleagues. Carroll Sparrow, 1918

Subsequently, many other refinements were proposed based on
different sorts of arguments, with varying degrees of rigor
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Others pushed back on there being a diffraction limit at all

“

”

It seems a little pedantic to put such precision into the 
resolving power formula … Actually, if sufficiently careful
measurements of the exact intensity distribution over the
diffracted image can be made, the fact that two sources
make the spot can be proved [regardless of separation].

Richard Feynman, 1964

Nevertheless there is decades of empirical evidence that there 
actually does seem to be a limit to what we can resolve?

Can we put the diffraction limit on a rigorous foundation?
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OUR RESULTS
We give the first provable algorithms for learning mixtures of
Airy disks that have non-asymptotic guarantees

Theorem [Chen, Moitra ‘20]: Given samples from a     -separated
mixture of k Airy disks where each relative intensity is at least
there is an algorithm that takes 

samples and learns within error    with failure probability 

Many arguments for the existence of a diffraction limit stem from
reasoning about mixtures of two Airy disks --- but there is no
fundamental limitation to what can be resolved in this setting!
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At the same time, when the number of centers is large there
is a phase transition

Theorem [Chen, Moitra ‘20]: If the mixture is             -separated
there is a polytime algorithm that takes 

samples and learns within error    with failure probability   . 

Let

Conversely there are                       -separated mixtures of k Airy 
disks that require exponentially many samples to learn

and



OUR RESULTS, CONTINUED
At the same time, when the number of centers is large there
is a phase transition

With any reasonable physical setup (finite exposure times, finite
precision in recording locations of photons) there really is a 
fundamental limit to resolving many point sources

Let and
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Thus it is simultaneously possible that:

(1)    In domains where there are few close-by sources 
(e.g. astronomy) super resolution is possible

(2)    In domains where there are many close-by sources 
(e.g. microscopy) super resolution is impossible

This is borne out empirically b/c there are successful heuristics for 
resolving double-stars in astronomy, but in microscopy new
experimental techniques really were needed, e.g. 

Super-resolution through stimulated emission

2014 Nobel Prize in Chemistry!

Eric Betzig, Stefan Hell, William Moerner
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DECONVOLUTION
There is a natural strategy for deconvolving by an Airy disk via
the Fourier transform --- division!

Diffracted Image:

Its Fourier Transform:

where

Now can we remove the            term, at least in the region where it 
is nonzero? 



Lemma: For any                    we can simulate noisy access to the 
exponential sum



Lemma: For any                    we can simulate noisy access to the 
exponential sum

� Draw samples to construct an empirical estimate of

� Form a Kernel Density Estimate (i.e. smooth by convolving
with a small variance Gaussian)

� Take the Fourier transform and pointwise divide by

This is achieved via a simple procedure:



Lemma: For any                    we can simulate noisy access to the 
exponential sum

� Draw samples to construct an empirical estimate of

� Form a Kernel Density Estimate (i.e. smooth by convolving
with a small variance Gaussian)

� Take the Fourier transform and pointwise divide by

Now, can we estimate the centers from the exponential sum?

This is achieved via a simple procedure:
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REDUCING TO ONE DIMENSION
Equivalent to projecting the Airy 
disks onto a line

This could decrease the separation and make resolution harder,
but let’s figure out what our queries look like, mathematically

What if we only query           
on a line?



Fact: Suppose we sample           at the sequence of points on a line 



Then our vector of measurements can be expressed as
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where and

Then our vector of measurements can be expressed as

Fact: Suppose we sample           at the sequence of points on a line 
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But in our setup noise is unavoidable

Does the algorithm still work with noisy measurements?

Lemma [Moitra ‘15]: The stability of the Matrix Pencil Method 
depends on the condition number of the Vandermonde matrix 

Theorem: It is possible to recover the parameters of a sum of 
k exponentials with 2k+1 noiseless measurements 

There is an algorithm called the Matrix Pencil Method based on
solving a generalized eigenvalue problem that works w/o noise
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Then repeat for new lines and piece together the estimates

Thus if we take an exponential in k number of samples, we can
accurately determine the projected centers of the disks

Lemma: If we choose a line to restrict to at random and the 
measurements are finely spaced then 

with high probability

The intuition is the Vandermonde matrix is merely exponentially
ill-conditioned (i.e. finding coefficients from querying a polynomial)
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BETTER BOUNDS?
So can we improve the dependence on k in 2-D when the centers
are separated?

Sometimes projection just doesn’t work!
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A NO-GO EXAMPLE

It’s not just a failure of the technique! In fact the true threshold
for 2-D problem is bounded away from that of the 1-D problem

There are 2-D configurations where there is no 1-D projection that 
even approximately preserves the min separation
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MORE EXTREMAL FUNCTIONS

Instead we use very recent progress on 2-D extremal functions

Theorem [Gonclaves ‘18]: For all                                     there is a
function that satisfies 

(1)

(3)

(2)

i.e. it minorizes the unit ball

i.e. it is smooth

i.e. it is a non-trivial approximation

These bounds arise through the study of de Branges spaces
of entire functions
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[Huang, Kakade ‘15]: Introduced a tensor method for recovering
exponential sums whose analysis depends

and its condition number

We can use the 2-D extremal functions to show that random       ’s 
from the                    have bounded condition number whp
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Finding the sharp diffraction limit remains a challenging problem
in harmonic analysis
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20 Equivalently we can solve inverse 
problems on the heat equation
with parametric assumptions

In optics, resolution is an inverse problem for a different 
differential equation, but where many ideas can be adapted

Do tools from theoretical machine learning have more to say
about provable algorithms for inverse problems in science?
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