BEYOND MATRIX COMPLETION

ANKUR MOITRA

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Based on joint work with Boaz Barak (Harvard)

Part I:

Matrix completion

Can we (approximately) fill-in the missing entries?

Let M be an unknown, approximately low-rank matrix

Model: we are given random observations $M_{i,j}$ for all $i,j \in \Omega$

Let M be an unknown, approximately low-rank matrix

Model: we are given random observations $M_{i,j}$ for all $i,j \in \Omega$

Is there an efficient algorithm to recover M?

The natural formulation is non-convex, and NP-hard

min rank(X) s.t.
$$\frac{1}{|\Omega|} \sum_{(i,j) \in \Omega} |X_{i,j} - M_{i,j}| \le \eta$$

The natural formulation is non-convex, and NP-hard

min rank(X) s.t.
$$\frac{1}{|\Omega|} \sum_{(i,j) \in \Omega} |X_{i,j} - M_{i,j}| \le \eta$$

There is a powerful, convex relaxation...

THE NUCLEAR NORM

Consider the **singular value decomposition** of X:

THE NUCLEAR NORM

Consider the singular value decomposition of X:

Let $\sigma_1 \ge \sigma_2 \ge ... \ \sigma_r > \sigma_{r+1} = ... \ \sigma_m = 0$ be the singular values

THE NUCLEAR NORM

Consider the singular value decomposition of X:

Let $\sigma_1 \ge \sigma_2 \ge ... \ \sigma_r > \sigma_{r+1} = ... \ \sigma_m = 0$ be the singular values

Then rank(X) = r, and $\|X\|_* = \sigma_1 + \sigma_2 + ... + \sigma_r$ (nuclear norm)

This yields a convex relaxation, that can be solved efficiently:

$$\min \|X\|_* \text{ s.t. } \frac{1}{|\Omega|} \sum_{(i,j) \in \Omega} |X_{i,j} - M_{i,j}| \le \eta \quad \text{(P)}$$

[Fazel], [Srebro, Shraibman], [Recht, Fazel, Parrilo], [Candes, Recht], [Candes, Tao], [Candes, Plan], [Recht],

This yields a convex relaxation, that can be solved efficiently:

$$\min \|X\|_* \text{ s.t. } \frac{1}{|\Omega|} \sum_{(i,j) \in \Omega} |X_{i,j} - M_{i,j}| \le \eta$$
 (P)

[Fazel], [Srebro, Shraibman], [Recht, Fazel, Parrilo], [Candes, Recht], [Candes, Tao], [Candes, Plan], [Recht],

Theorem: If M is n x n and has rank r, and is C-incoherent then (P) recovers M exactly from C⁶nrlog²n observations

This yields a convex relaxation, that can be solved efficiently:

$$\min \|X\|_* \text{ s.t. } \frac{1}{|\Omega|} \sum_{(i,j) \in \Omega} |X_{i,j} - M_{i,j}| \le \eta \quad \text{(P)}$$

[Fazel], [Srebro, Shraibman], [Recht, Fazel, Parrilo], [Candes, Recht], [Candes, Tao], [Candes, Plan], [Recht],

Theorem: If M is n x n and has rank r, and is C-incoherent then (P) recovers M exactly from C^6 nrlog²n observations

This is nearly optimal, since there are O(nr) parameters

Robust PCA [Candes et al.], [Chandrasekaran et al.], ...

Can we recover a low rank matrix from sparse corruptions?

Robust PCA [Candes et al.], [Chandrasekaran et al.], ...

Can we recover a low rank matrix from sparse corruptions?

Superresolution, compressed sensing off-the-grid

[Candes, Fernandez-Granda], [Tang et al.], ...

Can we recover well-separated points from low-frequency measurements?

Part II:

Higher order structure?

Can using more than two attributes can lead to better recommendations?

Can using more than two attributes can lead to better recommendations?

e.g. Groupon

Can using more than two attributes can lead to better recommendations?

e.g. Groupon

time: season, time of day, weekday/weekend, etc

Can using more than two attributes can lead to better recommendations?

time: season, time of day, weekday/weekend, etc

Can using more than two attributes can lead to better recommendations?

Can using more than two attributes can lead to better recommendations?

Can we (approximately) fill-in the missing entries?

THE TROUBLE WITH TENSORS

Natural approach (suggested by many authors):

$$\min \|X\|_* \text{ s.t. } \frac{1}{|\Omega|} \sum_{(i,j,k) \in \Omega} |X_{i,j,k} - T_{i,j,k}| \le \eta \quad \text{(P)}$$

tensor nuclear norm

THE TROUBLE WITH TENSORS

Natural approach (suggested by many authors):

$$\min \|X\|_* \text{ s.t. } \frac{1}{|\Omega|} \sum_{(i,j,k) \in \Omega} |X_{i,j,k} - T_{i,j,k}| \le \eta \quad \text{(P)}$$

tensor nuclear norm

The tensor nuclear norm is **NP-hard** to compute!

[Gurvits], [Liu], [Harrow, Montanaro]

In fact, most of the linear algebra toolkit is **ill-posed**, or **computationally hard** for tensors...

In fact, most of the linear algebra toolkit is **ill-posed**, or **computationally hard** for tensors...

e.g. [Hillar, Lim] "Most Tensor Problems are NP-Hard"

In fact, most of the linear algebra toolkit is **ill-posed**, or **computationally hard** for tensors...

e.g. [Hillar, Lim] "Most Tensor Problems are NP-Hard"

Table I. Tractability of Tensor Problems

Problem	Complexity
Bivariate Matrix Functions over \mathbb{R}, \mathbb{C}	Undecidable (Proposition 12.2)
Bilinear System over \mathbb{R} , \mathbb{C}	NP-hard (Theorems 2.6, 3.7, 3.8)
Eigenvalue over $\mathbb R$	NP-hard (Theorem 1.3)
Approximating Eigenvector over $\mathbb R$	NP-hard (Theorem 1.5)
Symmetric Eigenvalue over $\mathbb R$	NP-hard (Theorem 9.3)
Approximating Symmetric Eigenvalue over $\mathbb R$	NP-hard (Theorem 9.6)
Singular Value over \mathbb{R}, \mathbb{C}	NP-hard (Theorem 1.7)
Symmetric Singular Value over $\mathbb R$	NP-hard (Theorem 10.2)
Approximating Singular Vector over \mathbb{R}, \mathbb{C}	NP-hard (Theorem 6.3)
Spectral Norm over $\mathbb R$	NP-hard (Theorem 1.10)
Symmetric Spectral Norm over $\mathbb R$	NP-hard (Theorem 10.2)
Approximating Spectral Norm over $\mathbb R$	NP-hard (Theorem 1.11)
Nonnegative Definiteness	NP-hard (Theorem 11.2)
Best Rank-1 Approximation	NP-hard (Theorem 1.13)
Best Symmetric Rank-1 Approximation	NP-hard (Theorem 10.2)
Rank over $\mathbb R$ or $\mathbb C$	NP-hard (Theorem 8.2)
Enumerating Eigenvectors over $\mathbb R$	#P-hard (Corollary 1.16)
Combinatorial Hyperdeterminant	NP-, #P-, VNP-hard (Theorems 4.1 , 4.2, Corollary 4.3)
Geometric Hyperdeterminant	Conjectures 1.9, 13.1
Symmetric Rank	Conjecture 13.2
Bilinear Programming	Conjecture 13.4
Bilinear Least Squares	Conjecture 13.5

Many tensor methods rely on **flattening**:

This is a **rearrangement** of the entries, into a matrix, that does not increase its **rank**

Let $n_1 = n_2 = n_3 = n$

We would need $\widehat{O}(n^2r)$ observations to fill-in flat(T)

Let $n_1 = n_2 = n_3 = n$

We would need $\widehat{O}(n^2r)$ observations to fill-in flat(T)

There are many other variants of **flattening**, but with comparable guarantees

[Liu, Musialski, Wonka, Ye], [Gandy, Recht, Yamada], [Signoretto, De Lathauwer, Suykens], [Tomioko, Hayashi, Kashima], [Mu, Huang, Wright, Goldfarb], ...

Let
$$n_1 = n_2 = n_3 = n$$

We would need $\widehat{O}(n^2r)$ observations to fill-in flat(T)

There are many other variants of **flattening**, but with comparable guarantees

[Liu, Musialski, Wonka, Ye], [Gandy, Recht, Yamada], [Signoretto, De Lathauwer, Suykens], [Tomioko, Hayashi, Kashima], [Mu, Huang, Wright, Goldfarb], ...

Can we beat flattening?

Let
$$n_1 = n_2 = n_3 = n$$

We would need $\widehat{O}(n^2r)$ observations to fill-in flat(T)

There are many other variants of **flattening**, but with comparable guarantees

[Liu, Musialski, Wonka, Ye], [Gandy, Recht, Yamada], [Signoretto, De Lathauwer, Suykens], [Tomioko, Hayashi, Kashima], [Mu, Huang, Wright, Goldfarb], ...

Can we beat flattening?

Can we make better predictions than we do by treating each activity x time as unrelated?

Part III:

Nearly optimal algorithms for noisy tensor completion

OUR RESULTS

Suppose we are given $|\Omega| = m$ noisy observations from T:

$$T = \sum_{i=1}^{r} \sigma_i a_i \bigotimes b_i \bigotimes c_i + \text{noise}$$
 with $|\sigma_i|$, $|a_i|_{\infty}$, $|b_i|_{\infty}$, $|c_i|_{\infty} \le C$ bdd by η

OUR RESULTS

Suppose we are given $|\Omega| = m$ noisy observations from T:

$$T = \sum_{i=1}^{r} \sigma_i a_i \bigotimes b_i \bigotimes c_i + \text{noise}$$
 with $|\sigma_i|$, $|a_i|_{\infty}$, $|b_i|_{\infty}$, $|c_i|_{\infty} \le C$ bdd by η

Theorem: There is an efficient algorithm that with prob 1- δ , outputs X with

$$\frac{1}{n^3} \sum_{i,j,k} |X_{i,j,k} - T_{i,j,k}| \le C^3 r \sqrt{\frac{n^{3/2} log^4 n}{m}} + 2C^3 r \sqrt{\frac{ln(2/\delta)}{m}} + 2\eta$$

Theorem: There is an efficient algorithm that with prob 1- δ , outputs X with

$$\frac{1}{n^3} \sum_{i,j,k} |X_{i,j,k} - T_{i,j,k}| \le C^3 r \sqrt{\frac{n^{3/2} log^4 n}{m}} + 2C^3 r \sqrt{\frac{ln(2/\delta)}{m}} + 2\eta$$

Theorem: There is an efficient algorithm that with prob 1- δ , outputs X with

$$\frac{1}{n^3} \sum_{i,j,k} |X_{i,j,k} - T_{i,j,k}| \le C^3 r \sqrt{\frac{n^{3/2} log^4 n}{m}} + 2C^3 r \sqrt{\frac{ln(2/\delta)}{m}} + 2\eta$$

In many settings, 1-o(1) fraction of entries of T are at least $r^{1/2}$ /polylog(n) in magnitude

Theorem: There is an efficient algorithm that with prob 1- δ , outputs X with

$$\frac{1}{n^3} \sum_{i,j,k} |X_{i,j,k} - T_{i,j,k}| \le C^3 r \sqrt{\frac{n^{3/2} log^4 n}{m}} + 2C^3 r \sqrt{\frac{ln(2/\delta)}{m}} + 2\eta$$

In many settings, 1-o(1) fraction of entries of T are at least $r^{1/2}$ /polylog(n) in magnitude

When $m = \Omega(n^{3/2}r)$, average error is asymptotically smaller and hence $X_{i,j,k} = (1\pm o(1))T_{i,j,k}$ for 1-o(1) fraction of entries

Theorem: There is an efficient algorithm that with prob 1- δ , outputs X with

$$\frac{1}{n^3} \sum_{i,j,k} |X_{i,j,k} - T_{i,j,k}| \le C^3 r \sqrt{\frac{n^{3/2} log^4 n}{m}} + 2C^3 r \sqrt{\frac{ln(2/\delta)}{m}} + 2\eta$$

In many settings, 1-o(1) fraction of entries of T are at least $r^{1/2}$ /polylog(n) in magnitude

When $m = \widehat{\Omega}(n^{3/2}r)$, average error is asymptotically smaller and hence $X_{i,j,k} = (1\pm o(1))T_{i,j,k}$ for 1-o(1) fraction of entries

"Almost all of the entries, almost entirely correct"

Theorem: There is an efficient algorithm that with prob 1- δ , outputs X with

$$\frac{1}{n^3} \sum_{i,j,k} |X_{i,j,k} - T_{i,j,k}| \le C^3 r \sqrt{\frac{n^{3/2} log^4 n}{m}} + 2C^3 r \sqrt{\frac{ln(2/\delta)}{m}} + 2\eta$$

Theorem: There is an efficient algorithm that with prob 1- δ , outputs X with

$$\frac{1}{n^3} \sum_{i,j,k} |X_{i,j,k} - T_{i,j,k}| \le C^3 r \sqrt{\frac{n^{3/2} log^4 n}{m}} + 2C^3 r \sqrt{\frac{ln(2/\delta)}{m}} + 2\eta$$

For $r = n^{3/2-\delta}$ (highly overcomplete), we only need to observe an $n^{-\delta}$ fraction of the entries

Theorem: There is an efficient algorithm that with prob 1- δ , outputs X with

$$\frac{1}{n^3} \sum_{i,j,k} |X_{i,j,k} - T_{i,j,k}| \le C^3 r \sqrt{\frac{n^{3/2} log^4 n}{m}} + 2C^3 r \sqrt{\frac{ln(2/\delta)}{m}} + 2\eta$$

For $r = n^{3/2-\delta}$ (highly overcomplete), we only need to observe an $n^{-\delta}$ fraction of the entries

Algorithms for decomposing such tensors given all the entries need stronger (e.g. factors are **random**) assumptions

LOWER BOUNDS

Not only is the **tensor nuclear norm** hard to compute, but...

LOWER BOUNDS

Not only is the **tensor nuclear norm** hard to compute, but...

Noisy tensor completion Refute random 3-SAT with m observations with m clauses

LOWER BOUNDS

Not only is the **tensor nuclear norm** hard to compute, but...

Part IV:

Matrix completion revisited: Connections to random CSPs

Case #1: Approximately low-rank

Case #1: Approximately low-rank

For each $(i,j) \in \Omega$

$$M_{i,j} = \begin{cases} a_i a_j & \text{w/ probability } \frac{3}{4} \\ \text{random } \pm 1 & \text{w/ probability } \frac{1}{4} \end{cases}$$

where each $a_i = \pm 1$

Case #2: Random

random

For each $(i,j) \in \Omega$, $M_{i,j} = random \pm 1$

Case #2: Random

random

For each $(i,j) \in \Omega$, $M_{i,j} = random \pm 1$

In Case #1 the entries are (somewhat) predictable, but in Case #2 they are completely unpredictable

There are two very different communities that (essentially) attacked this same distinguishing problem:

There are two very different communities that (essentially) attacked this same distinguishing problem:

The community working on matrix completion

There are two very different communities that (essentially) attacked this same distinguishing problem:

The community working on matrix completion

The community working on refuting random CSPs

AN INTERPRETATION

We can interpret:

$$(i_1, j_1; \sigma_1), (i_2, j_2; \sigma_2), ..., (i_m, j_m; \sigma_m)$$
±1 r.v.

as a random 2-XOR formula ψ

AN INTERPRETATION

We can interpret:

$$(i_1, j_1; \sigma_1), (i_2, j_2; \sigma_2), ..., (i_m, j_m; \sigma_m)$$

±1 r.v.

as a random 2-XOR formula ψ

In particular each observation/fctn value maps to a clause:

$$(i, j, \sigma) \longrightarrow v_i \cdot v_j = \sigma$$

variables constraint

AN INTERPRETATION

We can interpret:

$$(i_1, j_1; \sigma_1), (i_2, j_2; \sigma_2), ..., (i_m, j_m; \sigma_m)$$

±1 r.v.

as a random 2-XOR formula ψ (and vice-versa)

In particular each observation/fctn value maps to a clause:

$$(i, j, \sigma) \longrightarrow V_i \cdot V_j = \sigma$$

variables constraint

We will say that an algorithm **strongly refutes*** random 2-XOR with m clauses if:

We will say that an algorithm **strongly refutes*** random 2-XOR with m clauses if:

(1) On any 2-XOR formula ψ , it outputs val where:

$$OPT(\psi) \le val(\psi)$$

We will say that an algorithm **strongly refutes*** random 2-XOR with m clauses if:

(1) On any 2-XOR formula ψ , it outputs val where:

largest fraction of clauses of ψ that can be satisfied

We will say that an algorithm **strongly refutes*** random 2-XOR with m clauses if:

(1) On any 2-XOR formula ψ , it outputs val where:

$$OPT(\psi) \le val(\psi)$$

We will say that an algorithm **strongly refutes*** random 2-XOR with m clauses if:

(1) On any 2-XOR formula ψ , it outputs val where:

$$OPT(\psi) \le val(\psi)$$

(2) With high probability (for random ψ with m clauses):

$$val(\psi) = \frac{1}{2} + o(1)$$

$$\frac{2 \operatorname{OPT}(\psi) - 1}{n} \leq \frac{1}{m} \|A\|_{2}$$

Proof: Map the assignment to a unit vector so that $x_i = \pm 1/\sqrt{n}$ and take the quadratic form on A

Proof: Map the assignment to a unit vector so that $x_i = \pm 1/\sqrt{n}$ and take the quadratic form on A

$$\frac{1}{m} || A || \sim \sqrt{\frac{1}{mn}}$$

Proof: Map the assignment to a unit vector so that $x_i = \pm 1/\sqrt{n}$ and take the quadratic form on A

$$\frac{1}{m} || A || \sim \sqrt{\frac{1}{mn}} \xrightarrow{m = \omega(n)} OPT(\psi) \leq \frac{1}{2} + o(1)$$

Proof: Map the assignment to a unit vector so that $x_i = \pm 1/\sqrt{n}$ and take the quadratic form on A

$$\frac{1}{m} || A || \sim \sqrt{\frac{1}{mn}} \xrightarrow{m = \omega(n)} OPT(\psi) \leq \frac{1}{2} + o(1)$$

This solves the strong refutation problem...

The community working on matrix completion

The community working on refuting random CSPs

The community working on matrix completion

The community working on refuting random CSPs

The **same** spectral bound implies:

(1) An algorithm for strongly refuting random 2-XOR

The community working on matrix completion

The community working on refuting random CSPs

The **same** spectral bound implies:

- (1) An algorithm for strongly refuting random 2-XOR
- (2) An algorithm for the distinguishing problem

The community working on matrix completion

The community working on refuting random CSPs

The **same** spectral bound implies:

- (1) An algorithm for strongly refuting random 2-XOR
- (2) An algorithm for the distinguishing problem
- (3) Generalization bounds for the nuclear norm

$$\min \|X\|_* \text{ s.t. } \frac{1}{|\Omega|} \sum_{(i,j) \in \Omega} |X_{i,j} - M_{i,j}| \le \eta$$

$$\min \|X\|_* \text{ s.t. } \frac{1}{|\Omega|} \sum_{(i,j) \in \Omega} |X_{i,j} - M_{i,j}| \le \eta$$

$$\min \|X\|_* \text{ s.t. } \frac{1}{|\Omega|} \sum_{(i,i) \in \Omega} |X_{i,j} - M_{i,j}| \le \eta$$

empirical error:
$$\frac{1}{|\Omega|} \sum_{(i,j) \in \Omega} |X_{i,j} - M_{i,j}|$$

$$\min \|X\|_* \text{ s.t. } \frac{1}{|\Omega|} \sum_{(i,i) \in \Omega} |X_{i,j} - M_{i,j}| \le \eta$$

empirical error:
$$\frac{1}{|\Omega|} \sum_{(i,j) \in \Omega} |X_{i,j} - M_{i,j}| \qquad (\leq \eta)$$

$$\min \|X\|_* \text{ s.t. } \frac{1}{|\Omega|} \sum_{(i,j) \in \Omega} |X_{i,j} - M_{i,j}| \le \eta$$

empirical error:
$$\frac{1}{|\Omega|} \sum_{(i,j) \in \Omega} |X_{i,j} - M_{i,j}| \quad (\leq \eta)$$

prediction error:
$$\frac{1}{n^2} \sum |X_{i,j} - M_{i,j}|$$

Then if we let

$$\mathcal{K} = \{ X \text{ s.t. } ||X||_* \le 1 \} = \text{conv} \{ ab^T \text{ s.t. } ||a||_{,} ||b|| \le 1 \}$$

Then if we let

$$\mathcal{K} = \{ X \text{ s.t. } ||X||_* \le 1 \} = \text{conv} \{ ab^T \text{ s.t. } ||a||_{\mathcal{I}} ||b|| \le 1 \}$$

generalization error:

$$\sup_{X \in \mathcal{K}} \left| empirical error (X) - prediction error (X) \right|$$

Then if we let

$$\mathcal{K} = \{ X \text{ s.t. } ||X||_* \le 1 \} = \text{conv} \{ ab^T \text{ s.t. } ||a||_{l} ||b|| \le 1 \}$$

generalization error:

$$\sup_{X \in \mathcal{K}} \left| \frac{\text{empirical error (X)} - \text{prediction error (X)}}{(\text{on }\Omega)} \right|$$

Theorem:

"generalization error \leq best agreement with random function" (on Ω)

Then if we let

$$\mathcal{K} = \{ X \text{ s.t. } ||X||_* \le 1 \} = \text{conv} \{ ab^T \text{ s.t. } ||a||_{l} ||b|| \le 1 \}$$

generalization error:

$$\sup_{X \in \mathcal{K}} \left| \begin{array}{c} \sup \\ \operatorname{empirical \, error \,}(X) - \operatorname{prediction \, error \,}(X) \end{array} \right|$$

Theorem:

"generalization error \leq best agreement with random function" (on Ω)

Rademacher complexity

More precisely:

$$\sup_{X \in \mathcal{K}} \frac{1}{m} \left| \sum_{a=1}^{n} \sigma_a X_{i_a, j_a} \right|$$

More precisely:

$$\sup_{X \in \mathcal{K}} \frac{1}{m} \left| \sum_{a=1}^{\infty} \sigma_a X_{i_a, j_a} \right| = \frac{1}{m} ||A||$$

More precisely:

$$\sup_{X \in \mathcal{K}} \frac{1}{m} \left| \sum_{a=1}^{\infty} \sigma_a X_{i_a, j_a} \right| = \frac{1}{m} ||A||$$

$$\frac{1}{m} ||A|| \sim \sqrt{\frac{1}{mn}}$$

More precisely:

$$\sup_{X \in \mathcal{K}} \frac{1}{m} \left| \sum_{a=1}^{\infty} \sigma_a X_{i_a, j_a} \right| = \frac{1}{m} ||A||$$

$$\frac{1}{m}||A|| \sim \sqrt{\frac{1}{mn}} \xrightarrow{m = \omega(n)} R^m(\mathcal{K}) = o(\frac{1}{n})$$

The community working on matrix completion

The community working on refuting random CSPs

Noisy matrix completion with m observations

Strongly refute* random 2-XOR/2-SAT with m clauses

*Want an algorithm that certifies a formula is far from satisfiable

The community working on matrix completion

The community working on refuting random CSPs

Noisy tensor completion with m observations

Rademacher
Complexity

Strongly refute* random
3-XOR/3-SAT with m clauses

*Want an algorithm that certifies a formula is far from satisfiable

The community working on matrix completion

The community working on refuting random CSPs

Noisy **tensor** completion with m observations

Strongly refute* random
3-XOR/3-SAT with m clauses

[Coja-Oghlan, Goerdt, Lanka]

*Want an algorithm that certifies a formula is far from satisfiable

$$(v_i \cdot v_j \cdot v_k = \sigma) \cdot (v_i \cdot v_{j'} \cdot v_{k'} = \sigma')$$

$$(v_{i} \cdot v_{j} \cdot v_{k} = \sigma) \cdot (v_{i} \cdot v_{j'} \cdot v_{k'} = \sigma') \longrightarrow (v_{j} \cdot v_{k} \cdot v_{j'} \cdot v_{k'} = \sigma\sigma')$$

$$(v_{i} \cdot v_{j} \cdot v_{k} \cdot v_{j'} \cdot v_{k'} = \sigma\sigma') \longrightarrow (v_{i} \cdot v_{k'} \cdot v_{k'} = \sigma\sigma')$$

$$(v_{i} \cdot v_{j} \cdot v_{k} \cdot v_{j'} \cdot v_{k'} = \sigma\sigma') \longrightarrow (v_{i} \cdot v_{k'} \cdot v_{k'} = \sigma\sigma')$$

$$(v_{i} \cdot v_{j} \cdot v_{k} \cdot v_{j'} \cdot v_{k'} = \sigma\sigma') \longrightarrow (v_{i} \cdot v_{k'} \cdot v_{k'} = \sigma\sigma')$$

$$(v_{i} \cdot v_{j} \cdot v_{k} \cdot v_{k'} = \sigma\sigma') \longrightarrow (v_{i} \cdot v_{k'} \cdot v_{k'} = \sigma\sigma')$$

$$(v_{i} \cdot v_{k} \cdot v_{k'} \cdot v_{k'} = \sigma\sigma') \longrightarrow (v_{i} \cdot v_{k'} \cdot v_{k'} = \sigma\sigma')$$

This yields $n^5p^2 = n^2 \log^{O(1)} n$ clauses

$$(v_{i} \cdot v_{j} \cdot v_{k} = \sigma) \cdot (v_{i} \cdot v_{j'} \cdot v_{k'} = \sigma') \longrightarrow (v_{j} \cdot v_{k} \cdot v_{j'} \cdot v_{k'} = \sigma\sigma')$$

$$(v_{i} \cdot v_{j} \cdot v_{k} \cdot v_{j'} \cdot v_{k'} = \sigma\sigma') \longrightarrow (v_{i} \cdot v_{k'} \cdot v_{k'} = \sigma\sigma')$$

$$(v_{i} \cdot v_{k} \cdot v_{j'} \cdot v_{k'} = \sigma\sigma') \longrightarrow (v_{i} \cdot v_{k'} \cdot v_{k'} = \sigma\sigma')$$

$$(v_{i} \cdot v_{k} \cdot v_{k'} = \sigma\sigma') \longrightarrow (v_{i} \cdot v_{k'} = \sigma\sigma')$$

$$(v_{i} \cdot v_{k'} \cdot v_{k'} = \sigma\sigma') \longrightarrow (v_{i} \cdot v_{k'} = \sigma\sigma')$$

$$(v_{i} \cdot v_{k'} \cdot v_{k'} = \sigma\sigma') \longrightarrow (v_{i} \cdot v_{k'} = \sigma\sigma')$$

$$(v_{i} \cdot v_{k'} \cdot v_{k'} = \sigma\sigma') \longrightarrow (v_{i} \cdot v_{k'} = \sigma\sigma')$$

$$(v_{i} \cdot v_{k'} \cdot v_{k'} = \sigma\sigma') \longrightarrow (v_{i} \cdot v_{k'} = \sigma\sigma')$$

$$(v_{i} \cdot v_{k'} \cdot v_{k'} = \sigma\sigma') \longrightarrow (v_{i} \cdot v_{k'} = \sigma\sigma')$$

$$(v_{i} \cdot v_{k'} \cdot v_{k'} = \sigma\sigma') \longrightarrow (v_{i} \cdot v_{k'} = \sigma\sigma')$$

$$(v_{i} \cdot v_{k'} \cdot v_{k'} = \sigma\sigma') \longrightarrow (v_{i} \cdot v_{k'} = \sigma\sigma')$$

$$(v_{i} \cdot v_{k'} \cdot v_{k'} = \sigma\sigma') \longrightarrow (v_{i} \cdot v_{k'} = \sigma\sigma')$$

$$(v_{i} \cdot v_{k'} \cdot v_{k'} = \sigma\sigma') \longrightarrow (v_{i} \cdot v_{k'} = \sigma\sigma')$$

$$(v_{i} \cdot v_{k'} \cdot v_{k'} = \sigma\sigma') \longrightarrow (v_{i} \cdot v_{k'} = \sigma\sigma')$$

$$(v_{i} \cdot v_{k'} \cdot v_{k'} = \sigma\sigma') \longrightarrow (v_{i} \cdot v_{k'} = \sigma\sigma')$$

$$(v_{i} \cdot v_{k'} \cdot v_{k'} = \sigma\sigma') \longrightarrow (v_{i} \cdot v_{k'} = \sigma\sigma')$$

$$(v_{i} \cdot v_{k'} \cdot v_{k'} = \sigma\sigma') \longrightarrow (v_{i} \cdot v_{k'} = \sigma\sigma')$$

$$(v_{i} \cdot v_{k'} \cdot v_{k'} = \sigma\sigma') \longrightarrow (v_{i} \cdot v_{k'} = \sigma\sigma')$$

This yields $n^5p^2 = n^2 \log^{O(1)} n$ clauses

Warning: The 4-XOR clauses are not independent!

$$(v_i \cdot v_j \cdot v_k = \sigma) \cdot (v_i \cdot v_{j'} \cdot v_{k'} = \sigma') \longrightarrow (v_j \cdot v_k \cdot v_{j'} \cdot v_{k'} = \sigma \sigma')$$

$$(v_i \cdot v_j \cdot v_k = \sigma) \cdot (v_i \cdot v_{j'} \cdot v_{k'} = \sigma') \longrightarrow (v_j \cdot v_k \cdot v_{j'} \cdot v_{k'} = \sigma \sigma')$$

[Coja-Ohglan, Goerdt, Lanka]: Reduce 3-XOR to 4-XOR

$$(v_i \cdot v_j \cdot v_k = \sigma) \cdot (v_i \cdot v_{j'} \cdot v_{k'} = \sigma') \longrightarrow (v_j \cdot v_k \cdot v_{j'} \cdot v_{k'} = \sigma \sigma')$$

[Coja-Ohglan, Goerdt, Lanka]: Reduce 3-XOR to 4-XOR

$$(v_i \cdot v_j \cdot v_k = \sigma) \cdot (v_i \cdot v_{j'} \cdot v_{k'} = \sigma') \longrightarrow (v_j \cdot v_k \cdot v_{j'} \cdot v_{k'} = \sigma \sigma')$$

Hence the paired variables for the rows (and colns) come from different clauses!

[Coja-Ohglan, Goerdt, Lanka]: Reduce 3-XOR to 4-XOR

$$(v_i \cdot v_j \cdot v_k = \sigma) \cdot (v_i \cdot v_{j'} \cdot v_{k'} = \sigma') \longrightarrow (v_j \cdot v_k \cdot v_{j'} \cdot v_{k'} = \sigma \sigma')$$

Hence the paired variables for the rows (and colns) come from different clauses!

There are two very different communities that (essentially) attacked this same distinguishing problem:

The community working on matrix completion

The community working on refuting random CSPs

Noisy **tensor** completion with m observations

Strongly refute* random
3-XOR/3-SAT with m clauses

[Coja-Oghlan, Goerdt, Lanka]

*Want an algorithm that certifies a formula is far from satisfiable

There are two very different communities that (essentially) attacked this same distinguishing problem:

The community working on matrix completion

The community working on refuting random CSPs

Noisy tensor completion with m observations

Strongly refute* random
3-XOR/3-SAT with m clauses

[Coja-Oghlan, Goerdt, Lanka]

We then embed this algorithm into the **sixth** level of the sum-of-squares hierarchy, to get a relaxation for tensor prediction

*Want an algorithm that certifies a formula is far from satisfiable

GENERALIZATION BOUNDS

Suppose we are given $|\Omega| = m$ noisy observations $T_{i,j,k} \pm \eta$, and the factors of T are C-incoherent:

Theorem: There is an efficient algorithm that with prob 1- δ , outputs X with

$$\frac{1}{n^3} \sum_{i,j,k} |X_{i,j,k} - T_{i,j,k}| \le C^3 r \sqrt{\frac{n^{3/2} log^4 n}{m}} + 2C^3 r \sqrt{\frac{ln(2/\delta)}{m}} + 2\eta$$

GENERALIZATION BOUNDS

Suppose we are given $|\Omega| = m$ noisy observations $T_{i,j,k} \pm \eta$, and the factors of T are C-incoherent:

Theorem: There is an efficient algorithm that with prob 1- δ , outputs X with

$$\frac{1}{n^3} \sum_{i,j,k} |X_{i,j,k} - T_{i,j,k}| \le C^3 r \sqrt{\frac{n^{3/2} \log^4 n}{m}} + 2C^3 r \sqrt{\frac{\ln(2/\delta)}{m}} + 2\eta$$

This comes from giving an efficiently computable norm $\|\cdot\|_K$ whose Rademacher complexity is asymptotically smaller than the trivial bound whenever $m=\Omega(n^{3/2}\log^4 n)$

SUMMARY

New Algorithm:

We gave an algorithm for 3^{rd} -order tensor prediction that uses $m = n^{3/2}rlog^4n$ observations

SUMMARY

New Algorithm:

We gave an algorithm for 3^{rd} -order tensor prediction that uses $m = n^{3/2}rlog^4n$ observations

An Inefficient Algorithm: (via tensor nuclear norm)

There is an inefficient algorithm that use m = nrlogn observations

SUMMARY

New Algorithm:

We gave an algorithm for 3^{rd} -order tensor prediction that uses $m = n^{3/2}rlog^4n$ observations

An Inefficient Algorithm: (via tensor nuclear norm)

There is an inefficient algorithm that use m = nrlogn observations

A Phase Transition:

Even for n^{δ} rounds of the powerful sum-of-squares hierarchy, no norm solves tensor prediction with $m = n^{3/2-\delta}r$ observations

Epilogue:

New directions in computational vs. statistical tradeoffs

Convex programs are unreasonably effective for linear inverse problems!

Convex programs are unreasonably effective for linear inverse problems!

But we gave simple linear inverse problems that exhibit striking gaps between efficient and inefficient estimators

Convex programs are unreasonably effective for linear inverse problems!

But we gave simple linear inverse problems that exhibit striking gaps between efficient and inefficient estimators

Where else are there computational vs statistical tradeoffs?

Convex programs are unreasonably effective for linear inverse problems!

But we gave simple linear inverse problems that exhibit striking gaps between efficient and inefficient estimators

Where else are there computational vs statistical tradeoffs?

New Direction: Explore computational vs. statistical tradeoffs through the powerful **sum-of-squares** hierarchy