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Part I:

Matrix completion
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[Can we (approximately) fill-in the missing entries? ]
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Let M be an unknown, approximately low-rank matrix

[ |
M zE + +...+E

\ ) \ l \ )
1 1 1

drama comedy sports

Model: we are given random observations M; ; for all i,j €Q

{Is there an efficient algorithm to recover M?]
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The natural formulation is non-convex, and NP-hard

min rank(X) s.t. |iQ| 2 |Xij—l\/|i’j| <N

There is a powerful, convex relaxation...
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THE NUCLEAR NORM

Consider the singular value decomposition of X:

& o & <&
N N N <°+
VT
X — U 2
orthogonal diagonal orthogonal

leto, 20,2..0,>0,,=..0, =0 be the singular values

Then rank(X) =r, and ” X”* =0,+0,+..+0, (nuclear norm)
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This yields a convex relaxation, that can be solved efficiently:

[Fazel], [Srebro, Shraibman], [Recht, Fazel, Parrilo], [Candes, Recht],
[Candes, Tao], [Candes, Plan], [Recht],

Theorem: If M is nx n and has rank r, and is C-incoherent then (P)
recovers M exactly from C°nrlog?n observations

[This is nearly optimal, since there are O(nr) parameters ]
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Robust PCA [Candes et al.], [Chandrasekaran et al.], ...

[Can we recover a low rank matrix from sparse corruptions? ]

Superresolution, compressed sensing off-the-grid

[Candes, Fernandez-Granda], [Tang et al.], ...

Can we recover well-separated points from low-
frequency measurements?




Part ll:

Higher order structure?
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Can using more than two attributes can lead to better
recommendations?

[Can we (approximately) fill-in the missing entries? ]
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THE TROUBLE WITH TENSORS

Natural approach (suggested by many authors):

min HXH* s.t. Z [ Xi Tkl <0 (P)
T |Q|(IJkEQ

tensor nuclear norm

[The tensor nuclear norm is NP-hard to compute! ]

[Gurvits], [Liu], [Harrow, Montanaro]
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In fact, most of the linear algebra toolkit is ill-posed, or
computationally hard for tensors...

e.g. [Hillar, Lim] “Most Tensor Problems are NP-Hard”

Table I. Tractability of Tensor Problems

Problem Complexity
Undecidable (Proposition 12.2)

NP-hard (Theorems 2.6, 3.7, 3.8)

Bivariate Matrix Functions over R, C

Bilinear System over R, C

Eigenvalue over R

NP-hard (Theorem 1.3)

Approximating Eigenvector over R

NP-hard (Theorem 1.5)

Symmetric Eigenvalue over R

NP-hard (Theorem 9.3)

Approximating Symmetric Eigenvalue over R

NP-hard (Theorem 9.6)

Singular Value over R, C

NP-hard (Theorem 1.7)

Symmetric Singular Value over R

NP-hard (Theorem 10.2)

Approximating Singular Vector over R, C

NP-hard (Theorem 6.3)

Spectral Norm over R

NP-hard (Theorem 1.10)

Symmetric Spectral Norm over R

NP-hard (Theorem 10.2)

Approximating Spectral Norm over R

NP-hard (Theorem 1.11)

Nonnegative Definiteness

NP-hard (Theorem 11.2)

Best Rank-1 Approximation

NP-hard (Theorem 1.13)

Best Symmetric Rank-1 Approximation

NP-hard (Theorem 10.2)

Rank over R or C

NP-hard (Theorem 8.2)

Enumerating Eigenvectors over R

#P-hard (Corollary 1.16)

Combinatorial Hyperdeterminant

NP-, #P-, VNP-hard (Theorems 4.1 , 4.2, Corollary 4.3)

Geometric Hyperdeterminant

Conjectures 1.9, 13.1

Symmetric Rank

Conjecture 13.2

Bilinear Programming

Conjecture 13.4

Bilinear Least Squares

Conjecture 13.5
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FLATTENING A TENSOR

Many tensor methods rely on flattening:

(j’k)‘\ T\
]

flat( Z a.®b.@c) = Zai®vec(bici

n,n;-dimensional vector
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Letn;=n,=n3=n
We would need B(nzr) observations to fill-in flat(T)

There are many other variants of flattening, but with comparable
guarantees

[Liu, Musialski, Wonka, Ye], [Gandy, Recht, Yamadal],
[Signoretto, De Lathauwer, Suykens], [Tomioko, Hayashi, Kashima],
[Mu, Huang, Wright, Goldfarb], ...

[Can we beat flattening? ]

Can we make better predictions than we do by treating
each activity x time as unrelated?




Part lll:

Nearly optimal algorithms for noisy tensor completion
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Suppose we are given |Q|=m noisy observations from T:

T =Zoiai®bi® C, + noise
i=1

\

with [6.], |a |, |bi]w Jclu<C bdd by n

Theorem: There is an efficient algorithm that with prob 1-6,
outputs X with
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Theorem: There is an efficient algorithm that with prob 1-6,
outputs X with

3/2|0g*n [1n(2/6)
Y ,. [n*log ;
= [ Xi i Tijxl < C r\/ — + 2C r\/ —— +2

i,j,k

In many settings, 1-o(1) fraction of entries of T are at least
r/2/polylog(n) in magnitude

N . .
When m = Q (n3?r), average error is asymptotically smaller and
hence X;; , = (120(1))T,;  for 1-o(1) fraction of entries

“Almost all of the entries, almost entirely correct”
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SOME REMARKS

Theorem: There is an efficient algorithm that with prob 1-6,
outputs X with

3/2|0g*n [1n(2/6)
Y ,. [n*log ;
= [ Xi i Tijxl < C r\/ — + 2C r\/ —— +2

i,j,k

For r = n3/2% (highly overcomplete), we only need to observe
an n® fraction of the entries

Algorithms for decomposing such tensors given all the entries
need stronger (e.g. factors are random) assumptions
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LOWER BOUNDS

Not only is the tensor nuclear norm hard to compute, but...

Noisy tensor completion 3 Refute random 3-SAT
with m observations with m clauses

\ l
1

Believed to be hard,
If m = n3/2%




Part IV:

Matrix completion revisited: Connections to random CSPs
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{Can we distinguish between low-rank and random? }

Case #1: Approximately low-rank

aT

a + hoise

For each (i,j) €Q
a;a, w/ probability %
random 1 w/ probability %

where each a, = +1
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Case #2: Random

random

For each (i,j)€Q, M,;; = random +1




[Can we distinguish between low-rank and random? }

Case #2: Random

random

For each (i,j)€Q, M,;; = random +1

In Case #1 the entries are (somewhat) predictable, but in
Case #2 they are completely unpredictable
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AN INTERPRETATION

We can interpret:
(i]_l J11 01)1 (i21 J21 02)1 °ee) (iml Jml 0m)
+1r.v.

as a random 2-XOR formula ¢ (and vice-versa)

In particular each observation/fctn value maps to a clause:

(i, j, o) > VieV; = O

ot

variables constraint
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(1) On any 2-XOR formula {, it outputs val where:

OPT(Y) < val(y)
\_'_I

largest fraction of clauses of | that can be satisfied
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STRONG REFUTATION

We will say that an algorithm strongly refutes™* random 2-XOR
with m clauses if:

(1) On any 2-XOR formula {, it outputs val where:
OPT(Y) < val(y)

(2) With high probability (for random  with m clauses):

val(p) = — + 0o(1)
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Lemma: If (iy, j;; 04), -y (i) Jos O) €> U then
j

i /a )
- A 2 OPT(Y) -1

IN

1
2 jal,

N

Proof: Map the assignment to a unit vector so that x, = £1/vVn
and take the quadratic form on A -

—|| A]| ~ %%OPT(w)s% +o(1)

This solves the strong refutation problem...
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There are two very different communities that (essentially)
attacked this same distinguishing problem:

The community working on matrix completion

The community working on refuting random CSPs

The same spectral bound implies:

(1) An algorithm for strongly refuting random 2-XOR
(2) An algorithm for the distinguishing problem

(3) Generalization bounds for the nuclear norm
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It also yields bounds on how well the solution to the convex
program generalizes [Srebro, Shraibman] ...

: 1
min|[ X[, st. == > [X,~M;;l <n
An approach through statistical learning theory:

1
empirical error: Z |X M (<n)
(i,j)€Q

prediction error: iz 2 |Xi,j_Mi,j|
n
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program generalizes [Srebro, Shraibman] ...

Then if we let

K={xst [|X]|.< 1} = conv{abTs.t.||all[|b]|S1}

generalization error:

>Up empirical error (X) — prediction error (X)
XEK (On Q)

Theorem:

o . . . .
generalization error < best agreement with random function”

(on Q)

\ J
|

Rademacher complexity
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It also yields bounds on how well the solution to the convex
program generalizes [Srebro, Shraibman] ...

More precisely:

sup —— ‘ Z 0] X
XEXK ks

=l Al

)

Rademacher complemty (R™(K))

1
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It also yields bounds on how well the solution to the convex
program generalizes [Srebro, Shraibman] ...

More precisely:

sup —— ‘ Z 0] X
XEXK 2)a

=l Al

)

Rademacher complemty (RM(K))

Al ~ /rﬁTmz—M)Rm(ﬂOm(%)
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There are two very different communities that (essentially)
attacked this same distinguishing problem:

The community working on matrix completion

The community working on refuting random CSPs

Noisy tensor completion S Strongly refute® random
with m observations Rademacher 3-XOR/3-SAT with m clauses

Complexity [Coja-Oghlan, Goerdt, Lanka]

*Want an algorithm that certifies a formula is far from satisfiable
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j i | ‘l
I | ! 1 @
'@ I — \ |
: \ 7 I \ \ | I
L @ <, @ @ @
Ve s L ks WVk \k" i

This yields n°p? = n2log®!n clauses

Warning: The 4-XOR clauses are not independent!
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Hence the paired variables for the rows (and colns) come from

different clauses!




There are two very different communities that (essentially)
attacked this same distinguishing problem:

The community working on matrix completion

The community working on refuting random CSPs

Noisy tensor completion S Strongly refute® random
with m observations Rademacher 3-XOR/3-SAT with m clauses

Complexity [Coja-Oghlan, Goerdt, Lanka]

*Want an algorithm that certifies a formula is far from satisfiable




There are two very different communities that (essentially)
attacked this same distinguishing problem:

The community working on matrix completion

The community working on refuting random CSPs

Noisy tensor completion € Strongly refute® random
with m observations Embedding 3-XOR/3-SAT with m clauses

in SOS [Coja-Oghlan, Goerdt, Lanka]

We then embed this algorithm into the sixth level of the
sum-of-squares hierarchy, to get a relaxation for tensor prediction

*Want an algorithm that certifies a formula is far from satisfiable




GENERALIZATION BOUNDS

Suppose we are given |Q|=m noisy observations T;;, £ n,
and the factors of T are C-incoherent:

Theorem: There is an efficient algorithm that with prob 1-6,
outputs X with
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GENERALIZATION BOUNDS

Suppose we are given |Q|=m noisy observations T;;, £ n,
and the factors of T are C-incoherent:

Theorem: There is an efficient algorithm that with prob 1-6,
outputs X with

n3/2log?n [1n(2/5
1Z|XJkTJk|_ \/ 2 +2C3r\/ 2/0) ,
Lk, m m

i,j,k

This comes from giving an efficiently computable norm || ||
whose Rademacher complexity is asymptotically smaller
than the trivial bound whenever m=Q(n32log*n)
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SUMMARY

New Algorithm:

We gave an algorithm for 379-order tensor prediction that uses
m = n3/2rlog*n observations

An Inefficient Algorithm: (via tensor nuclear norm)

There is an inefficient algorithm that use m = nrlogn observations

A Phase Transition:

Even for n® rounds of the powerful sum-of-squares hierarchy,
no norm solves tensor prediction with m = n3/2-%r observations




Epilogue:

New directions in computational vs. statistical tradeoffs
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DISCUSSION

Convex programs are unreasonably effective for linear inverse
problems!

But we gave simple linear inverse problems that exhibit striking
gaps between efficient and inefficient estimators

{Where else are there computational vs statistical tradeoffs? }

New Direction: Explore computational vs. statistical tradeoffs
through the powerful sum-of-squares hierarchy




