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In microscopy, it is difficult to observe sub-wavelength 
structures (Rayleigh Criterion, Abbe Limit, …) 



  Many devices are inherently low-pass 



  Many devices are inherently low-pass 

Super-resolution: Can we recover fine-grained structure 
from coarse-grained measurements? 



  Many devices are inherently low-pass 

Super-resolution: Can we recover fine-grained structure 
from coarse-grained measurements? 

Applications in medical imaging, microscopy, astronomy,  
radar detection, geophysics, … 



  Many devices are inherently low-pass 

Super-resolution: Can we recover fine-grained structure 
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Applications in medical imaging, microscopy, astronomy,  
radar detection, geophysics, … 

Super-resolution Cameras 
2014 Nobel Prize in Chemistry! 

Eric Betzig, Stefan Hell, William Moerner 
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A Mathematical Framework [Donoho, ‘91]: 

Super-position of k spikes, each fj in [0,1): 

x(t) =   uj δf (t) j 
j = 1 

k 

Measurement at frequency ω, |ω| ≤ m  

uj ei2πf ω + ηω j 

j = 1 

k 

vω =  

cut-off  
frequency 

noise 
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What is possible in the noise-free vs. the noisy setting 
will turn out to be fundamentally different… 
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…where dw is the “wrap-around” distance: 

Theorem: There is a polynomial time algorithm to recover  
estimates where 

min 
matchings σ 

max 
j 

fσ(j) uσ(j) - fj - uj + ≤ ε 
provided |ηω| ≤ poly(ε, 1/m, 1/k), and m > 1/Δ + 1  
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[Candes, Fernandez-Granda, ’12]: 
Convex program for m ≥ 2/Δ, no noise 

[Fernandez-Granda, ’13]: 
Convex program for m ≥ 2/Δ, with noise 

[Liao, Fannjiang, ’14]: (concurrent) 
Algorithm for m = (1+C(Δ))/Δ, with noise 



    

The Noise-free Case 
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This matrix plays a key role in many exact inverse 
problems 

e.g. polynomial interpolation, sparse recovery,  
inverse moment problems, … 
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  Matrix Pencil Method 

Claim 1: The entries of A correspond to measurements 
with -m+1 ≤ ω ≤ m 

V Du 

diagonal of uj’s 

VH V Du VH Dα 

diagonal of αj’s 

A = B = 

and B 

Claim 2: If αj’s are distinct and m ≥ k and uj’s are  
non-zero, the unique solns to Ax = λBx are λ = 1/αj 
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  Robust Recovery? 
Fact: The Vandermonde has full (column) rank iff αj’s are  
distinct, and this is enough for noise-free recovery 

When is the Matrix Pencil Method robust to noise?  

Generalized Eigenvalue Problem 

[Stewart, Sun]: Various stability bounds for generalized 
eigenvalues/vectors based on the condition number 

We show a sharp phase-transition for the condition  
number of the Vandermonde matrix 
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Theorem: ||Vmu||2 = (m-1 ±1/Δ) ||u||2  k 

Moreover a direct construction based on the Fejer kernel 
shows this is tight… 

We use extremal functions to bound the condition 
number of the Vandermonde matrix 

Such functions are used to prove sharp inequalities 
(on exponential sums) in analytic number theory 

Theorem: If m = (1-ε)/Δ, there is a choice of αj’s, uj’s s.t. 
||Vmu||2 ≤ e-εk ||u||2  k 
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  An Interlude 
The Beurling-Selberg minorant: 
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(1)   b(ω) ≤ sgn(ω) 

(2)   b(x) supported in [-1,1] 

(3)      sgn(ω) – b(ω) dω = 1 
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Proof Omitted 
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αk m-1 … 

p0 … pm-1 p(α1) … p(αk) … = 
coeffs of  
poly. p(x) 

evals of p(x) 

Often highly unstable (over the reals), but not if the αj’s  
are complex roots of unity (DFT matrix) 

Lagrange Interpolation: Can recover a polynomial p(x) 
from its evaluations at deg(p)+1 points 
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  Taking a Step Back 
Many inverse problems are well-studied in the exact case 

When is the solution robust to noise? 

Example #1: Polynomial Interpolation 

Example #2: Sums of Exponentials (i.e. super-resolution) 

Example #3: Extrapolation with Boundary Conditions  
(lossy population recovery [Moitra, Saks]) 
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Promise: |f(x)| ≤ 1  

Known: f(x) ± noise 

Goal: approximate  
value of f(0) 

Hadamard Three Circle Theorem: Can extrapolate f(0)  
from evaluations on inner circle, if f is bounded on the 
outter circle 
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    Theme: noisy inverse problems are better posed 
over the complex plane 

We also give other connections between test functions 
in harmonic analysis and preconditioners 

Are there other examples of this phenomenon? 

These functions give a way to obliviously rescale rows 
of an unknown Vandermonde to make it nearly orthogonal 



  

Thanks! 

Any Questions? 


