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Let M be an unknown, approximately low-rank matrix 

≈ + … +M +

comedydrama sports

Model: we are given random observations Mi,j for all i,j Ω

Is there an efficient algorithm to recover M?
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There is a powerful, convex relaxation…
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Consider the singular value decomposition of X:  

X = U Σ VT

orthogonalorthogonal diagonal

n x m n x n n x m m
x m

Let σ1 ≥ σ2 ≥ … σr > σr+1 = … σm = 0 be the singular values

Then rank(X) = r, and X = σ1 + σ2 + … + σr*
(nuclear norm)

THE NUCLEAR NORM
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min   X     s.t.
*

(i,j) Ω

|Xi,j–Mi,j| ≤ η1
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This is nearly optimal, since there are O(nr) parameters

This yields a convex relaxation, that can be solved efficiently:

(P)

Theorem: If M is n x n and has rank r, and is C-incoherent then (P) 
recovers M exactly from C6nrlog2n observations  
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(P)min X     s.t.
* (i,j,k)   Ω

|Xi,j,k–Ti,j,k| ≤ η1
|Ω|

tensor nuclear norm

[Gurvits], [Liu], [Harrow, Montanaro]

The tensor nuclear norm is NP-hard to compute! 

Natural approach (suggested by many authors):
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In fact, most of the linear algebra toolkit is ill-posed, or
computationally hard for tensors…
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e.g. [Hillar, Lim] “Most Tensor Problems are NP-Hard”

In fact, most of the linear algebra toolkit is ill-posed, or
computationally hard for tensors…

Most Tensor Problems are NP-Hard 0:3

Table I. Tractability of Tensor Problems

Problem Complexity
Bivariate Matrix Functions over R, C Undecidable (Proposition 12.2)

Bilinear System over R, C NP-hard (Theorems 2.6, 3.7, 3.8)

Eigenvalue over R NP-hard (Theorem 1.3)

Approximating Eigenvector over R NP-hard (Theorem 1.5)

Symmetric Eigenvalue over R NP-hard (Theorem 9.3)

Approximating Symmetric Eigenvalue over R NP-hard (Theorem 9.6)

Singular Value over R, C NP-hard (Theorem 1.7)

Symmetric Singular Value over R NP-hard (Theorem 10.2)

Approximating Singular Vector over R, C NP-hard (Theorem 6.3)

Spectral Norm over R NP-hard (Theorem 1.10)

Symmetric Spectral Norm over R NP-hard (Theorem 10.2)

Approximating Spectral Norm over R NP-hard (Theorem 1.11)

Nonnegative Definiteness NP-hard (Theorem 11.2)

Best Rank-1 Approximation NP-hard (Theorem 1.13)

Best Symmetric Rank-1 Approximation NP-hard (Theorem 10.2)

Rank over R or C NP-hard (Theorem 8.2)

Enumerating Eigenvectors over R #P-hard (Corollary 1.16)

Combinatorial Hyperdeterminant NP-, #P-, VNP-hard (Theorems 4.1 , 4.2, Corollary 4.3)

Geometric Hyperdeterminant Conjectures 1.9, 13.1

Symmetric Rank Conjecture 13.2

Bilinear Programming Conjecture 13.4

Bilinear Least Squares Conjecture 13.5

Note: Except for positive definiteness and the combinatorial hyperdeterminant, which apply to 4-tensors,
all problems refer to the 3-tensor case.

and n be positive integers. For the purposes of this article, a 3-tensor A over F is an
l ⇥m⇥ n array of elements of F:

A = JaijkKl,m,n
i,j,k=1 2 Fl⇥m⇥n. (1)

These objects are natural multilinear generalizations of matrices in the following way.
For any positive integer d, let e1, . . . , ed denote the standard basis1 in the F-vector

space Fd. A bilinear function f : Fm⇥Fn ! F can be encoded by a matrix A = [aij ]
m,n
i,j=1 2

Fm⇥n, in which the entry aij records the value of f(ei, ej) 2 F. By linearity in each
coordinate, specifying A determines the values of f on all of Fm ⇥ Fn; in fact, we have
f(u,v) = u>Av for any vectors u 2 Fm and v 2 Fn. Thus, matrices both encode 2-
dimensional arrays of numbers and specify all bilinear functions. Notice also that if
m = n and A = A> is symmetric, then

f(u,v) = u>Av = (u>Av)> = v>A>u = v>Au = f(v,u).

Thus, symmetric matrices are bilinear maps invariant under coordinate exchange.

1Formally, ei is the vector in Fd with a 1 in the ith coordinate and zeroes everywhere else. In this article,
vectors in Fn will always be column-vectors.

Journal of the ACM, Vol. 0, No. 0, Article 0, Publication date: June 2013.
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Many tensor methods rely on flattening:

flat( )   =n 1
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This is a rearrangement of the entries, into a matrix, that
does not increase its rank
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Many tensor methods rely on flattening:

flat( )   =n 1

n2

n3

(j,k)

i

Ti,j,k

flat( ai bi         ci× ×
i = 1

r

)  = ai vec(bici)×
i = 1

r

T

n2n3-dimensional vector
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Let n1 = n2 = n3 = n

We would need O(n2r) observations to fill-in flat(T)

Can we beat flattening?

Can we make better predictions than we do by treating
each activity x time as unrelated?

There are many other variants of flattening, but with comparable
guarantees

[Liu, Musialski, Wonka, Ye], [Gandy, Recht, Yamada],  
[Signoretto, De Lathauwer, Suykens], [Tomioko, Hayashi, Kashima], 
[Mu, Huang, Wright, Goldfarb], …
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Suppose we are given |Ω|= m noisy observations from T:
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Theorem [Barak, Moitra]: There is an efficient algorithm that with 
prob 1-δ, outputs X with

Suppose we are given |Ω|= m noisy observations from T:

i,j,k

|Xi,j,k–Ti,j,k| ≤1
n3

+ 
ln(2/δ)

m2C3r
n3/2log4n

m
C3r + 2η 

T =  ai bi         ci× ×
i = 1

r

σi

with |σi|, |ai|∞, |bi|∞, |ci|∞ ≤ C

+ noise

bdd by η
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Not only is the tensor nuclear norm hard to compute, but…

Noisy tensor completion
with m observations

Refute random 3-SAT 
with m clauses

Believed to be hard, 
If m = n3/2-δ

LOWER BOUNDS
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Mi,j = 
random ±1   w/ probability ¼

+ noise

For each (i,j)    Ω

aiaj w/ probability ¾

Can we distinguish between low-rank and random?
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, Mi,j = random ±1 For each (i,j)    Ω

Can we distinguish between low-rank and random?

Case #2: Random

random

In Case #1 the entries are (somewhat) predictable, but in 
Case #2 they are completely unpredictable
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(and vice-versa)

In particular each observation/fctn value maps to a clause:

(i, j, σ) vi   vj =  σ�

We can interpret:

±1 r.v. 

as a random 2-XOR formula ψ

(i1, j1; σ1), (i2, j2; σ2), …, (im, jm; σm) 

variables constraint
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We will say that an algorithm strongly refutes* random 2-XOR
with m clauses if:
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We will say that an algorithm strongly refutes* random 2-XOR
with m clauses if:

(1) On any 2-XOR formula ψ, it outputs val where:

OPT(ψ) ≤ val(ψ)

(2) With high probability (for random ψ with m clauses):

val(ψ) = 1
2 + o(1)

STRONG REFUTATION
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Proof: Map the assignment to a unit vector so that xi = ±1/√n
and take the quadratic form on A

2 OPT(ψ) – ≤1
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1
m 2
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OPT(ψ) ≤
1
2 + o(1)m = ω(n)



This solves the strong refutation problem… 

Lemma: If (i1, j1; σ1), …, (im, jm; σm) ψ then 
j

Proof: Map the assignment to a unit vector so that xi = ±1/√n
and take the quadratic form on A

2 OPT(ψ) – ≤1

n

1
m 2
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i

A

A
m
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There are two very different communities that (essentially)
attacked this same distinguishing problem:

The community working on matrix completion

The same spectral bound implies:

An algorithm for strongly refuting random 2-XOR
An algorithm for the distinguishing problem

(1)
(2)

The community working on refuting random CSPs

Generalization bounds for the nuclear norm(3)
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It also yields bounds on how well the solution to the convex
program generalizes [Srebro, Shraibman] …

min   X     s.t.
*

(i,j) Ω

|Xi,j–Mi,j| ≤ η1
|Ω|

An approach through statistical learning theory: 

empirical error:

prediction error:

(i,j) Ω

|Xi,j–Mi,j|1
|Ω|

|Xi,j–Mi,j|1

(≤ η)

n2
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It also yields bounds on how well the solution to the convex
program generalizes [Srebro, Shraibman] …

Then if we let

K = { X s.t. *X ≤ 1} = }abT s.t.conv{ a b ≤ , 1

generalization error  ≤ best agreement with random function
Theorem:

“ ”
(on Ω) 

Rademacher complexity

sup
X   K

–

generalization error:

empirical error (X) prediction error (X)
(on Ω) 
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More precisely:
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1
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Rademacher complexity (Rm(K)) 

= 1
m A

Rm(K) = o(   )  1
n

It also yields bounds on how well the solution to the convex
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1
m A 1

mn
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There are two very different communities that (essentially)
attacked this same distinguishing problem:

The community working on matrix completion
The community working on refuting random CSPs

*Want an algorithm that certifies a formula is far from satisfiable

[Coja-Oghlan, Goerdt, Lanka]

Strongly refute* random 
3-XOR/3-SAT with m clausesRademacher

Complexity

Noisy tensor completion
with m observations
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This yields n5p2 = n2 logO(1)n clauses

[Coja-Ohglan, Goerdt, Lanka]: Reduce 3-XOR to 4-XOR

Warning: The 4-XOR clauses are not independent!
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Hence the paired variables for the rows (and colns) come from
different clauses!
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This reduction works because of tensor networks
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There are two very different communities that (essentially)
attacked this same distinguishing problem:

The community working on matrix completion
The community working on refuting random CSPs

*Want an algorithm that certifies a formula is far from satisfiable

[Coja-Oghlan, Goerdt, Lanka]

Strongly refute* random 
3-XOR/3-SAT with m clausesRademacher

Complexity

Noisy tensor completion
with m observations
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We then embed this algorithm into the sixth level of the 
sum-of-squares hierarchy, to get a relaxation for tensor prediction 

Embedding
in SOS

Noisy tensor completion
with m observations
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Is there an algorithm for exact completion?
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Is there a practical algorithm?

[Liu, Moitra]: Yes, assuming linear independence, but needs
n3/2poly(r) observations

Scales to thousand-dimensional tensors!

Many fast algorithms that avoid SOS altogether

[Cai et al.]: Yes, assuming the factors are nearly orthogonal

[Montanari, Sun]: Yes, using spectral methods that work up to 
r ≤ n3/4 but only approximate completion

MORE ALGORITHMS



Thanks! Any Questions?

Summary:
� Connections between tensors and random CSPs
� New algorithms for completing third-order tensors

that beat flattening
� Is practical tensor completion within reach?


