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The Gaussian Distribution

The Gaussian distribution is defined as (µ = mean, σ2 = variance):

N (µ, σ2, x) =
1√

2πσ2
e−

(x−µ)2

2σ2

Central Limit Theorem: The sum of independent random variables
X1,X2, ....,Xs converges in distribution to a Gaussian:

1√
s

s∑
i=1

Xi →d N (µ, σ2)

This distribution is ubiquitous — e.g. used to model height,
velocities in an ideal gas, annual rainfall, ...
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Karl Pearson (1894) and the Naples Crabs

(figure due to Peter Macdonald)
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Gaussian Mixture Models

F (x) = w1F1(x) + (1− w1)F2(x), where Fi(x) = N (µi , σ
2
i , x)

In particular, with probability w1 output a sample from F1, otherwise
output a sample from F2

five unknowns: w1, µ1, σ
2
1, µ2, σ

2
2

Question

Given enough random samples from F , can we learn these parameters
(approximately)?

Pearson invented the method of moments, to attack this problem...
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Pearson’s Sixth Moment Test

Claim

Ex←F (x)[x
r ] is a polynomial in θ = (w1, µ1, σ

2
1, µ2, σ

2
2)

In particular:

Ex←F (x)[x ] = w1µ1 + (1− w1)µ2

Ex←F (x)[x
2] = w1(µ2

1 + σ2
1) + (1− w1)(µ2

2 + σ2
2)

Ex←F (x)[x
3] = w1(µ3

1 + 3µ1σ
2
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Let Ex←F (x)[x
r ] = Mr (θ)

Gather samples S

Set M̃r = 1
|S |
∑

i∈S x
r
i for r = 1, 2, ...6

Compute simultaneous roots of {Mr (θ) = M̃r}r=1,2,...5, select
root θ that is closest in sixth moment
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Provable Guarantees?

In Contributions to the Mathematical Theory of Evolution (attributed
to George Darwin):

“Given the probable error of every ordinate of a frequency
curve, what are the probable errors of the elements of the
two normal curves into which it may be dissected?”

Are the parameters of a mixture of two Gaussians uniquely
determined by its moments?

Are these polynomial equations robust to errors?
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A View from Theoretical Computer Science

Suppose our goal is to provably learn the parameters of each
component within an additive ε:

Goal

Output a mixture F̂ = ŵ1F̂1 + ŵ2F̂2 so that there is a permutation
π : {1, 2} → {1, 2} and for i = {1, 2}

|wi − ŵπ(i)|, |µi − µ̂π(i)|, |σ2
i − σ̂2

π(i)| ≤ ε

Is there an algorithm that takes poly(1/ε) samples and runs in time
poly(1/ε)?
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A Conceptual History

Pearson (1894): Method of Moments (no guarantees)

Fisher (1912-1922): Maximum Likelihood Estimator (MLE)

consistent and efficient, usually computationally hard

Teicher (1961): Identifiability through tails

requires many samples

Dempster, Laird, Rubin (1977): Expectation-Maximization (EM)

gets stuck in local maxima

Dasgupta (1999) and many others: Clustering

assumes almost non-overlapping components
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Identifiability through the Tails

Approach: Find the parameters of the component with largest
variance (it dominates the behavior of F (x) at infinity)

; subtract it
off and continue
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Clustering Well-separated Mixtures

Approach: Cluster samples based on which component generated
them

; output the empirical mean and variance of each cluster

ignore
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In summary, these approaches are heuristic, computationally
intractable or make a separation assumption about the mixture

Question

What if the components overlap almost entirely?

[Kalai, Moitra, Valiant] (studies n-dimensional version too):

Reduce to the one-dimensional case

Analyze Pearson’s sixth moment test (with noisy estimates)
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Our Results

Suppose w1 ∈ [ε10, 1− ε10] and
∫
|F1(x)− F2(x)|dx ≥ ε10

Theorem (Kalai, Moitra, Valiant)

There is an algorithm that (with probability at least 1− δ) learns the
parameters of F within an additive ε, and the running time and
number of samples needed are poly(1

ε
, log 1

δ
).

Previously, the best known bound on the running time/sample
complexity were exponential

See also [Moitra, Valiant] and [Belkin, Sinha] for mixtures of k
Gaussians
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Analyzing the Method of Moments

Let’s start with an easier question:

Question

What if we are given the first six moments of the mixture, exactly?

Does this uniquely determine the parameters of the mixture?

(up to a relabeling of the components)

Question

Do any two different mixtures F and F̂ differ on at least one of the
first six moments?
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Claim

One of the first six moment of F , F̂ is different!

Proof:

0 <
∣∣∣ ∫

x

p(x)f (x)dx
∣∣∣ =

∣∣∣ ∫
x

6∑
r=1

prx
r f (x)dx

∣∣∣
≤

6∑
r=1

|pr |
∣∣∣ ∫

x

x r f (x)dx
∣∣∣

=
6∑

r=1

|pr ||Mr (F )−Mr (F̂ )|

So ∃r∈{1,2,...,6} such that |Mr (F )−Mr (F̂ )| > 0
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Our goal is to prove the following:

Proposition

If f (x) =
∑k

i=1 αiN (µi , σ
2
i , x) is not identically zero, f (x) has at

most 2k − 2 zero crossings (αi ’s can be negative).

......

We will do it through properties of the heat equation

......
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The Heat Equation

Question

If the initial heat distribution on a one-dimensional infinite rod (κ) is
f (x) = f (x , 0) what is the heat distribution f (x , t) at time t?

There is a probabilistic interpretation (σ2 = 2κt):

f (x , t) = Ez←N (0,σ2)[f (x + z , 0)]

Alternatively, this is called a convolution:

f (x , t) =

∫ ∞
z=−∞

f (x + z)N (0, σ2, z)dz = f (x) ∗ N (0, σ2)
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The Key Facts

Theorem (Hummel, Gidas)

Suppose f (x) : R→ R is analytic and has N zeros. Then

f (x) ∗ N (0, σ2, x)

has at most N zeros (for any σ2 > 0).

Convolving by a Gaussian does not increase # of zero crossings

Fact
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Recall, our goal is to prove the following:

Proposition

If f (x) =
∑k

i=1 αiN (µi , σ
2
i , x) is not identically zero, f (x) has at

most 2k − 2 zero crossings (αi ’s can be negative).

We will prove it by induction:

......

Start with k = 3 (at most 4 zero crossings),

Let’s prove it for k = 4 (at most 6 zero crossings)

......
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Hence, the exact values of the first six moments determine the
mixture parameters!

Let Θ = {valid parameters} (in particular wi ∈ [0, 1], σi ≥ 0)

Claim

Let θ be the true parameters; then the only solutions to{
θ̂ ∈ Θ|Mr (θ̂) = Mr (θ) for r = 1, 2, ...6

}
are (w1, µ1, σ1, µ2, σ2) and the relabeling (1− w1, µ2, σ2, µ1, σ1)

Are these equations stable, when we are given noisy estimates?
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A Type of Condition Number

Using deconvolution to isolate components, we show:

There are constants c ,C such that if ε < c , the means and variances
are bounded by 1

ε
, the mixing weights are in [ε, 1− ε] and

|Mr (θ)−Mr (θ̂)| ≤ εC

for r = 1, 2, ...6 then there is a permutation π such that

2∑
i=1

|wi − ŵπ(i)|+ |µi − µ̂π(i)|+ |σ2
i − σ̂2

π(i)| ≤ ε

Hence, close enough estimates for the first six moments guarantee
that the parameters are close too!
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A Univariate Learning Algorithm

Our algorithm:

Take enough samples S so that M̃r = 1
|S |
∑

i∈S x
r
i is w.h.p. close

to Mr (θ) for r = 1, 2, ..., 6

(within an additive εC

2
)

Compute θ̂ such that Mr (θ̂) is close to M̃r for r = 1, 2, ..., 6

(within an additive εC

2
)

And θ̂ must be close to θ, because solutions to this system of
polynomial equations are stable



A Univariate Learning Algorithm

Our algorithm:

Take enough samples S so that M̃r = 1
|S |
∑

i∈S x
r
i is w.h.p. close

to Mr (θ) for r = 1, 2...6

(within an additive εC

2
)

Compute θ̂ such that Mr (θ̂) is close to M̃r for r = 1, 2...6

(within an additive εC

2
)

And θ̂ must be close to θ, because solutions to this system of
polynomial equations are stable



A Univariate Learning Algorithm

Our algorithm:

Take enough samples S so that M̃r = 1
|S |
∑

i∈S x
r
i is w.h.p. close

to Mr (θ) for r = 1, 2...6

(within an additive εC

2
)

Compute θ̂ such that Mr (θ̂) is close to M̃r for r = 1, 2...6

(within an additive εC

2
)

And θ̂ must be close to θ, because solutions to this system of
polynomial equations are stable



A Univariate Learning Algorithm

Our algorithm:

Take enough samples S so that M̃r = 1
|S |
∑

i∈S x
r
i is w.h.p. close

to Mr (θ) for r = 1, 2...6

(within an additive εC

2
)

Compute θ̂ such that Mr (θ̂) is close to M̃r for r = 1, 2...6

(within an additive εC

2
)

And θ̂ must be close to θ, because solutions to this system of
polynomial equations are stable



A Univariate Learning Algorithm

Our algorithm:

Take enough samples S so that M̃r = 1
|S |
∑

i∈S x
r
i is w.h.p. close

to Mr (θ) for r = 1, 2...6

(within an additive εC

2
)

Compute θ̂ such that Mr (θ̂) is close to M̃r for r = 1, 2...6

(within an additive εC

2
)

And θ̂ must be close to θ, because solutions to this system of
polynomial equations are stable



A Univariate Learning Algorithm

Our algorithm:

Take enough samples S so that M̃r = 1
|S |
∑

i∈S x
r
i is w.h.p. close

to Mr (θ) for r = 1, 2...6

(within an additive εC

2
)

Compute θ̂ such that Mr (θ̂) is close to M̃r for r = 1, 2...6

(within an additive εC

2
)

And θ̂ must be close to θ, because solutions to this system of
polynomial equations are stable



Summary and Discussion

Here we gave the first efficient algorithms for learning mixtures
of Gaussians with provably minimal assumptions

Key words: method of moments, polynomials, heat equation

Computational intractability is everywhere in machine
learning/statistics

Currently, most approaches are heuristic and have no provable
guarantees

Can we design new algorithms for some of the fundamental
problems in these fields?
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