NEW ALGORITHMS FOR DICTIONARY LEARNING

ANKUR MOITRA
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

joint work with Sanjeev Arora, Rong Ge and Tengyu Ma
SPARSE REPRESENTATIONS
SPARSE REPRESENTATIONS

Many data-types are sparse in an appropriately chosen basis:
SPARSE REPRESENTATIONS

Many data-types are sparse in an appropriately chosen basis:

data \((n \times p)\)
e.g. images, signals,...

\[
\begin{array}{c}
\ldots \\
b_i \\
\ldots \\
\end{array}
\]
Many data-types are sparse in an appropriately chosen basis:

dictionary A $(n \times m)$

representations X_i $(m \times p)$

data b_i $(n \times p)$

e.g. images, signals, ...
SPARSE REPRESENTATIONS

Many data-types are sparse in an appropriately chosen basis:

- Dictionary $(n \times m)$
- At most k non-zeros

\[\ldots X_i \ldots \approx \ldots b_i \ldots \]

- Representations $(m \times p)$
- Data $(n \times p)$

Examples: images, signals, ...
SPARSE REPRESENTATIONS

Many data-types are sparse in an appropriately chosen basis:

\[\begin{align*}
\text{dictionary } & (n \times m) \\
& \rightarrow \begin{array}{c}
X_i \\
\end{array} \\
\rightarrow & \begin{array}{c}
b_i \\
\end{array}
\end{align*} \]

\[\approx \]

at most \(k \) non-zeros

Dictionary Learning:
Can we learn \(A \) from examples?

representations \((m \times p)\)

data \((n \times p)\)

e.g. images, signals,…
APPLICATIONS OF DICTIONARY LEARNING

a.k.a. sparse coding
APPLICATIONS OF DICTIONARY LEARNING

a.k.a. sparse coding

Signal Processing/Statistics:

• De-noising, edge-detection, super-resolution
• Block compression for images/video
APPLICATIONS OF DICTIONARY LEARNING

a.k.a. sparse coding

Signal Processing/Statistics:
- De-noising, edge-detection, super-resolution
- Block compression for images/video

Machine Learning:
- Sparsity as a **regularizer** to prevent over-fitting
- Learned sparse reps. play a key role in deep-learning
APPLICATIONS OF DICTIONARY LEARNING

a.k.a. sparse coding

Signal Processing/Statistics:
• De-noising, edge-detection, super-resolution
• Block compression for images/video

Machine Learning:
• Sparsity as a regularizer to prevent over-fitting
• Learned sparse reps. play a key role in deep-learning

Computational Neuroscience (Olshausen-Field 1997):
• Applied to natural images yields filters with same qualitative properties as receptive field in V1
OUTLINE

Introduction
• Origins of Sparse Recovery
• A Stochastic Model; Our Results

Provable Algorithms via Overlapping Clustering
• Uncertainty Principles
• Reformulation as Overlapping Clustering

Analyzing Alternating Minimization
• Gradient Descent on Non-Convex Fctns
ORIGINS OF SPARSE RECOVERY

Donoho-Stark, Donoho-Huo, Gribonval-Nielsen, Donoho-Elad:

\[\mu = \max_{i \neq j} \frac{\langle A_i, A_j \rangle}{\sqrt{n}} \]

Incoherence:
ORIGINS OF SPARSE RECOVERY

Donoho-Stark, Donoho-Huo, Gribonval-Nielsen, Donoho-Elad:

\[
\begin{align*}
\mu &= \max_{i \neq j} \frac{\langle A_i, A_j \rangle}{\sqrt{n}} \\
\text{at most } k \text{ non-zeros} \\
\text{for spikes-and-sines } \mu = 1
\end{align*}
\]
ORIGINS OF SPARSE RECOVERY

Donoho-Stark, Donoho-Huo, Gribonval-Nielsen, Donoho-Elad:

- If $k \leq \sqrt{n} / 2\mu$ then x is the sparsest solution to the linear system, and can be found with l_1-minimization

\[
\mu = \max_{i \neq j} \frac{\langle A_i, A_j \rangle}{\sqrt{n}}
\]

for spikes-and-sines $\mu = 1$
THE FULL RANK CASE

Are there efficient algorithms for dictionary learning?

Case #1: A has full column rank
THE FULL RANK CASE

Are there efficient algorithms for dictionary learning?

Case #1: A has full column rank

Theorem [Spielman, Wang, Wright ‘13]: There is a poly. time algorithm to exactly learn A when it has full column rank, for $k \approx \sqrt{n}$ (hence $m \leq n$)
THE FULL RANK CASE

Case #1: A has full column rank

Theorem [Spielman, Wang, Wright ‘13]: There is a poly. time algorithm to exactly learn A when it has full column rank, for \(k \approx \sqrt{n} \) (hence \(m \leq n \))

Approach: find the rows of \(A^{-1} \), using \(L_1 \)-minimization
THE FULL RANK CASE

Are there efficient algorithms for dictionary learning?

Case #1: A has full column rank

Theorem [Spielman, Wang, Wright ‘13]: There is a poly. time algorithm to exactly learn A when it has full column rank, for $k \approx \sqrt{n}$ (hence $m \leq n$)

Approach: find the rows of A^{-1}, using L_1-minimization

Stochastic Model:
- unknown dictionary A
- generate x with support of size k u.a.r., choose non-zero values independently, observe $b = Ax$
Notation: $AX = B$, where the columns of B, X are samples and their representations respectively
Notation: $AX = B$, where the columns of B, X are samples and their representations respectively

Claim: $\text{row-span}(B) = \text{row-span}(X)$
Notation: $AX = B$, where the columns of B, X are samples and their representations respectively

Claim: $\text{row-span}(B) = \text{row-span}(X)$

Claim: The sparsest vectors in $\text{row-span}(X)$ (or B) are the X
Notation: $AX = B$, where the columns of B, X are samples and their representations respectively

Claim: $\text{row-span}(B) = \text{row-span}(X)$

Claim: The sparsest vectors in $\text{row-span}(X)$ (or B) are the X
Nota&on: AX = B, where the columns of B, X are samples and their representations respectively

Claim: row-span(B) = row-span(X)

Claim: The sparsest vectors in row-span(X) (or B) are the X

Can we find the sparsest vector in row-span(X)?

Approach #1:

\[
(P0): \min ||w^TB||_0 \quad \text{s.t. } w \neq 0
\]
Nota&on: AX = B, where the columns of B, X are samples and their representations respectively

Claim: \(\text{row-span}(B) = \text{row-span}(X) \)

Claim: The sparsest vectors in \(\text{row-span}(X) \) (or B) are the X

Can we find the sparsest vector in \(\text{row-span}(X) \)?

Approach #1: NP-hard

\[
(P0): \min ||w^T B||_0 \quad \text{s.t. } w \neq 0
\]
Nota&on: AX = B, where the columns of B, X are samples and their representations respectively

Claim: row-span(B) = row-span(X)

Claim: The sparsest vectors in row-span(X) (or B) are the X

Can we find the sparsest vector in row-span(X)?

Approach #2: \(L_1\)-relaxation

\[
(P1): \quad \min ||w^T B||_1 \quad \text{s.t.} \quad w^T r = 1
\]

where we will set \(r \) later...
(P1): \[\text{min } ||w^T B||_1 \quad \text{s.t. } w^T r = 1 \]
\[(P1): \quad \min ||w^T B||_1 \quad \text{s.t. } w^T r = 1\]

Consider the bijection \(z = A^T w \), and set \(c = A^{-1} r \).
Consider the bijection $z = A^T w$, and set $r = Ac$. We get:

$$\text{(P1): } \min \ | |w^T B| |_1 \quad \text{s.t. } w^T r = 1$$

$$\text{(P1): } \min \ | |w^T AX| |_1 \quad \text{s.t. } w^T Ac = 1$$
(P1): \(\min ||w^T B||_1 \) s.t. \(w^T r = 1 \)

Consider the bijection \(z = A^T w \), and set \(r = Ac \). We get:

(P1): \(\min ||w^T AX||_1 \) s.t. \(w^T Ac = 1 \)

This is equivalent to:

(Q1): \(\min ||z^T X||_1 \) s.t. \(z^T c = 1 \)
\[(P1): \quad \min \quad \| w^T B \|_1 \quad \text{s.t. } w^T r = 1 \]

Consider the bijection \(z = A^T w \), and set \(r = Ac \). We get:

\[(P1): \quad \min \quad \| w^T AX \|_1 \quad \text{s.t. } w^T Ac = 1 \]

This is equivalent to:

\[(Q1): \quad \min \quad \| z^T X \|_1 \quad \text{s.t. } z^T c = 1 \]

Set \(r = \text{column of } B \), then \(c = A^{-1} r = \text{column of } X \)
(P1): \(\min \ |w^T B|_1 \) s.t. \(w^T r = 1 \)

Consider the bijection \(z = A^T w \), and set \(r = Ac \). We get:

(\(P1 \)): \(\min \ |w^T AX|_1 \) s.t. \(w^T Ac = 1 \)

This is equivalent to:

(\(Q1 \)): \(\min \ |z^T X|_1 \) s.t. \(z^T c = 1 \)

Set \(r = \) column of \(B \), then \(c = A^{-1} r = \) column of \(X \)

Claim: If \(c \) has a strictly largest coordinate (\(|c_i| > |c_j|\) for \(j \neq i \)) in absolute value, then whp the soln to \((Q1) \) is \(e_i \)
(P1): $\min \| w^T B \|_1 \quad \text{s.t. } w^T r = 1$

Consider the bijection $z = A^T w$, and set $r = A c$. We get:

$\quad (P1): \min \| w^T A X \|_1 \quad \text{s.t. } w^T A c = 1$

Claim: Then the soln to (P1) is the ith row of X

This is equivalent to:

$\quad (Q1): \min \| z^T X \|_1 \quad \text{s.t. } z^T c = 1$

Set $r = \text{column of } B$, then $c = A^{-1} r = \text{column of } X$

Claim: If c has a strictly largest coordinate ($|c_i| > |c_j|$ for $j \neq i$) in absolute value, then whp the soln to (Q1) is e_i
Notation: AX = B, where the columns of B, X are samples and their representations respectively.

Claim: row-span(B) = row-span(X)

Claim: The sparsest vectors in row-span(X) (or B) are the X

Can we find the sparsest vector in row-span(X)?

**Approach #2: ** L_1-relaxation

(P1): \[\min ||w^TB||_1 \quad \text{s.t.} \quad w^Tr = 1 \]
Nota&on: AX = B, where the columns of B, X are samples and their representations respectively

Claim: row-span(B) = row-span(X)

Claim: The sparsest vectors in row-span(X) (or B) are the X

Can we find the sparsest vector in row-span(X)?

Approach #2: L₁-relaxation

(P1): \[\min ||w^T B||_1 \text{ s.t. } w^T r = 1 \]

Hence we can find the rows of X, and solve for A
THE OVERCOMPLETE CASE

What about overcomplete dictionaries? (more expressive)

Case #2: A is incoherent
THE OVERCOMPLETE CASE

What about overcomplete dictionaries? (more expressive)

Case #2: A is incoherent

Theorem [Arora, Ge, Moitra ‘13]: There is an algorithm to learn A within ϵ if it is n by m and μ-incoherent for

$$k \approx \min(\sqrt{n}/\mu \log n, m^{\frac{1}{2}-\eta})$$

The running time and sample complexity are poly($n, m, \log 1/\epsilon$)
What about overcomplete dictionaries? (more expressive)

Case #2: A is incoherent

Theorem [Arora, Ge, Moitra ‘13]: There is an algorithm to learn A within ε if it is n by m and μ-incoherent for

\[k \approx \min(\sqrt{n}/\mu \log n, m^{\frac{1}{2}-n}) \]

The running time and sample complexity are \(\text{poly}(n,m,\log 1/\epsilon) \)

Approach: learn the support of the representations \(X = [... x ...] \) first, by solving an overlapping clustering problem...
THE OVERCOMPLETE CASE

What about overcomplete dictionaries? (more expressive)

Case #2: A is incoherent

Theorem [Arora, Ge, Moitra ‘13]: There is an algorithm to learn A within ϵ if it is n by m and μ-incoherent for

$$k \approx \min(\sqrt{n}/\mu \log n, m^{\frac{1}{2}-\eta})$$

The running time and sample complexity are $\text{poly}(n,m,\log 1/\epsilon)$

Approach: learn the support of the representations $X = [... x ...]$ first, by solving an overlapping clustering problem...

Theorem [Agarwal et al ‘13]: There is a poly. time algorithm to learn A if it is μ-incoherent for $k \approx n^{\frac{1}{4}}/\mu$
THE MODEL

What about overcomplete dictionaries? (more expressive)

Case #2: A is incoherent
THE MODEL

What about overcomplete dictionaries? (more expressive)

Case #2: A is incoherent

Theorem [Barak, Kelner, Steurer ‘14]: There is a quasi-poly. time algorithm to learn A within any constant A if it is \(\mu \)-incoherent for \(k \approx n^{1-\eta} \) using the sum-of-squares hierarchy
THE MODEL

What about overcomplete dictionaries? (more expressive)

Case #2: A is incoherent

Theorem [Barak, Kelner, Steurer ‘14]: There is a quasi-poly. time algorithm to learn A within any constant A if it is μ-incoherent for $k \approx n^{1-\eta}$ using the sum-of-squares hierarchy

Approach: find y that approximately maximizes $E[|b^T y|^4]$ via a poly-logarithmic number of rounds; it is close to a coln of A
Introduction

- Origins of Sparse Recovery
- A Stochastic Model; Our Results

Provable Algorithms via Overlapping Clustering

- Uncertainty Principles
- Reformulation as Overlapping Clustering

Analyzing Alternating Minimization

- Gradient Descent on Non-Convex Fctns
UNCERTAINTY PRINCIPLES
UNCERTAINTY PRINCIPLES

Claim: Given A, b and k it is **NP**-hard to decide if there is a k-sparse x such that $Ax = b$
Claim: Given A, b and k it is NP-hard to decide if there is a k-sparse x such that $Ax = b$.

Why is this easier for incoherent dictionaries?
UNCERTAINTY PRINCIPLES

Claim: Given A, b and k it is NP-hard to decide if there is a k-sparse x such that $Ax = b$

Why is this easier for incoherent dictionaries?

Uncertainty Principle: If A is μ-incoherent then

$$\langle Ay, Ax \rangle \approx \langle y, x \rangle$$

provided that x and y are k-sparse, for $k \leq \sqrt{n}/2\mu$
UNCERTAINTY PRINCIPLES

Claim: Given A, b and k it is NP-hard to decide if there is a k-sparse x such that Ax = b

Why is this easier for incoherent dictionaries?

Uncertainty Principle: If A is \(\mu \)-incoherent then

\[
\langle Ay, Ax \rangle \approx \langle y, x \rangle
\]

provided that x and y are k-sparse, for k ≤ \(\sqrt{n}/2\mu \)

Proof: \(A^T A \) restricted to the support of x and y is \(k \times k \) and

\[
| (A^T A)_{i,j} | = \begin{cases}
1 & \text{if } i = j \\
\leq \mu/\sqrt{n} & \text{if } i \neq j
\end{cases}
\]
UNCERTAINTY PRINCIPLES

Claim: Given A, b and k it is **NP**-hard to decide if there is a k-sparse x such that $Ax = b$

Why is this easier for incoherent dictionaries?

Uncertainty Principle: If A is μ-incoherent then

$$\langle Ay, Ax \rangle \approx \langle y, x \rangle$$

provided that x and y are k-sparse, for $k \leq \sqrt{n}/2\mu$

Proof: A^TA restricted to the support of x and y is $k \times k$ and

$$|(A^TA)_{i,j}| = \begin{cases}
1 & \text{if } i = j \\
\leq \mu/\sqrt{n} & \text{if } i \neq j
\end{cases}$$

Then use Gershgorin’s Disk Thm...
UNCERTAINTY PRINCIPLES

Claim: Given A, b and k it is \mathbf{NP}-hard to decide if there is a k-sparse x such that $Ax = b$

Why is this easier for incoherent dictionaries?

Uncertainty Principle: If A is μ-incoherent then

$$\langle Ay, Ax \rangle \approx \langle y, x \rangle$$

provided that x and y are k-sparse, for $k \leq \sqrt{n}/2\mu$
UNCERTAINTY PRINCIPLES

Claim: Given A, b and k it is **NP**-hard to decide if there is a k-sparse x such that $Ax = b$

Why is this easier for incoherent dictionaries?

Uncertainty Principle: If A is μ-incoherent then

$$\langle Ay, Ax \rangle \approx \langle y, x \rangle$$

provided that x and y are k-sparse, for $k \leq \sqrt{n}/2\mu$

This principle can be used to establish uniqueness for sparse recovery, and things like...

“b cannot be sparse in both standard and Fourier basis”
A PAIR-WISE TEST
A PAIR-WISE TEST

Given $Ax = b$ and $Ax' = b'$, do x and x' have intersection support?
A PAIR-WISE TEST

Given $Ax = b$ and $Ax' = b'$, do x and x' have intersection support?

$\text{supp}(x) = \bullet \bullet \bullet \quad \begin{array}{c}
\text{ } \\
\text{ } \\
\text{ } \\
\text{ }
\end{array}
\quad \bullet \bullet \bullet$

$\text{supp}(x') = \bullet \bullet \bullet \quad \begin{array}{c}
\text{ } \\
\text{ } \\
\text{ } \\
\text{ }
\end{array}
\quad \bullet \bullet \bullet$
A PAIR-WISE TEST

Given $Ax = b$ and $Ax' = b'$, do x and x' have intersection support?

$$\text{supp}(x) = \begin{array}{c} \cdot \cdot \cdot \\
\end{array}$$

$$\text{supp}(x') = \begin{array}{c} \cdot \cdot \cdot \\
\end{array}$$
A PAIR-WISE TEST

Given $Ax = b$ and $Ax' = b'$, do x and x' have intersection support?

$\text{supp}(x) = \cdots \begin{array}{cccc} \text{black} & \text{black} & \text{white} & \text{white} & \text{black} \\ \text{white} & \text{white} & \text{white} & \text{white} & \text{white} \end{array} \cdots$

$\text{supp}(x') = \cdots \begin{array}{cccc} \text{black} & \text{black} & \text{white} & \text{white} & \text{black} \\ \text{white} & \text{white} & \text{white} & \text{white} & \text{white} \end{array} \cdots$

$\langle x', x \rangle \begin{cases} \text{zero} & \text{maybe} \\ \text{non-zero} & \text{yes} \end{cases}$
A PAIR-WISE TEST

Given $Ax = b$ and $Ax' = b'$, do x and x' have intersection support?

$$\text{supp}(x) = \cdots \begin{array}{ccccccc} \blacksquare & \square & \blacksquare & \square & \blacksquare & \square & \blacksquare & \cdots \end{array}\cdots$$

$$\text{supp}(x') = \cdots \begin{array}{ccccccc} \blacksquare & \square & \blacksquare & \square & \blacksquare & \square & \square & \cdots \end{array}\cdots$$

$$\langle x', x \rangle \begin{cases} \text{zero} & \text{maybe} \\ \text{non-zero} & \text{yes} \end{cases}$$

$$\langle x', x \rangle \approx \langle Ax', Ax \rangle$$

Uncertainty Principle: for k-sparse x, incoherent A
A PAIR-WISE TEST

Given $Ax = b$ and $Ax' = b'$, do x and x' have intersection support?

$$\text{supp}(x) = \cdots \text{supp}(x') = \cdots$$

$$\langle x', x \rangle \left\{ \begin{array}{ll}
\text{zero} & \text{maybe}\\
\text{non-zero} & \text{yes}
\end{array} \right.$$

$$\langle x', x \rangle \approx \langle Ax', Ax \rangle \left\{ \begin{array}{ll}
\text{zero} & \text{maybe}\\
\text{non-zero} & \text{yes, whp}
\end{array} \right.$$

Uncertainty Principle: for k-sparse x, incoherent A
A PAIR-WISE TEST

Given $Ax = b$ and $Ax' = b'$, do x and x' have intersection support?

- $\text{supp}(x) = \bullet \bullet \bullet$ -
- $\text{supp}(x') = \bullet \bullet \bullet$

Approach: Build a graph G on the p samples, with an edge between b and b' if and only if $|b^Tb'| > 1/2$
A PAIR-WISE TEST

Given $Ax = b$ and $Ax' = b'$, do x and x' have intersection support?

\[
\text{supp}(x) = \cdot \cdot \cdot \\
\text{supp}(x') = \cdot \cdot \cdot
\]

Approach: Build a graph G on the p samples, with an edge between b and b' if and only if $|b^Tb'| > 1/2$

For the purposes of this talk, probability of an edge between b, b' is $1/2$ iff $\text{supp}(x)$ and $\text{supp}(x')$ intersect
OVERLAPPING CLUSTERING

Let \(C_i = \{ b \mid x_i \neq 0 \} \) (overlapping)
OVERLAPPING CLUSTERING

Let $C_i = \{ b \mid x_i \neq 0 \}$ (overlapping)

Can we find the clusters efficiently?
OVERLAPPING CLUSTERING

Let $C_i = \{ b \mid x_i \neq 0 \}$ (overlapping)

Can we find the clusters efficiently?

Challenge: Given (x, x', x'') where all the pairs belong to a cluster together, do all three belong to a common cluster too?

$\text{supp}(x) = \cdots$

$\text{supp}(x') = \cdots$

$\text{supp}(x'') = \cdots$
OVERLAPPING CLUSTERING

Let $C_i = \{ b \mid x_i \neq 0 \}$ (overlapping)

Can we find the clusters efficiently?

Challenge: Given (x, x', x'') where all the pairs belong to a cluster together, do all three belong to a common cluster too?
OVERLAPPING CLUSTERING

Let $C_i = \{ b \mid x_i \neq 0 \}$ (overlapping)

Can we find the clusters efficiently?

Challenge: Given (x, x', x'') where all the pairs belong to a cluster together, do all three belong to a common cluster too?

\[
\text{supp}(x) = \ldots \quad \begin{array}{ccccccccccc}
\cdot & \cdot \\
\end{array} \ldots
\]

\[
\text{supp}(x') = \ldots \quad \begin{array}{ccccccccccc}
\cdot & \cdot \\
\end{array} \ldots
\]

\[
\text{supp}(x'') = \ldots \quad \begin{array}{ccccccccccc}
\cdot & \cdot \\
\end{array} \ldots
\]
A TRIPLE TEST

Key Idea: Use new samples y ...
A TRIPLE TEST

Key Idea: Use new samples y ...

Case #1: all three intersect:

$$\text{supp}(x) = \ldots \quad \text{supp}(x') = \ldots \quad \text{supp}(x'') = \ldots$$
A TRIPLE TEST

Key Idea: Use new samples y ...

Case #1: all three intersect:

Probability y intersects all three is at least k/m

$\text{supp}(x) = \ldots \quad \ldots$

$\text{supp}(x') = \ldots \quad \ldots$

$\text{supp}(x'') = \ldots \quad \ldots$

New sample y only needs to contain one element from their joint union
A TRIPLE TEST

Key Idea: Use new samples y ...
A TRIPLE TEST

Key Idea: Use new samples y ...

Case #2: no common intersection

$$\text{supp}(x) = \ldots$$

$$\text{supp}(x') = \ldots$$

$$\text{supp}(x'') = \ldots$$

New sample y needs to contain at least two elements from their joint union.
A TRIPLE TEST

Key Idea: Use new samples y ...

Case #2: no common intersection, $|\text{supp}(x) \cap \text{supp}(x')| \leq C$, etc

Probability y intersects all three is at most $O(Ck^3/m^2)$

\[
\begin{align*}
\text{supp}(x) & = \ldots \begin{array}{cccccccc}
\text{..} & \text{..} \\
\text{..} & \text{..} \\
\text{..} & \text{..} \\
\end{array} \ldots \\
\text{supp}(x') & = \ldots \begin{array}{cccccccc}
\text{..} & \text{..} \\
\text{..} & \text{..} \\
\text{..} & \text{..} \\
\end{array} \ldots \\
\text{supp}(x'') & = \ldots \begin{array}{cccccccc}
\text{..} & \text{..} \\
\text{..} & \text{..} \\
\text{..} & \text{..} \\
\end{array} \ldots \\
\end{align*}
\]

New sample y needs to contain at least two elements from their joint union
A TRIPLE TEST

Key Idea: Use new samples y' ...

Case #1: all three intersect:

Probability y intersects all three is at least k/m

Case #2: no common intersection, $|\text{supp}(x) \cap \text{supp}(x')| \leq C$, etc

Probability y intersects all three is at most $O(Ck^3/m^2)$
A TRIPLE TEST

Key Idea: Use new samples \(y' \) ...

Case #1: all three intersect:

Probability \(y \) intersects all three is at least \(k/m \)

Case #2: no common intersection, \(|\text{supp}(x) \cap \text{supp}(x')| \leq C \), etc

Probability \(y \) intersects all three is at most \(O(Ck^3/m^2) \)

<table>
<thead>
<tr>
<th>Triple Test:</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Given ((x, x', x'')) where all the pairs intersect</td>
</tr>
<tr>
<td>- If there are at least (T) samples (y) where ((x, x', x'', y)) all pairwise intersect, ACCEPT else REJECT</td>
</tr>
</tbody>
</table>
FINDING ALL THE CLUSTERS

We can build a clustering algorithm on this primitive:

- For each pair \((x, x')\), find all \(x''\) that pass the triple test
FINDING ALL THE CLUSTERS

We can build a clustering algorithm on this primitive:

- For each pair \((x, x')\), find all \(x''\) that pass the triple test

Claim: This set is the union of clusters corresponding to \(\text{supp}(x) \cap \text{supp}(x')\)
FINDING ALL THE CLUSTERS

We can build a clustering algorithm on this primitive:

• For each pair \((x, x')\), find all \(x''\) that pass the triple test

Claim: This set is the union of clusters corresponding to \(\text{supp}(x) \cap \text{supp}(x')\)

Claim: For every cluster \(i\), there is some \(x, x'\) that uniquely identify it – i.e. \(\text{supp}(x) \cap \text{supp}(x') = \{i\}\)
FINDING ALL THE CLUSTERS

We can build a clustering algorithm on this primitive:

• For each pair \((x, x')\), find all \(x''\) that pass the triple test

Claim: This set is the union of clusters corresponding to
\(\text{supp}(x) \cap \text{supp}(x')\)

Claim: For every cluster \(i\), there is some \(x, x'\) that uniquely identify it – i.e. \(\text{supp}(x) \cap \text{supp}(x') = \{i\}\)

• Output inclusion-wise minimal sets – these are the clusters!
FINDING ALL THE CLUSTERS

We can build a clustering algorithm on this primitive:

- For each pair \((x, x')\), find all \(x''\) that pass the triple test

Claim: This set is the union of clusters corresponding to \(\text{supp}(x) \cap \text{supp}(x')\)

Claim: For every cluster \(i\), there is some \(x, x'\) that uniquely identify it – i.e. \(\text{supp}(x) \cap \text{supp}(x') = \{i\}\)

- Output inclusion-wise minimal sets – these are the clusters!

Our full algorithm uses higher-order tests; analysis through connections to piercing number
Many ways to get the dictionary from the clustering...
Many ways to get the **dictionary** from the **clustering**...

Approach #1: Relative Signs

Plan: Refine C_i and find all the b’s with $x_i > 0$
Many ways to get the dictionary from the clustering...

Approach #1: Relative Signs

Plan: Refine C_i and find all the b’s with $x_i > 0$

Intuition: If $\text{supp}(x) \cap \text{supp}(x') = \{i\}$, the we can find relative sign of x_i and x'_i and there are many such pairs...
Many ways to get the dictionary from the clustering...

Approach #1: Relative Signs

Plan: Refine C_i and find all the b’s with $x_i > 0$

Intuition: If $\text{supp}(x) \cap \text{supp}(x') = \{i\}$, the we can find relative sign of x_i and x'_i and there are many such pairs...

...enough so that whp we can find all relative signs by *transitivity*
Many ways to get the **dictionary** from the **clustering**...

Approach #1: Relative Signs

Plan: Refine C_i and find all the b’s with $x_i > 0$

Intuition: If $\text{supp}(x) \cap \text{supp}(x') = \{i\}$, the we can find relative sign of x_i and x'_i and there are many such pairs...

...enough so that whp we can find all relative signs by **transitivity**

Claim: $E[b \mid Ax = b \text{ and } x_i > 0] = A_i E[x_i \mid x_i > 0]$

Hence their empirical average converges to A_i
Many ways to get the **dictionary** from the **clustering**...
Many ways to get the **dictionary** from the **clustering**...

Approach #2: SVD

Suppose we restrict to samples b with $x_i \neq 0$...
Many ways to get the **dictionary** from the **clustering**...

Approach #2: SVD

Suppose we restrict to samples b with $x_i \neq 0$....

Intuition: $E[bb^T|x_i \neq 0]$ has large variance in direction of A_i
Many ways to get the **dictionary** from the **clustering**...

Approach #2: SVD

Suppose we restrict to samples b with $x_i \neq 0$....

Intuition: $E[bb^T|x_i \neq 0]$ has large variance in direction of A_i

We also show that alternating minimization works when we’re close enough....

(geometric convergence)
OUTLINE

Are there efficient algorithms for dictionary learning?

Introduction

• Origins of Sparse Recovery
• A Stochastic Model; Our Results

Provable Algorithms via Overlapping Clustering

• Uncertainty Principles
• Reformulation as Overlapping Clustering

Analyzing Alternating Minimization (out of time)

• Gradient Descent on Non-Convex Fctns
Any Questions?

Summary:

- **Provable** algorithms for learning incoherent, overcomplete dictionaries
- Connections to **overlapping** clustering
- Analysis of alternating minimization – gradient descent on non-convex objective
- Why does it work even from a **random initialization**?