An Information Complexity Approach to Extended Formulations

Ankur Moitra Institute for Advanced Study

joint work with Mark Braverman

Let $\vec{t} = [1, 2, 3, ..., n]$, $P = conv\{\pi(\vec{t}) \mid \pi \text{ is permutation}\}$

Let $\vec{t} = [1, 2, 3, ..., n]$, $P = conv\{\pi(\vec{t})\} | \pi$ is permutation}

How many facets of P have?

Let $\vec{t} = [1, 2, 3, ..., n]$, $P = conv\{\pi(\vec{t})\} | \pi$ is permutation}

How many facets of P have?

exponentially many!

Let $\vec{t} = [1, 2, 3, ..., n]$, $P = conv\{\pi(\vec{t})\} | \pi$ is permutation}

How many facets of P have?

exponentially many!

e.g. $S \subset [n]$, $\Sigma_{i \text{ in } S} x_i \ge 1 + 2 + ... + |S| = |S|(|S|+1)/2$

Let $\vec{t} = [1, 2, 3, ..., n]$, $P = conv\{\pi(\vec{t})\} | \pi$ is permutation}

How many facets of P have?

exponentially many!

e.g. $S \subset [n]$, $\Sigma_{i \text{ in } S} x_i \ge 1 + 2 + ... + |S| = |S|(|S|+1)/2$ Let $Q = \{A | A \text{ is doubly-stochastic} \}$

Let $\vec{t} = [1, 2, 3, ..., n]$, $P = conv\{\pi(\vec{t})\} | \pi$ is permutation}

How many facets of P have?

exponentially many!

e.g. $S \subset [n]$, $\Sigma_{i \text{ in } S} x_i \ge 1 + 2 + ... + |S| = |S|(|S|+1)/2$

Let $Q = \{A | A \text{ is doubly-stochastic} \}$

Then P is the projection of Q: $P = \{AT \mid A \text{ in } Q\}$

Let $\vec{t} = [1, 2, 3, ..., n]$, $P = conv\{\pi(\vec{t})\} | \pi$ is permutation}

How many facets of P have?

exponentially many!

e.g. $S \subset [n]$, $\Sigma_{i \text{ in } S} x_i \ge 1 + 2 + ... + |S| = |S|(|S|+1)/2$

Let $Q = \{A | A \text{ is doubly-stochastic} \}$

Then P is the projection of Q: $P = \{A T \mid A in Q\}$

Yet Q has only O(n²) facets

The **extension complexity (xc)** of a polytope P is the minimum number of facets of Q so that P = proj(Q)

The **extension complexity (xc)** of a polytope P is the minimum number of facets of Q so that P = proj(Q)

The **extension complexity (xc)** of a polytope P is the minimum number of facets of Q so that P = proj(Q)

e.g. $xc(P) = \Theta(n \log n)$ for permutahedron

 $xc(P) = \Theta(logn)$ for a regular n-gon, but $\Omega(\sqrt{n})$ for its perturbation

The **extension complexity (xc)** of a polytope P is the minimum number of facets of Q so that P = proj(Q)

e.g. $xc(P) = \Theta(n \log n)$ for permutahedron

 $xc(P) = \Theta(logn)$ for a regular n-gon, but $\Omega(\sqrt{n})$ for its perturbation

In general, $P = \{x \mid \exists y, (x,y) \text{ in } Q\}$

The **extension complexity (xc)** of a polytope P is the minimum number of facets of Q so that P = proj(Q)

e.g. $xc(P) = \Theta(n \log n)$ for permutahedron

 $xc(P) = \Theta(logn)$ for a regular n-gon, but $\Omega(\sqrt{n})$ for its perturbation

In general, $P = \{x \mid \exists y, (x,y) \text{ in } Q\}$

...analogy with quantifiers in Boolean formulae

In general, $P = \{x \mid \exists y, (x,y) \text{ in } Q\}$

In general, $P = \{x \mid \exists y, (x,y) \text{ in } Q\}$

Through EFs, we can reduce # facets exponentially!

In general, $P = \{x \mid \exists y, (x,y) \text{ in } Q\}$

Through EFs, we can reduce # facets exponentially!

Hence, we can run standard LP solvers instead of the ellipsoid algorithm

In general, $P = \{x \mid \exists y, (x,y) \text{ in } Q\}$

Through EFs, we can reduce # facets exponentially!

Hence, we can run standard LP solvers instead of the ellipsoid algorithm

EFs often give, or are based on new combinatorial insights

In general, $P = \{x \mid \exists y, (x,y) \text{ in } Q\}$

Through EFs, we can reduce # facets **exponentially**!

Hence, we can run standard LP solvers instead of the ellipsoid algorithm

EFs often give, or are based on new combinatorial insights

e.g. Birkhoff-von Neumann Thm and permutahedron

In general, $P = \{x \mid \exists y, (x,y) \text{ in } Q\}$

Through EFs, we can reduce # facets exponentially!

Hence, we can run standard LP solvers instead of the ellipsoid algorithm

EFs often give, or are based on new combinatorial insights

e.g. Birkhoff-von Neumann Thm and permutahedron

e.g. prove there is low-cost object, through its polytope

Definition: TSP polytope:

 $P = conv\{\mathbf{1}_{F} | F \text{ is the set of edges on a tour of } K_n\}$

Definition: TSP polytope:

 $P = conv\{\mathbf{1}_{F} | F \text{ is the set of edges on a tour of } K_n\}$

(If we could optimize over this polytope, then P = NP)

Definition: TSP polytope:

 $P = conv\{\mathbf{1}_{F} | F \text{ is the set of edges on a tour of } K_n\}$

(If we could optimize over this polytope, then P = NP)

Can we prove **unconditionally** there is no small EF?

Definition: TSP polytope:

 $P = conv\{\mathbf{1}_{F} | F \text{ is the set of edges on a tour of } K_n\}$

(If we could optimize over this polytope, then P = NP)

Can we prove **unconditionally** there is no small EF?

Caveat: this is unrelated to proving complexity l.b.s

Definition: TSP polytope:

 $P = conv\{\mathbf{1}_{F} | F \text{ is the set of edges on a tour of } K_n\}$

(If we could optimize over this polytope, then P = NP)

Can we prove **unconditionally** there is no small EF?

Caveat: this is unrelated to proving complexity I.b.s

[Yannakakis '90]: Yes, through the nonnegative rank

Theorem [Fiorini et al '12]: Any LP for TSP has size $2^{\Omega(\sqrt{n})}$ (based on a $2^{\Omega(n)}$ lower bd for clique)

Theorem [Fiorini et al '12]: Any LP for TSP has size $2^{\Omega(\sqrt{n})}$ (based on a $2^{\Omega(n)}$ lower bd for clique)

Theorem [Braun et al '12]: Any LP that approximates clique within n^{1/2-eps} has size exp(n^{eps})

Theorem [Fiorini et al '12]: Any LP for TSP has size $2^{\Omega(\sqrt{n})}$ (based on a $2^{\Omega(n)}$ lower bd for clique)

Theorem [Braun et al '12]: Any LP that approximates clique within n^{1/2-eps} has size exp(n^{eps})

Hastad's proved an $n^{1-o(1)}$ hardness of approx. for clique, can we prove the analogue for EFs?

Theorem [Fiorini et al '12]: Any LP for TSP has size $2^{\Omega(\sqrt{n})}$ (based on a $2^{\Omega(n)}$ lower bd for clique)

Theorem [Braun et al '12]: Any LP that approximates clique within n^{1/2-eps} has size exp(n^{eps})

Hastad's proved an $n^{1-o(1)}$ hardness of approx. for clique, can we prove the analogue for EFs?

Theorem [Braverman, Moitra '13]: Any LP that approximates clique within n^{1-eps} has size exp(n^{eps})

Outline

Part I: Tools for Extended Formulations

- Yannakakis's Factorization Theorem
- The Rectangle Bound
- A Sampling Argument

Part II: Applications

- Correlation Polytope
- Approximating the Correlation Polytope
- A Better Lower Bound for Disjointness

Outline

Part I: Tools for Extended Formulations

Yannakakis's Factorization Theorem

- The Rectangle Bound
- A Sampling Argument

Part II: Applications

- Correlation Polytope
- Approximating the Correlation Polytope
- A Better Lower Bound for Disjointness

The Factorization Theorem

The Factorization Theorem

How can we prove lower bounds on EFs?
How can we prove lower bounds on EFs?

[Yannakakis '90]:

Geometric Parameter

Algebraic Parameter

How can we prove lower bounds on EFs?

[Yannakakis '90]:

Geometric Parameter

Algebraic Parameter

Definition of the slack matrix...

The Slack Matrix

The Slack Matrix

P

The Slack Matrix

vertex

The entry in row i, column j is how *slack* the jth vertex is on the ith constraint

The entry in row i, column j is how *slack* the jth vertex is on the ith constraint

How can we prove lower bounds on EFs?

[Yannakakis '90]:

Geometric Parameter

Algebraic Parameter

Definition of the slack matrix...

How can we prove lower bounds on EFs?

[Yannakakis '90]:

Geometric Parameter

Algebraic Parameter

Definition of the slack matrix...

Definition of the **nonnegative rank**...

rank one, nonnegative

Definition: rank⁺(S) is the smallest r s.t. S can be written as the sum of r rank one, nonneg. matrices

rank one, nonnegative

Definition: rank⁺(S) is the smallest r s.t. S can be written as the sum of r rank one, nonneg. matrices

Note: rank⁺(S) \geq rank(S), but can be much larger too!

How can we prove lower bounds on EFs?

[Yannakakis '90]:

Geometric Parameter

Algebraic Parameter

How can we prove lower bounds on EFs?

[Yannakakis '90]: $xc(P) = rank^+(S(P))$

Geometric Parameter

Algebraic Parameter

How can we prove lower bounds on EFs?

[Yannakakis '90]: xc(P) = rank+(S(P)) Geometric Algebraic

Parameter

Algebraic Parameter

Intuition: the factorization gives a change of variables that preserves the slack matrix!

How can we prove lower bounds on EFs?

[Yannakakis '90]: $xc(P) = rank^+(S(P))$

Geometric Parameter

Algebraic Parameter

Intuition: the factorization gives a change of variables that preserves the slack matrix!

We will give a new way to lower bound nonnegative rank via **information theory**...

Outline

Part I: Tools for Extended Formulations

- Yannakakis's Factorization Theorem
- The Rectangle Bound
- A Sampling Argument

Part II: Applications

- Correlation Polytope
- Approximating the Correlation Polytope
- A Better Lower Bound for Disjointness

Outline

Part I: Tools for Extended Formulations

- Yannakakis's Factorization Theorem
- The Rectangle Bound
- A Sampling Argument

Part II: Applications

- Correlation Polytope
- Approximating the Correlation Polytope
- A Better Lower Bound for Disjointness

rank one, nonnegative

The support of each M_i is a combinatorial rectangle

rank one, nonnegative

The support of each M_i is a combinatorial rectangle

rank⁺(S) is at least # rectangles needed to cover supp of S

rank one, nonnegative

rank⁺(S) is at least # rectangles needed to cover supp of S

rank one, nonnegative

Non-deterministic Comm. Complexity

rank⁺(S) is at least # rectangles needed to cover supp of S

Outline

Part I: Tools for Extended Formulations

- Yannakakis's Factorization Theorem
- The Rectangle Bound
- A Sampling Argument

Part II: Applications

- Correlation Polytope
- Approximating the Correlation Polytope
- A Better Lower Bound for Disjointness

Outline

Part I: Tools for Extended Formulations

- Yannakakis's Factorization Theorem
- The Rectangle Bound
- A Sampling Argument
- **Part II: Applications**
 - Correlation Polytope
 - Approximating the Correlation Polytope
 - A Better Lower Bound for Disjointness

A Sampling Argument

A Sampling Argument

$T = \{ \blacksquare \}, set of entries in S with same value \}$

A Sampling Argument T = { , set of entries in S with same value

A Sampling Argument

$T = \{ \blacksquare \}$, set of entries in S with same value

Choose M_i proportional to total value on T
$T = \{ \blacksquare \}$, set of entries in S with same value

Choose M_i proportional to total value on T

$T = \{ \blacksquare \}, set of entries in S with same value \}$

Choose M_i proportional to total value on T

Choose (a,b) in T proportional to relative value in M_i

$T = \{ \blacksquare \}$, set of entries in S with same value

Choose M_i proportional to total value on T

Choose (a,b) in T proportional to relative value in M_i

$T = \{ \blacksquare \}, set of entries in S with same value \}$

Choose M_i proportional to total value on T

Choose (a,b) in T proportional to relative value in M_i

$T = \{ \blacksquare \}$, set of entries in S with same value

Choose M_i proportional to total value on T

Choose (a,b) in T proportional to relative value in M_i

If r is too small, this procedure uses too little entropy!

Outline

Part I: Tools for Extended Formulations

- Yannakakis's Factorization Theorem
- The Rectangle Bound
- A Sampling Argument

Part II: Applications

- Correlation Polytope
- Approximating the Correlation Polytope
- A Better Lower Bound for Disjointness

Outline

Part I: Tools for Extended Formulations

- Yannakakis's Factorization Theorem
- The Rectangle Bound
- A Sampling Argument
- **Part II: Applications**
 - Correlation Polytope
 - Approximating the Correlation Polytope
 - A Better Lower Bound for Disjointness

The Construction of [Fiorini et al] correlation polytope: $P_{corr} = conv\{aa^T|a in \{0,1\}^n\}$

correlation polytope: $P_{corr} = conv\{aa^T|a in \{0,1\}^n\}$

vertices:

correlation polytope: $P_{corr} = conv\{aa^T|a in \{0,1\}^n\}$

vertices: a in {0,1}ⁿ

correlation polytope: $P_{corr} = conv\{aa^T|a in \{0,1\}^n\}$

correlation polytope: $P_{corr} = conv\{aa^T | a in \{0,1\}^n\}$

Let $T = \{(a,b) | a^Tb = 0\}, |T| = 3^n$

Let
$$T = \{(a,b) \mid a^{T}b = 0\}, |T| = 3^{n}$$

Recall: $S_{a,b} = (1-a^Tb)^2$, so $S_{a,b} = 1$ for all pairs in T

Let
$$T = \{(a,b) | a^Tb = 0\}, |T| = 3^n$$

Recall: $S_{a,b} = (1-a^Tb)^2$, so $S_{a,b} = 1$ for all pairs in T

Let
$$T = \{(a,b) | a^Tb = 0\}, |T| = 3^n$$

Recall: $S_{a,b} = (1-a^Tb)^2$, so $S_{a,b} = 1$ for all pairs in T

Sampling Procedure:
1

Let
$$T = \{(a,b) | a^Tb = 0\}, |T| = 3^n$$

Recall: $S_{a,b} = (1-a^Tb)^2$, so $S_{a,b} = 1$ for all pairs in T

Sampling Procedure:
 Let R_i be the sum of M_i(a,b) over (a,b) in T and
let R be the sum _{of Ri}

Let
$$T = \{(a,b) | a^Tb = 0\}, |T| = 3^n$$

Recall: $S_{a,b} = (1-a^Tb)^2$, so $S_{a,b} = 1$ for all pairs in T

Sampling Procedure:
 Let R_i be the sum of M_i(a,b) over (a,b) in T and
let R be the sum _{of Ri}
 Choose i with probability R_i/R

Let
$$T = \{(a,b) | a^Tb = 0\}, |T| = 3^n$$

Recall: $S_{a,b} = (1-a^Tb)^2$, so $S_{a,b} = 1$ for all pairs in T

Sampling Procedure:
 Let R_i be the sum of M_i(a,b) over (a,b) in T and
let R be the sum _{of Ri}
 Choose i with probability R_i/R
 Choose (a,b) with probability M_i(a,b)/R_i

Sampling Procedure:
 Let R_i be the sum of M_i(a,b) over (a,b) in T and
let R be the sum of R _i
 Choose i with probability R_i/R
 Choose (a,b) with probability M_i(a,b)/R_i

Sampling Procedure:

• Let R_i be the sum of M_i(a,b) over (a,b) in T and

let R be the sum of R_i

- Choose i with probability R_i/R
- Choose (a,b) with probability M_i(a,b)/R_i

Total Entropy:

$n \log_2 3 \leq$

Sampling Procedure:

- Let R_i be the sum of M_i(a,b) over (a,b) in T and
 - let R be the sum of R_i
- Choose i with probability R_i/R
- Choose (a,b) with probability M_i(a,b)/R_i

Sampling Procedure:

- Let R_i be the sum of M_i(a,b) over (a,b) in T and
 - let R be the sum of R_i
- Choose i with probability R_i/R
- Choose (a,b) with probability M_i(a,b)/R_i

Sampling Procedure:	Samp	ling	Procedure:
---------------------	------	------	-------------------

- Let R_i be the sum of M_i(a,b) over (a,b) in T and
 - let R be the sum of R_i
- Choose i with probability R_i/R
- Choose (a,b) with probability M_i(a,b)/R_i

Samplin	g Proce	dure:
---------	---------	-------

- Let R_i be the sum of M_i(a,b) over (a,b) in T and
 - let R be the sum of R_i
- Choose i with probability R_i/R
- Choose (a,b) with probability M_i(a,b)/R_i

Suppose that a_{-j} and b_{-j} are fixed

Suppose that a_{-i} and b_{-i} are **fixed**

 M_i restricted to (a_{-j}, b_{-j})

Suppose that a_{-i} and b_{-i} are **fixed**

 $M_i \text{ restricted to } (a_{-j}, b_{-j})$ (..., $b_i = 0...$) (..., $b_i = 1...$)

$$\begin{array}{l} (a_{1..j-1},a_{j}=0,a_{j+1...n}) & M_{i}(a,b) & M_{i}(a,b) \\ (a_{1..j-1},a_{j}=1,a_{j+1...n}) & M_{i}(a,b) & M_{i}(a,b) \end{array}$$

$$(\dots b_{j}=0\dots) \ (\dots b_{j}=1\dots)$$
$$(a_{1\dots j-1},a_{j}=0,a_{j+1\dots n}) \qquad M_{i}(a,b) \ M_{i}(a,b)$$
$$(a_{1\dots j-1},a_{j}=1,a_{j+1\dots n}) \qquad M_{i}(a,b) \ M_{i}(a,b)$$

If $a_j=1$, $b_j=1$ then $a^{T}b = 1$, hence $M_i(a,b) = 0$

$$(...b_j=0...) (...b_j=1...)$$

$$\begin{array}{l} (a_{1..j-1},a_{j}=0,a_{j+1...n}) & M_{i}(a,b) & M_{i}(a,b) \\ (a_{1..j-1},a_{j}=1,a_{j+1...n}) & M_{i}(a,b) & M_{i}(a,b) \end{array}$$

If $a_j=1$, $b_j=1$ then $a^{T}b = 1$, hence $M_i(a,b) = 0$

$$(...b_j=0...) (...b_j=1...)$$

$$\begin{array}{l} (a_{1..j-1},a_{j}=0,a_{j+1...n}) & M_{i}(a,b) & M_{i}(a,b) \\ (a_{1..j-1},a_{j}=1,a_{j+1...n}) & M_{i}(a,b) & \textbf{zero} \end{array}$$

If
$$a_j=1$$
, $b_j=1$ then $a^Tb = 1$, hence $M_i(a,b) = 0$

But $rank(M_i)=1$, hence there must be another zero in either the same row or column

$$(...b_j=0...) (...b_j=1...)$$

$$\begin{array}{l} (a_{1..j-1},a_{j}=0,a_{j+1...n}) & M_{i}(a,b) & M_{i}(a,b) \\ (a_{1..j-1},a_{j}=1,a_{j+1...n}) & M_{i}(a,b) & \textbf{Zero} \end{array}$$

If
$$a_j=1$$
, $b_j=1$ then $a^Tb = 1$, hence $M_i(a,b) = 0$

But $rank(M_i)=1$, hence there must be another zero in either the same row or column

$$(...b_j=0...) (...b_j=1...)$$

$$(a_{1..j-1}, a_j = 0, a_{j+1...n})$$
 $M_i(a,b)$ $M_i(a,b)$
 $(a_{1..j-1}, a_j = 1, a_{j+1...n})$ **zero zero**
If
$$a_j=1$$
, $b_j=1$ then $a^Tb = 1$, hence $M_i(a,b) = 0$

But $rank(M_i)=1$, hence there must be another zero in either the same row or column

$$\begin{array}{l} \mathsf{H}(a_{j},b_{j}|\ i,\ a_{j},\ b_{j}) \leq 1 < \log_{2} 3 \\ (\dots b_{j}=0\dots)\ (\dots b_{j}=1\dots) \\ (a_{1\dots j-1},a_{j}=0,a_{j+1\dots n}) & \mathsf{M}_{i}(a,b)\ \mathsf{M}_{i}(a,b) \\ (a_{1\dots j-1},a_{j}=1,a_{j+1\dots n}) & \mathsf{Zero} & \mathsf{Zero} \end{array}$$

Entropy Accounting 101

Generate uniformly random (a,b) in T:

Let R_i be the sum of M_i(a,b) over (a,b) in T and

let R be the sum of R_i

Choose i with probability R_i/R

Choose (a,b) with probability M_i(a,b)/R_i

Entropy Accounting 101

Generate uniformly random (a,b) in T:

Let R_i be the sum of M_i(a,b) over (a,b) in T and

let R be the sum of R_i

Choose i with probability R_i/R

Choose (a,b) with probability M_i(a,b)/R_i

Outline

Part I: Tools for Extended Formulations

- Yannakakis's Factorization Theorem
- The Rectangle Bound
- A Sampling Argument

Part II: Applications

- Correlation Polytope
- Approximating the Correlation Polytope
- A Better Lower Bound for Disjointness

Outline

Part I: Tools for Extended Formulations

- Yannakakis's Factorization Theorem
- The Rectangle Bound
- A Sampling Argument

Part II: Applications

- Correlation Polytope
- Approximating the Correlation Polytope
- A Better Lower Bound for Disjointness

Is there a K (with small xc) s.t. $P_{corr} \subset K \subset (C+1)P_{corr}$?

Is there a K (with small xc) s.t. $P_{corr} \subset K \subset (C+1)P_{corr}$?

Is there a K (with small xc) s.t. $P_{corr} \subset K \subset (C+1)P_{corr}$?

Analogy: Is UDISJ hard to compute with prob. $\frac{1}{2}+\frac{1}{2}(C+1)$ for large values of C?

Analogy: Is UDISJ hard to compute with prob. $\frac{1}{2}+\frac{1}{2}(C+1)$ for large values of C?

There is a natural barrier at C = \sqrt{n} for proving l.b.s:

Analogy: Is UDISJ hard to compute with prob. $\frac{1}{2}+\frac{1}{2}(C+1)$ for large values of C?

There is a natural barrier at C = \sqrt{n} for proving I.b.s:

Claim: If UDISJ can be computed with prob. $\frac{1}{2}+\frac{1}{2}(C+1)$ using $o(n/C^2)$ bits, then UDISJ can be computed with prob. $\frac{3}{4}$ using o(n) bits

Analogy: Is UDISJ hard to compute with prob. $\frac{1}{2}+\frac{1}{2}(C+1)$ for large values of C?

There is a natural barrier at C = \sqrt{n} for proving I.b.s:

Claim: If UDISJ can be computed with prob. $\frac{1}{2}+\frac{1}{2}(C+1)$ using $o(n/C^2)$ bits, then UDISJ can be computed with prob. $\frac{3}{4}$ using o(n) bits

Proof: Run the protocol $O(C^2)$ times and take the majority vote

In fact, a more technical barrier is:

In fact, a more technical barrier is:

[Bar-Yossef et al '04]:

Bits exchanged ≥ information revealed

In fact, a more technical barrier is:

[Bar-Yossef et al '04]:

Bits exchanged \geq information revealed

≥ n x information revealed for a one-bit problem

In fact, a more technical barrier is:

[Bar-Yossef et al '04]:

Bits exchanged \geq information revealed

Direct Sum Theorem

≥ n x information revealed for a one-bit problem

In fact, a more technical barrier is:

[Bar-Yossef et al '04]:

Bits exchanged \geq information revealed

Direct Sum Theorem

≥ n x information revealed for a one-bit problem

Problem: AND has a protocol with advantage 1/C that reveals only 1/C² bits...

Problem: AND has a protocol with advantage 1/C that reveals only 1/C² bits...

Problem: AND has a protocol with advantage 1/C that reveals only 1/C² bits...

Send her bit with prob. $\frac{1}{2} + \frac{1}{C}$, else send the complement

Problem: AND has a protocol with advantage 1/C that reveals only 1/C² bits...

Send her bit with prob. $\frac{1}{2} + \frac{1}{C}$, else send the complement

Send his bit with prob. $\frac{1}{2}$ + 1/C, else send the complement

Send her bit with prob. $\frac{1}{2} + \frac{1}{C}$, else send the complement

Send his bit with prob. $\frac{1}{2}$ + 1/C, else send the complement

Is there a **stricter** one bit problem that we could reduce to instead?

Send her bit with prob. $\frac{1}{2} + \frac{1}{C}$, else send the complement

Send his bit with prob. $\frac{1}{2}$ + 1/C, else send the complement

Outline

Part I: Tools for Extended Formulations

- Yannakakis's Factorization Theorem
- The Rectangle Bound
- A Sampling Argument

Part II: Applications

- Correlation Polytope
- Approximating the Correlation Polytope
- A Better Lower Bound for Disjointness

Outline

Part I: Tools for Extended Formulations

- Yannakakis's Factorization Theorem
- The Rectangle Bound
- A Sampling Argument

Part II: Applications

- Correlation Polytope
- Approximating the Correlation Polytope
- A Better Lower Bound for Disjointness

Definition: Output matrix is the prob. of outputting "one" for each pair of inputs

Definition: Output matrix is the prob. of outputting "one" for each pair of inputs

For the previous protocol:

 $B = 0 \qquad B = 1$ $A = 0 \qquad \frac{1'_2 + 5/C}{1'_2 + 1/C} \qquad \frac{1'_2 + 1/C}{1'_2 - 3/C}$

The constraint that a protocol achieves advantage at least 1/C is a set of linear constraints on this matrix

For the previous protocol:

$$B = 0 \qquad B = 1$$

$$A = 0 \qquad \frac{1_{2}^{\prime} + 5/C}{1_{2}^{\prime} + 1/C} \qquad \frac{1_{2}^{\prime} + 1/C}{1_{2}^{\prime} - 3/C}$$

The constraint that a protocol achieves advantage at least 1/C is a set of linear constraints on this matrix

For the previous protocol:

$$B = 0 \qquad B = 1$$

$$A = 0 \qquad \frac{1_{2}^{\prime} + 5/C}{1_{2}^{\prime} + 1/C} \qquad \frac{1_{2}^{\prime} + 1/C}{1_{2}^{\prime} - 3/C}$$

(Using Hellinger): bits revealed $\geq (max - min)^2 = \Omega(1/C^2)$

The constraint that a protocol achieves advantage at least 1/C is a set of linear constraints on this matrix

For the previous protocol:

$$B = 0 \qquad B = 1$$

$$A = 0 \qquad \frac{1_{2}^{\prime} + 5/C}{1_{2}^{\prime} + 1/C} \qquad \frac{1_{2}^{\prime} + 1/C}{1_{2}^{\prime} - 3/C}$$

(Using Hellinger): bits revealed $\geq (max - min)^2 = \Omega(1/C^2)$

(New): bits revealed \geq |diagonal – anti-diagonal| = 0

For the previous protocol:

What if we also require the output distribution to be the same for inputs $\{0,0\}$, $\{0,1\}$, $\{1,0\}$?

For the previous protocol:

 $B = 0 \qquad B = 1$ $A = 0 \qquad \frac{1_{2}^{\prime} + 5/C}{1_{2}^{\prime} + 1/C} \qquad \frac{1_{2}^{\prime} + 1/C}{1_{2}^{\prime} - 3/C}$

What if we also require the output distribution to be the same for inputs $\{0,0\}$, $\{0,1\}$, $\{1,0\}$?

For the previous new protocol:

$$B = 0 \qquad B = 1$$

$$A = 0 \qquad \frac{1_{2}' + 1/C}{1_{2}' + 1/C} \qquad \frac{1_{2}' + 1/C}{1_{2}' - 3/C}$$
What if we also require the output distribution to be the same for inputs $\{0,0\}$, $\{0,1\}$, $\{1,0\}$?

For the previous new protocol:

$$B = 0 \qquad B = 1$$

$$A = 0 \qquad \frac{1'_2 + 1/C}{1'_2 + 1/C} \qquad \frac{1'_2 + 1/C}{1'_2 - 3/C}$$

(Using Hellinger): bits revealed $\geq (max - min)^2 = \Omega(1/C^2)$

What if we also require the output distribution to be the same for inputs $\{0,0\}$, $\{0,1\}$, $\{1,0\}$?

For the previous new protocol:

A = 0
$$\frac{1}{2} + \frac{1}{C}$$
 $\frac{1}{2} + \frac{1}{C}$
A = 1 $\frac{1}{2} + \frac{1}{C}$ $\frac{1}{2} - \frac{3}{C}$

(Using Hellinger): bits revealed $\geq (max - min)^2 = \Omega(1/C^2)$

(New): bits revealed \geq |diagonal – anti-diagonal| = $\Omega(1/C)$

Symmetrized Protocol T':
7

Symmetrized Protocol T':
 Generate a random partition (x, y, z) of n/2 and
fill in x (0,0), y (0,1) and z (1,0) pairs
1

Symmetrized Protocol T':
 Generate a random partition (x, y, z) of n/2 and
fill in x (0,0), y (0,1) and z (1,0) pairs

Symmetrized Protocol T':
 Generate a random partition (x, y, z) of n/2 and
fill in x (0,0), y (0,1) and z (1,0) pairs
 Permute the n bits uniformly at random

Symmetrized Protocol T':
 Generate a random partition (x, y, z) of n/2 and
fill in x (0,0), y (0,1) and z (1,0) pairs
 Permute the n bits uniformly at random
Run T on the n bit string, return the output

Symmetrized Protocol T':
 Generate a random partition (x, y, z) of n/2 and
fill in x (0,0), y (0,1) and z (1,0) pairs
 Permute the n bits uniformly at random
Run T on the n bit string, return the output

Claim: The protocol T' has bias 1/C for DISJ.

Claim: The protocol T' has bias 1/C for DISJ.

Claim: Yet flipping a pair (a_i, b_i) between (0,0), (0,1) or (1,0) results in two distributions p,q (on inputs to T) with $|p-q|_1 \le 1/n$

Claim: The protocol T' has bias 1/C for DISJ.

Claim: Yet flipping a pair (a_i, b_i) between (0,0), (0,1) or (1,0) results in two distributions p,q (on inputs to T) with $|p-q|_1 \le 1/n$

Proof:

Similarly sampling a pair (a_j, b_j) needs entropy $log_2 3 - \delta$, where δ is the **difference of diagonals**

Similarly sampling a pair (a_j, b_j) needs entropy $log_2 3 - \delta$, where δ is the **difference of diagonals**

Theorem: For any K with $P_{corr} \subset K \subset (C+1)P_{corr}$, the extension complexity of K is at least $exp(\Omega(n/C))$

Similarly sampling a pair (a_j, b_j) needs entropy $log_2 3 - \delta$, where δ is the **difference of diagonals**

Theorem: For any K with $P_{corr} \subset K \subset (C+1)P_{corr}$, the extension complexity of K is at least $exp(\Omega(n/C))$

Can our framework be used to prove further lower bounds for extension complexity?

Similarly sampling a pair (a_j, b_j) needs entropy $log_2 3 - \delta$, where δ is the **difference of diagonals**

Theorem: For any K with $P_{corr} \subset K \subset (C+1)P_{corr}$, the extension complexity of K is at least $exp(\Omega(n/C))$

Can our framework be used to prove further lower bounds for extension complexity?

For average case instances?

Similarly sampling a pair (a_j, b_j) needs entropy $log_2 3 - \delta$, where δ is the **difference of diagonals**

Theorem: For any K with $P_{corr} \subset K \subset (C+1)P_{corr}$, the extension complexity of K is at least $exp(\Omega(n/C))$

Can our framework be used to prove further lower bounds for extension complexity?

For average case instances? For SDPs?

Thanks!

Any Questions?