An Information Complexity Approach to Extended Formulations

Ankur Moitra
Institute for Advanced Study
joint work with Mark Braverman

The Permutahedron

The Permutahedron

Let $\overrightarrow{\mathrm{F}}=[1,2,3, \ldots \mathrm{n}], \mathrm{P}=\operatorname{conv}\{\pi(\overrightarrow{\mathrm{t}}) \mid \pi$ is permutation $\}$

The Permutahedron

Let $\overrightarrow{\mathrm{t}}=[1,2,3, \ldots \mathrm{n}], \mathrm{P}=\operatorname{conv}\{\pi(\overrightarrow{\mathrm{t}}) \mid \pi$ is permutation $\}$
How many facets of P have?

The Permutahedron

Let $\overrightarrow{\mathrm{F}}=[1,2,3, \ldots \mathrm{n}], \mathrm{P}=\operatorname{conv}\{\pi(\overrightarrow{\mathrm{t}}) \mid \pi$ is permutation $\}$
How many facets of P have?
exponentially many!

The Permutahedron

Let $\vec{t}=[1,2,3, \ldots n], \quad P=\operatorname{conv}\{\pi(\vec{t}) \mid \pi$ is permutation $\}$
How many facets of P have? exponentially many!
e.g. $S \subset[n], \Sigma_{i \text { in } S} x_{i} \geq 1+2+\ldots+|S|=|S|(|S|+1) / 2$

The Permutahedron

Let $\vec{t}=[1,2,3, \ldots n], \quad P=\operatorname{conv}\{\pi(\vec{t}) \mid \pi$ is permutation $\}$
How many facets of P have? exponentially many!
e.g. $S \subset[n], \Sigma_{i \text { in } S} x_{i} \geq 1+2+\ldots+|S|=|S|(|S|+1) / 2$

Let $Q=\{A \mid A$ is doubly-stochastic $\}$

The Permutahedron

Let $\vec{t}=[1,2,3, \ldots n], \quad P=\operatorname{conv}\{\pi(\vec{t}) \mid \pi$ is permutation $\}$
How many facets of P have? exponentially many!
e.g. $S \subset[n], \Sigma_{i \text { ins }} x_{i} \geq 1+2+\ldots+|S|=|S|(|S|+1) / 2$

Let $Q=\{A \mid A$ is doubly-stochastic $\}$
Then P is the projection of $Q: P=\{A T \nmid A$ in $Q\}$

The Permutahedron

Let $\vec{t}=[1,2,3, \ldots n], \quad P=\operatorname{conv}\{\pi(\vec{t}) \mid \pi$ is permutation $\}$

How many facets of P have? exponentially many!
e.g. $S \subset[n], \Sigma_{i \text { in } S} x_{i} \geq 1+2+\ldots+|S|=|S|(|S|+1) / 2$

Let $Q=\{A \mid A$ is doubly-stochastic $\}$
Then P is the projection of $Q: P=\{A \nexists A$ in $Q\}$
Yet Q has only $O\left(n^{2}\right)$ facets

Extended Formulations

The extension complexity (xc) of a polytope P is the minimum number of facets of Q so that $P=\operatorname{proj}(Q)$

Extended Formulations

The extension complexity (xc) of a polytope P is the minimum number of facets of Q so that $P=\operatorname{proj}(Q)$

$$
\begin{aligned}
& \text { e.g. } x c(P)=\Theta(n \text { logn }) \\
& \text { for permutahedron }
\end{aligned}
$$

Extended Formulations

The extension complexity (xc) of a polytope P is the minimum number of facets of Q so that $P=\operatorname{proj}(Q)$

$$
\begin{aligned}
& \text { e.g. } x c(P)=\Theta(n \text { logn }) \\
& \text { for permutahedron }
\end{aligned}
$$

$x c(P)=\Theta(\log n)$ for a regular n-gon, but $\Omega(\sqrt{ } n)$ for its perturbation

Extended Formulations

The extension complexity (xc) of a polytope P is the minimum number of facets of Q so that $P=\operatorname{proj}(Q)$

$$
\begin{aligned}
& \text { e.g. } x c(P)=\Theta(n \log n) \\
& \text { for permutahedron }
\end{aligned}
$$

$x c(P)=\Theta(\log n)$ for a regular n-gon, but $\Omega(\sqrt{ } n)$ for its perturbation
In general, $P=\{x \mid \exists y,(x, y)$ in $Q\}$

Extended Formulations

The extension complexity (xc) of a polytope P is the minimum number of facets of Q so that $P=\operatorname{proj}(Q)$

$$
\begin{aligned}
& \text { e.g. } x c(P)=\Theta(n \log n) \\
& \text { for permutahedron }
\end{aligned}
$$

$x c(P)=\Theta(\log n)$ for a regular n-gon, but $\Omega(\sqrt{ } n)$ for its perturbation
In general, $P=\{x \mid \exists y,(x, y)$ in $Q\}$
...analogy with quantifiers in Boolean formulae

Applications of EFs

In general, $P=\{x \mid \exists y,(x, y)$ in $Q\}$

Applications of EFs

In general, $P=\{x \mid \exists y,(x, y)$ in $Q\}$
Through EFs, we can reduce \# facets exponentially!

Applications of EFs

$$
\text { In general, } P=\{x \mid \exists y,(x, y) \text { in } Q\}
$$

Through EFs, we can reduce \# facets exponentially!
Hence, we can run standard LP solvers instead of the ellipsoid algorithm

Applications of EFs

$$
\text { In general, } P=\{x \mid \exists y,(x, y) \text { in } Q\}
$$

Through EFs, we can reduce \# facets exponentially!

Hence, we can run standard LP solvers instead of the ellipsoid algorithm

EFs often give, or are based on new combinatorial insights

Applications of EFs

In general, $P=\{x \mid \exists y,(x, y)$ in $Q\}$
Through EFs, we can reduce \# facets exponentially!
Hence, we can run standard LP solvers instead of the ellipsoid algorithm

EFs often give, or are based on new combinatorial insights
e.g. Birkhoff-von Neumann Thm and permutahedron

Applications of EFs

In general, $P=\{x \mid \exists y,(x, y)$ in $Q\}$
Through EFs, we can reduce \# facets exponentially!
Hence, we can run standard LP solvers instead of the ellipsoid algorithm

EFs often give, or are based on new combinatorial insights
e.g. Birkhoff-von Neumann Thm and permutahedron
e.g. prove there is low-cost object, through its polytope

Explicit, Hard Polytopes?

Explicit, Hard Polytopes?

Definition: TSP polytope:

$P=\operatorname{conv}\left\{\mathbf{1}_{F} \mid F\right.$ is the set of edges on a tour of $\left.K_{n}\right\}$

Explicit, Hard Polytopes?

Definition: TSP polytope:
$P=\operatorname{conv}\left\{\mathbf{1}_{\mathrm{F}} \mid \mathrm{F}\right.$ is the set of edges on a tour of $\left.\mathrm{K}_{\mathrm{n}}\right\}$
(If we could optimize over this polytope, then $P=N P$)

Explicit, Hard Polytopes?

Definition: TSP polytope:
$P=\operatorname{conv}\left\{\mathbf{1}_{F} \mid F\right.$ is the set of edges on a tour of $\left.K_{n}\right\}$
(If we could optimize over this polytope, then $P=N P$)

Can we prove unconditionally there is no small EF?

Explicit, Hard Polytopes?

Definition: TSP polytope:
$P=\operatorname{conv}\left\{\mathbf{1}_{\mathrm{F}} \mid \mathrm{F}\right.$ is the set of edges on a tour of $\left.\mathrm{K}_{\mathrm{n}}\right\}$
(If we could optimize over this polytope, then $P=N P$)

Can we prove unconditionally there is no small EF?
Caveat: this is unrelated to proving complexity l.b.s

Explicit, Hard Polytopes?

Definition: TSP polytope:
$P=\operatorname{conv}\left\{\mathbf{1}_{\mathrm{F}} \mid \mathrm{F}\right.$ is the set of edges on a tour of $\left.\mathrm{K}_{\mathrm{n}}\right\}$
(If we could optimize over this polytope, then $P=N P$)

Can we prove unconditionally there is no small EF?
Caveat: this is unrelated to proving complexity l.b.s
[Yannakakis '90]: Yes, through the nonnegative rank

Theorem [Yannakakis '90]: Any symmetric LP for TSP or matching has size $2^{\Omega(n)}$

Theorem [Yannakakis '90]: Any symmetric LP for TSP or matching has size $2^{\Omega(n)}$

Theorem [Fiorini et al '12]: Any LP for TSP has size $2^{\Omega(\sqrt{n})}$ (based on a $2^{\Omega(n)}$ lower bd for clique)

Theorem [Yannakakis '90]: Any symmetric LP for TSP or matching has size $2^{\Omega(n)}$

Theorem [Fiorini et al '12]: Any LP for TSP has size $2^{\Omega(\sqrt{n})}$ (based on a $2^{\Omega(n)}$ lower bd for clique)

Theorem [Braun et al '12]: Any LP that approximates clique within $\mathrm{n}^{1 / 2 \text { eps }}$ has size $\exp \left(\mathrm{n}^{\text {eps }}\right)$

Theorem [Yannakakis '90]: Any symmetric LP for TSP or matching has size $2^{\Omega(n)}$

Theorem [Fiorini et al '12]: Any LP for TSP has size $2^{\Omega(\sqrt{n})}$ (based on a $2^{\Omega(n)}$ lower bd for clique)

Theorem [Braun et al '12]: Any LP that approximates clique within $\mathrm{n}^{1 / 2-e p s}$ has size $\exp \left(\mathrm{n}^{\text {eps }}\right)$

Hastad's proved an $\mathrm{n}^{1-0(1)}$ hardness of approx. for clique, can we prove the analogue for EFs?

Theorem [Yannakakis '90]: Any symmetric LP for TSP or matching has size $2^{\Omega(n)}$

Theorem [Fiorini et al '12]: Any LP for TSP has size $2^{\Omega(\sqrt{n})}$ (based on a $2^{\Omega(n)}$ lower bd for clique)

Theorem [Braun et al '12]: Any LP that approximates clique within $\mathrm{n}^{1 / 2 \text { eps }}$ has size $\exp \left(\mathrm{n}^{\text {eps }}\right)$

Hastad's proved an $\mathrm{n}^{1-0(1)}$ hardness of approx. for clique, can we prove the analogue for EFs?

Theorem [Braverman, Moitra '13]: Any LP that approximates clique within $n^{1-e p s}$ has size $\exp \left(n^{\text {eps }}\right)$

Outline

Part I: Tools for Extended Formulations

- Yannakakis's Factorization Theorem
- The Rectangle Bound
- A Sampling Argument

Part II: Applications

- Correlation Polytope
- Approximating the Correlation Polytope
- A Better Lower Bound for Disjointness

Outline

Part I: Tools for Extended Formulations

- Yannakakis's Factorization Theorem
- The Rectangle Bound
- A Sampling Argument

Part II: Applications

- Correlation Polytope
- Approximating the Correlation Polytope
- A Better Lower Bound for Disjointness

The Factorization Theorem

The Factorization Theorem

How can we prove lower bounds on EFs?

The Factorization Theorem

How can we prove lower bounds on EFs?
[Yannakakis '90]:
Geometric

Algebraic
Parameter

The Factorization Theorem

How can we prove lower bounds on EFs?
[Yannakakis '90]:

Geometric

Algebraic
Parameter

Definition of the slack matrix...

The Slack Matrix

The Slack Matrix

The Slack Matrix

vertex

The Slack Matrix

The Slack Matrix

The Slack Matrix

The entry in row i , column j is how slack the $\mathrm{j}^{\text {th }}$ vertex is on the $\mathrm{i}^{\text {th }}$ constraint

The Slack Matrix

The entry in row i , column j is how slack the $\mathrm{j}^{\text {th }}$ vertex is on the $\mathrm{i}^{\text {th }}$ constraint

The Factorization Theorem

How can we prove lower bounds on EFs?
[Yannakakis '90]:

Geometric

Algebraic
Parameter

Definition of the slack matrix...

The Factorization Theorem

How can we prove lower bounds on EFs?
[Yannakakis '90]:

Geometric

Algebraic
Parameter

Definition of the slack matrix...

Definition of the nonnegative rank...

Nonnegative Rank

Nonnegative Rank

rank one, nonnegative

Nonnegative Rank

rank one, nonnegative

Definition: rank ${ }^{+}(S)$ is the smallest r s.t. S can be written as the sum of r rank one, nonneg. matrices

Nonnegative Rank

rank one, nonnegative

Definition: rank ${ }^{+}(S)$ is the smallest r s.t. S can be written as the sum of r rank one, nonneg. matrices

Note: $\operatorname{rank}^{+}(\mathrm{S}) \geq \operatorname{rank}(\mathrm{S})$, but can be much larger too!

The Factorization Theorem

How can we prove lower bounds on EFs?
[Yannakakis '90]:
Geometric

Algebraic
Parameter

The Factorization Theorem

How can we prove lower bounds on EFs?
[Yannakakis '90]: XC(P) = rank'(S(P))
Geometric

Algebraic
Parameter

The Factorization Theorem

How can we prove lower bounds on EFs?
[Yannakakis '90]: XC(P) = rank'(S(P))
Geometric Parameter

Algebraic Parameter

Intuition: the factorization gives a change of variables that preserves the slack matrix!

The Factorization Theorem

How can we prove lower bounds on EFs?
[Yannakakis '90]: XC(P) = rank'(S(P))

Geometric Parameter

 Algebraic Parameter

Intuition: the factorization gives a change of variables that preserves the slack matrix!

We will give a new way to lower bound nonnegative rank via information theory...

Outline

Part I: Tools for Extended Formulations

- Yannakakis's Factorization Theorem
- The Rectangle Bound
- A Sampling Argument

Part II: Applications

- Correlation Polytope
- Approximating the Correlation Polytope
- A Better Lower Bound for Disjointness

Outline

Part I: Tools for Extended Formulations

- Yannakakis's Factorization Theorem
- The Rectangle Bound
- A Sampling Argument

Part II: Applications

- Correlation Polytope
- Approximating the Correlation Polytope
- A Better Lower Bound for Disjointness

The Rectangle Bound

rank one, nonnegative

The Rectangle Bound

rank one, nonnegative

The Rectangle Bound

 rank one, nonnegative

The Rectangle Bound

rank one, nonnegative

The Rectangle Bound

rank one, nonnegative

The Rectangle Bound

rank one, nonnegative

The support of each M_{i} is a combinatorial rectangle

The Rectangle Bound

rank one, nonnegative

The support of each M_{i} is a combinatorial rectangle
rank $^{+}(S)$ is at least \# rectangles needed to cover supp of S

The Rectangle Bound

rank one, nonnegative

rank $^{+}(S)$ is at least \# rectangles needed to cover supp of S

The Rectangle Bound

rank one, nonnegative

Non-deterministic Comm. Complexity

rank $^{+}(S)$ is at least \# rectangles needed to cover supp of S

Outline

Part I: Tools for Extended Formulations

- Yannakakis's Factorization Theorem
- The Rectangle Bound
- A Sampling Argument

Part II: Applications

- Correlation Polytope
- Approximating the Correlation Polytope
- A Better Lower Bound for Disjointness

Outline

Part I: Tools for Extended Formulations

- Yannakakis's Factorization Theorem
- The Rectangle Bound
- A Sampling Argument

Part II: Applications

- Correlation Polytope
- Approximating the Correlation Polytope
- A Better Lower Bound for Disjointness

A Sampling Argument

A Sampling Argument

 $T=\{\square\}$, set of entries in S with same value
$=$

A Sampling Argument

 $T=\{\square\}$, set of entries in S with same value
$=$

A Sampling Argument

 $T=\{\square\}$, set of entries in S with same value

Choose M_{i} proportional to total value on T

A Sampling Argument

 $T=\{\square\}$, set of entries in S with same value
$=$

Choose M_{i} proportional to total value on T

A Sampling Argument

$\mathrm{T}=\{\square\}$, set of entries in S with same value

Choose M_{i} proportional to total value on T
Choose (a, b) in T proportional to relative value in M_{i}

A Sampling Argument

$\mathrm{T}=\{\square\}$, set of entries in S with same value

$=$

Choose M_{i} proportional to total value on T
Choose (a, b) in T proportional to relative value in M_{i}

A Sampling Argument

$T=\{\square\}$, set of entries in S with same value

Choose M_{i} proportional to total value on T
Choose (a, b) in T proportional to relative value in M_{i}

A Sampling Argument

$\mathrm{T}=\{\square\}$, set of entries in S with same value

$=$

Choose M_{i} proportional to total value on T
Choose (a, b) in T proportional to relative value in M_{i}

If r is too small, this procedure uses too little entropy!

Outline

Part I: Tools for Extended Formulations

- Yannakakis's Factorization Theorem
- The Rectangle Bound
- A Sampling Argument

Part II: Applications

- Correlation Polytope
- Approximating the Correlation Polytope
- A Better Lower Bound for Disjointness

Outline

Part I: Tools for Extended Formulations

- Yannakakis's Factorization Theorem
- The Rectangle Bound
- A Sampling Argument

Part II: Applications

- Correlation Polytope
- Approximating the Correlation Polytope
- A Better Lower Bound for Disjointness

The Construction of [Fiorini et al]

 correlation polytope: $\mathrm{P}_{\text {corr }}=\operatorname{conv}\left\{\mathrm{aa}^{\top} \mid \mathrm{a}\right.$ in $\left.\{0,1\}^{\mathrm{n}}\right\}$
The Construction of [Fiorini et al]

 correlation polytope: $\mathrm{P}_{\text {corr }}=\operatorname{conv}\left\{\mathrm{aa}^{\top} \mid \mathrm{a}\right.$ in $\left.\{0,1\}^{\mathrm{n}}\right\}$ vertices:

The Construction of [Fiorini et al]

 correlation polytope: $\mathrm{P}_{\text {corr }}=\operatorname{conv}\left\{\mathrm{aa}^{\top} \mid \mathrm{a}\right.$ in $\left.\{0,1\}^{\mathrm{n}}\right\}$ vertices: a in $\{0,1\}^{n}$

The Construction of [Fiorini et al]

 correlation polytope: $\mathrm{P}_{\text {corr }}=\operatorname{conv}\left\{\mathrm{aa}^{\top} \mid \mathrm{a}\right.$ in $\left.\{0,1\}^{\mathrm{n}}\right\}$ vertices: a in $\{0,1\}^{n}$

The Construction of [Fiorini et al]

 correlation polytope: $\mathrm{P}_{\text {corr }}=\operatorname{conv}\left\{\mathrm{aa}^{\top} \mid \mathrm{a}\right.$ in $\left.\{0,1\}^{\mathrm{n}}\right\}$vertices: a in $\{0,1\}^{n}$

UNIQUE DISJ. Output 'YES' if a and b as sets are disjoint, and 'NO' if a and b have one index in common

The Reconstruction Principle

The Reconstruction Principle

$$
\text { Let } T=\left\{(a, b) \mid a^{\top} b=0\right\},|T|=3^{n}
$$

The Reconstruction Principle

Let $T=\left\{(a, b) \mid a^{\top} b=0\right\},|T|=3^{n}$
Recall: $S_{a, b}=\left(1-a^{\top} b\right)^{2}$, so $S_{a, b}=1$ for all pairs in T

The Reconstruction Principle

Let $T=\left\{(a, b) \mid a^{\top} b=0\right\},|T|=3^{n}$
Recall: $S_{a, b}=\left(1-a^{\top} b\right)^{2}$, so $S_{a, b}=1$ for all pairs in T
How does the sampling procedure specialize to this case? (Recall it generates (a,b) unif. from T)

The Reconstruction Principle

Let $T=\left\{(a, b) \mid a^{\top} b=0\right\},|T|=3^{n}$
Recall: $S_{a, b}=\left(1-a^{\top} b\right)^{2}$, so $S_{a, b}=1$ for all pairs in T
How does the sampling procedure specialize to this case? (Recall it generates (a,b) unif. from T)

Sampling Procedure:

The Reconstruction Principle

Let $T=\left\{(a, b) \mid a^{\top} b=0\right\},|T|=3^{n}$
Recall: $S_{a, b}=\left(1-a^{\top} b\right)^{2}$, so $S_{a, b}=1$ for all pairs in T
How does the sampling procedure specialize to this case? (Recall it generates (a,b) unif. from T)

Sampling Procedure:

- Let R_{i} be the sum of $M_{i}(a, b)$ over (a, b) in T and let R be the sum of Ri

The Reconstruction Principle

Let $T=\left\{(a, b) \mid a^{\top} b=0\right\},|T|=3^{n}$
Recall: $S_{a, b}=\left(1-a^{\top} b\right)^{2}$, so $S_{a, b}=1$ for all pairs in T
How does the sampling procedure specialize to this case? (Recall it generates (a,b) unif. from T)

Sampling Procedure:

- Let R_{i} be the sum of $M_{i}(a, b)$ over (a, b) in T and let R be the sum of Ri
- Choose i with probability $\mathrm{R}_{\mathrm{i}} / \mathrm{R}$

The Reconstruction Principle

Let $T=\left\{(a, b) \mid a^{\top} b=0\right\},|T|=3^{n}$
Recall: $S_{a, b}=\left(1-a^{\top} b\right)^{2}$, so $S_{a, b}=1$ for all pairs in T
How does the sampling procedure specialize to this case? (Recall it generates (a,b) unif. from T)

Sampling Procedure:

- Let R_{i} be the sum of $M_{i}(a, b)$ over (a, b) in T and let R be the sum of Ri
- Choose i with probability $\mathrm{R}_{\mathrm{i}} / \mathrm{R}$
- Choose (a, b) with probability $M_{i}(a, b) / R_{i}$

Entropy Accounting 101

Entropy Accounting 101

Sampling Procedure:

- Let R_{i} be the sum of $M_{i}(a, b)$ over (a, b) in T and let R be the sum of R_{i}
- Choose i with probability $\mathrm{R}_{\mathrm{i}} / \mathrm{R}$
- Choose (a,b) with probability $M_{i}(a, b) / R_{i}$

Entropy Accounting 101

Sampling Procedure:

- Let R_{i} be the sum of $M_{i}(a, b)$ over (a, b) in T and let R be the sum of R_{i}
- Choose i with probability $\mathrm{R}_{\mathrm{i}} / \mathrm{R}$
- Choose (a, b) with probability $M_{i}(a, b) / R_{i}$

Total Entropy:

$\mathrm{n} \log _{2} 3 \leq$

Entropy Accounting 101

Sampling Procedure:

- Let R_{i} be the sum of $M_{i}(a, b)$ over (a, b) in T and let R be the sum of R_{i}
- Choose i with probability $\mathrm{R}_{\mathrm{i}} / \mathrm{R}$
- Choose (a, b) with probability $M_{i}(a, b) / R_{i}$

Total Entropy:

choose i
$\mathrm{n} \log _{2} 3 \leq$

$$
+
$$

choose (a,b) conditioned on i

Entropy Accounting 101

Sampling Procedure:

- Let R_{i} be the sum of $M_{i}(a, b)$ over (a, b) in T and let R be the sum of R_{i}
- Choose i with probability $\mathrm{R}_{\mathrm{i}} / \mathrm{R}$
- Choose (a, b) with probability $M_{i}(a, b) / R_{i}$

Total Entropy:

choose i
$\mathrm{n} \log _{2} 3 \leq \log _{2} r+$

Entropy Accounting 101

Sampling Procedure:

- Let R_{i} be the sum of $M_{i}(a, b)$ over (a, b) in T and let R be the sum of R_{i}
- Choose i with probability $\mathrm{R}_{\mathrm{i}} / \mathrm{R}$
- Choose (a,b) with probability $M_{i}(a, b) / R_{i}$

Total Entropy:

choose i
$n \log _{2} 3 \leq \log _{2} r+(1-\delta) n \log _{2} 3$
choose (a,b) conditioned on i

Entropy Accounting 101

Sampling Procedure:

- Let R_{i} be the sum of $M_{i}(a, b)$ over (a, b) in T and let R be the sum of R_{i}
- Choose i with probability $\mathrm{R}_{\mathrm{i}} / \mathrm{R}$
- Choose (a, b) with probability $M_{i}(a, b) / R_{i}$

Total Entropy:

choose i
$n \log _{2} 3 \leq \log _{2} r+(1-\delta) n \log _{2} 3$

Suppose that $\mathrm{a}_{-\mathrm{j}}$ and $\mathrm{b}_{-\mathrm{j}}$ are fixed

Suppose that $\mathrm{a}_{-\mathrm{j}}$ and $\mathrm{b}_{-\mathrm{j}}$ are fixed

M_{i} restricted to $\left(a_{-j}, b_{-j}\right)$

Suppose that $\mathrm{a}_{-\mathrm{j}}$ and $\mathrm{b}_{-\mathrm{j}}$ are fixed

M_{i} restricted to $\left(a_{-j}, b_{-j}\right)$

$$
\left(\ldots b_{j}=0 \ldots\right)\left(\ldots b_{j}=1 \ldots\right)
$$

$$
\begin{array}{l|l|l}
\left(a_{1 . j-1}, a_{j}=0, a_{j+1} \ldots n\right) & M_{i}(a, b) & M_{i}(a, b) \\
\left(a_{1 . j-1}, a_{j}=1, a_{j+1} \ldots n\right) & M_{i}(a, b) & M_{i}(a, b)
\end{array}
$$

$$
\left(\ldots b_{j}=0 \ldots\right)\left(\ldots b_{j}=1 \ldots\right)
$$

$\left(a_{1 . j-1}, a_{j}=0, a_{j+1} \ldots n\right) \quad M_{i}(a, b) \quad M_{i}(a, b)$
$\left(a_{1 . j-1}, a_{j}=1, a_{j+1} \ldots n\right) \quad M_{i}(a, b) \quad M_{i}(a, b)$

If $a_{j}=1, b_{j}=1$ then $a^{\top} b=1$, hence $M_{i}(a, b)=0$

$$
\begin{aligned}
& \left(\ldots b_{j}=0 \ldots\right)\left(\ldots b_{j}=1 \ldots\right) \\
& \left(a_{1 . j-1}, a_{j}=0, a_{j+1} \ldots n\right) \quad M_{i}(a, b) \quad M_{i}(a, b) \\
& \left(a_{1 . . j-1}, a_{j}=1, a_{j+1 \ldots n}\right) \quad M_{i}(a, b) \quad M_{i}(a, b)
\end{aligned}
$$

If $a_{j}=1, b_{j}=1$ then $a^{\top} b=1$, hence $M_{i}(a, b)=0$

$$
\left(\ldots b_{j}=0 \ldots\right)\left(\ldots b_{j}=1 \ldots\right)
$$

$$
\begin{array}{l|l|}
\left(a_{1 . j-1}, a_{j}=0, a_{j+1} \ldots n\right) & M_{i}(a, b) \\
\left(a_{1 . . j-1}, a_{j}=1, a_{j}(a, b)\right. \\
\cline { 2 - 3 } & M_{j+1}(a, b) \\
\text { zero }
\end{array}
$$

$$
\text { If } a_{j}=1, b_{j}=1 \text { then } a^{\top} b=1 \text {, hence } M_{i}(a, b)=0
$$

But rank $\left(M_{i}\right)=1$, hence there must be another zero in either the same row or column

$$
\begin{aligned}
& \left(\ldots b_{j}=0 \ldots\right)\left(\ldots b_{j}=1 \ldots\right) \\
& \left(a_{1 . . j-1}, a_{j}=0, a_{j+1 \ldots n}\right) \\
& M_{i}(a, b) \quad M_{i}(a, b) \\
& \left(a_{1 . . j-1}, a_{j}=1, a_{j+1 \ldots n}\right) \\
& M_{i}(a, b) \\
& \text { zero }
\end{aligned}
$$

$$
\text { If } a_{j}=1, b_{j}=1 \text { then } a^{\top} b=1 \text {, hence } M_{i}(a, b)=0
$$

But rank $\left(M_{i}\right)=1$, hence there must be another zero in either the same row or column

$$
\begin{aligned}
& \left(\ldots b_{j}=0 \ldots\right)\left(\ldots b_{j}=1 \ldots\right) \\
& \left(a_{1 . . j-1}, a_{j}=0, a_{j+1 \ldots n}\right) \\
& M_{i}(a, b) \quad M_{i}(a, b) \\
& \left(a_{1 . . j-1}, a_{j}=1, a_{j+1 \ldots n}\right) \\
& \text { zero } \\
& \text { zero }
\end{aligned}
$$

$$
\text { If } a_{j}=1, b_{j}=1 \text { then } a^{\top} b=1 \text {, hence } M_{i}(a, b)=0
$$

But rank $\left(M_{i}\right)=1$, hence there must be another zero in either the same row or column

$$
\underbrace{H\left(a_{j}, b_{j} \mid i, a_{j j}, b_{j}\right) \leq 1<\log _{2} 3 \quad\left(\ldots b_{j}=0 \ldots\right)\left(\ldots b_{j}=1 \ldots\right)}
$$

$$
\begin{aligned}
& \left(a_{1 . . j-1}, a_{j}=0, a_{j+1 \ldots n}\right) \\
& \left(a_{1 . . j-1}, a_{j}=1, a_{j+1 \ldots n}\right)
\end{aligned}
$$

$$
M_{i}(a, b) \mid M_{i}(a, b)
$$

zero

Entropy Accounting 101

Generate uniformly random (a,b) in T:

- Let R_{i} be the sum of $M_{i}(a, b)$ over (a, b) in T and let R be the sum of R_{i}
- Choose i with probability $\mathrm{R}_{\mathrm{i}} / \mathrm{R}$
- Choose (a, b) with probability $M_{i}(a, b) / R_{i}$

Total Entropy:

choose i
$\mathrm{n} \log _{2} 3 \leq \log _{2} \mathrm{r}+$

Entropy Accounting 101

Generate uniformly random (a,b) in T:

- Let R_{i} be the sum of $M_{i}(a, b)$ over (a, b) in T and let R be the sum of R_{i}
- Choose i with probability $\mathrm{R}_{\mathrm{i}} / \mathrm{R}$
- Choose (a,b) with probability $M_{i}(a, b) / R_{i}$

Total Entropy:

choose i
$n \log _{2} 3 \leq \log _{2} r+$
choose (a,b) conditioned on i

n

Outline

Part I: Tools for Extended Formulations

- Yannakakis's Factorization Theorem
- The Rectangle Bound
- A Sampling Argument

Part II: Applications

- Correlation Polytope
- Approximating the Correlation Polytope
- A Better Lower Bound for Disjointness

Outline

Part I: Tools for Extended Formulations

- Yannakakis's Factorization Theorem
- The Rectangle Bound
- A Sampling Argument

Part II: Applications

- Correlation Polytope
- Approximating the Correlation Polytope
- A Better Lower Bound for Disjointness

Approximate EFs [Braun et al]

Approximate EFs [Braun et al]

Is there a K (with small xc$)$ s.t. $\mathrm{P}_{\text {corr }} \subset \mathrm{K} \subset(\mathrm{C}+1) \mathrm{P}_{\text {corr }}$?
vertices: a in $\{0,1\}^{\text {n }}$

Approximate EFs [Braun et al]

Is there a K (with small xc$)$ s.t. $\mathrm{P}_{\text {corr }} \subset \mathrm{K} \subset(\mathrm{C}+1) \mathrm{P}_{\text {corr }}$?
vertices: a in $\{0,1\}^{\text {n }}$

Approximate EFs [Braun et al]

Is there a K (with small xc$)$ s.t. $\mathrm{P}_{\text {corr }} \subset \mathrm{K} \subset(\mathrm{C}+1) \mathrm{P}_{\text {corr }}$?
vertices: a in $\{0,1\}^{\text {n }}$

Is the correlation polytope hard to approximate for large values of C ?

Analogy: Is UDISJ hard to compute with prob. $1 / 2+1 / 2(C+1)$ for large values of C ?

Is the correlation polytope hard to approximate for large values of C ?

Analogy: Is UDISJ hard to compute with prob. $1 / 2+1 / 2(C+1)$ for large values of C ?

There is a natural barrier at $C=\sqrt{ }$ for proving l.b.s:

Is the correlation polytope hard to approximate for large values of C?

Analogy: Is UDISJ hard to compute with prob.
$1 / 2+1 / 2(\mathrm{C}+1)$ for large values of C ?
There is a natural barrier at $\mathrm{C}=\sqrt{ } \mathrm{n}$ for proving I.b.s:
Claim: If UDISJ can be computed with prob. $1 / 2+1 / 2(\mathrm{C}+1)$ using $\mathrm{o}\left(\mathrm{n} / \mathrm{C}^{2}\right)$ bits, then UDISJ can be computed with prob. $3 / 4$ using o(n) bits

Is the correlation polytope hard to approximate for large values of C ?

Analogy: Is UDISJ hard to compute with prob.
$1 / 2+1 / 2(\mathrm{C}+1)$ for large values of C ?
There is a natural barrier at $\mathrm{C}=\sqrt{ } \mathrm{n}$ for proving l.b.s:
Claim: If UDISJ can be computed with prob. $1 / 2+1 / 2(\mathrm{C}+1)$ using $o\left(n / \mathrm{C}^{2}\right)$ bits, then UDISJ can be computed with prob. $3 / 4$ using o(n) bits

Proof: Run the protocol $\mathrm{O}\left(\mathrm{C}^{2}\right)$ times and take the majority vote

Information Complexity

Information Complexity

In fact, a more technical barrier is:

Information Complexity

In fact, a more technical barrier is:
[Bar-Yossef et al '04]:
\# Bits exchanged \geq information revealed

Information Complexity

In fact, a more technical barrier is:
[Bar-Yossef et al '04]:
\# Bits exchanged \geq information revealed
$\geq \mathrm{nx}$ information revealed for a one-bit problem

Information Complexity

In fact, a more technical barrier is:
[Bar-Yossef et al '04]:
\# Bits exchanged \geq information revealed

Direct Sum Theorem

$\geq \mathrm{n} x$ information revealed for a one-bit problem

Information Complexity

In fact, a more technical barrier is:
[Bar-Yossef et al '04]:
\# Bits exchanged \geq information revealed

Direct Sum Theorem

$\geq \mathrm{n} x$ information revealed for a one-bit problem

Problem: AND has a protocol with advantage $1 / \mathrm{C}$ that reveals only $1 / \mathrm{C}^{2}$ bits...

Problem: AND has a protocol with advantage 1/C that reveals only $1 / C^{2}$ bits...

Problem: AND has a protocol with advantage 1/C that reveals only $1 / C^{2}$ bits...

Send her bit with prob.
$1 / 2+1 / C$, else send
the complement

Problem: AND has a protocol with advantage 1/C that reveals only $1 / C^{2}$ bits...

Send her bit with prob. $1 / 2+1 / C$, else send the complement

Send his bit with prob. $1 / 2+1 / C$, else send the complement

Send her bit with prob. $1 / 2+1 / C$, else send the complement

Send his bit with prob.
$1 / 2+1 / C$, else send the complement

Is there a stricter one bit problem that we could reduce to instead?

Send her bit with prob. $1 / 2+1 / C$, else send the complement

Send his bit with prob.
$1 / 2+1 / C$, else send the complement

Outline

Part I: Tools for Extended Formulations

- Yannakakis's Factorization Theorem
- The Rectangle Bound
- A Sampling Argument

Part II: Applications

- Correlation Polytope
- Approximating the Correlation Polytope
- A Better Lower Bound for Disjointness

Outline

Part I: Tools for Extended Formulations

- Yannakakis's Factorization Theorem
- The Rectangle Bound
- A Sampling Argument

Part II: Applications

- Correlation Polytope
- Approximating the Correlation Polytope
- A Better Lower Bound for Disjointness

Definition: Output matrix is the prob. of outputting

 "one" for each pair of inputs
Definition: Output matrix is the prob. of outputting

 "one" for each pair of inputsFor the previous protocol:

\[

\]

The constraint that a protocol achieves advantage at least $1 / C$ is a set of linear constraints on this matrix

For the previous protocol:

\[

\]

The constraint that a protocol achieves advantage at least $1 / C$ is a set of linear constraints on this matrix

For the previous protocol:

$$
\begin{aligned}
& B=0 \quad B=1 \\
& A=0 \quad 1 / 2+5 / C \quad 1 / 2+1 / C \\
& A=1 \quad 1 / 2+1 / C \quad 1 / 2-3 / C
\end{aligned}
$$

(Using Hellinger): bits revealed $\geq(m a x-m i n))^{2}=\Omega\left(1 / C^{2}\right)$

The constraint that a protocol achieves advantage at least $1 / C$ is a set of linear constraints on this matrix

For the previous protocol:

\[

\]

(Using Hellinger): bits revealed $\geq(m a x-m i n))^{2}=\Omega\left(1 / C^{2}\right)$
(New): bits revealed \geq diagonal - anti-diagonal $\mid=0$

For the previous protocol:

What if we also require the output distribution to be the same for inputs $\{0,0\},\{0,1\},\{1,0\}$?

For the previous protocol:

\[

\]

What if we also require the output distribution to be the same for inputs $\{0,0\},\{0,1\},\{1,0\}$?

For the previous new protocol:

\[

\]

What if we also require the output distribution to be the same for inputs $\{0,0\},\{0,1\},\{1,0\}$?

For the previous new protocol:

\[

\]

(Using Hellinger): bits revealed $\geq(\max -\min)^{2}=\Omega\left(1 / C^{2}\right)$

What if we also require the output distribution to be the same for inputs $\{0,0\},\{0,1\},\{1,0\}$?

For the previous new protocol:

\[

\]

(Using Hellinger): bits revealed $\geq(\max -\min)^{2}=\Omega\left(1 / C^{2}\right)$
(New): bits revealed \geq diagonal - anti-diagonal $\mid=\Omega(1 / \mathrm{C})$

How can we reduce to such a one-bit problem?

How can we reduce to such a one-bit problem?

Symmetrized Protocol T':

How can we reduce to such a one-bit problem?

Symmetrized Protocol T':

- Generate a random partition ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) of $\mathrm{n} / 2$ and fill in $x(0,0), y(0,1)$ and $z(1,0)$ pairs

How can we reduce to such a one-bit problem?

Symmetrized Protocol T':

- Generate a random partition ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) of $\mathrm{n} / 2$ and fill in $x(0,0), y(0,1)$ and $z(1,0)$ pairs

How can we reduce to such a one-bit problem?

Symmetrized Protocol T':

- Generate a random partition ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) of $\mathrm{n} / 2$ and fill in $x(0,0), y(0,1)$ and $z(1,0)$ pairs
- Permute the n bits uniformly at random

How can we reduce to such a one-bit problem?

Symmetrized Protocol T':

- Generate a random partition ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) of $\mathrm{n} / 2$ and fill in $x(0,0), y(0,1)$ and $z(1,0)$ pairs
- Permute the n bits uniformly at random
- Run T on the n bit string, return the output

Symmetrized Protocol T':

- Generate a random partition ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) of $\mathrm{n} / 2$ and fill in $x(0,0), y(0,1)$ and $z(1,0)$ pairs
- Permute the n bits uniformly at random
- Run T on the n bit string, return the output

Symmetrized Protocol T':

- Generate a random partition ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) of $\mathrm{n} / 2$ and fill in $x(0,0), y(0,1)$ and $z(1,0)$ pairs
- Permute the n bits uniformly at random
- Run T on the n bit string, return the output

Claim: The protocol T' has bias 1/C for DISJ.

Symmetrized Protocol T':

- Generate a random partition ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) of $\mathrm{n} / 2$ and fill in $x(0,0), y(0,1)$ and $z(1,0)$ pairs
- Permute the n bits uniformly at random
- Run T on the n bit string, return the output

Claim: The protocol T' has bias 1/C for DISJ.
Claim: Yet flipping a pair $\left(\mathrm{a}_{\mathrm{i}}, \mathrm{b}_{\mathrm{i}}\right)$ between $(0,0),(0,1)$ or $(1,0)$ results in two distributions p, q (on inputs to T) with $|p-q|_{1} \leq 1 / n$

Symmetrized Protocol T':

- Generate a random partition ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) of $\mathrm{n} / 2$ and fill in $x(0,0), y(0,1)$ and $z(1,0)$ pairs
- Permute the n bits uniformly at random
- Run T on the n bit string, return the output

Claim: The protocol T' has bias 1/C for DISJ.
Claim: Yet flipping a pair $\left(\mathrm{a}_{\mathrm{i}}, \mathrm{b}_{\mathrm{i}}\right)$ between $(0,0),(0,1)$ or $(1,0)$ results in two distributions p, q (on inputs to T) with $|p-q|_{1} \leq 1 / n$

Proof:

Theorem: any protocol for UDISJ with adv. 1/C must reveal $\Omega(\mathrm{n} / \mathrm{C})$ bits (because it can be symmetrized)

Theorem: any protocol for UDISJ with adv. 1/C must reveal $\Omega(\mathrm{n} / \mathrm{C})$ bits (because it can be symmetrized)

Similarly sampling a pair $\left(a_{j}, b_{j}\right)$ needs entropy $\log _{2} 3-\delta$, where δ is the difference of diagonals

Theorem: any protocol for UDISJ with adv. 1/C must reveal $\Omega(n / C)$ bits (because it can be symmetrized)

Similarly sampling a pair $\left(a_{j}, b_{j}\right)$ needs entropy $\log _{2} 3-\delta$, where δ is the difference of diagonals

Theorem: For any K with $\mathrm{P}_{\text {corr }} \subset \mathrm{K} \subset(\mathrm{C}+1) \mathrm{P}_{\text {corr, }}$, the extension complexity of K is at least $\exp (\Omega(n / C))$

Theorem: any protocol for UDISJ with adv. 1/C must reveal $\Omega(n / C)$ bits (because it can be symmetrized)

Similarly sampling a pair $\left(a_{j}, b_{j}\right)$ needs entropy $\log _{2} 3-\delta$, where δ is the difference of diagonals

Theorem: For any K with $\mathrm{P}_{\text {corr }} \subset \mathrm{K} \subset(\mathrm{C}+1) \mathrm{P}_{\text {corr }}$, the extension complexity of K is at least $\exp (\Omega(n / C))$

Can our framework be used to prove further lower bounds for extension complexity?

Theorem: any protocol for UDISJ with adv. 1/C must reveal $\Omega(n / C)$ bits (because it can be symmetrized)

Similarly sampling a pair $\left(a_{j}, b_{j}\right)$ needs entropy $\log _{2} 3-\delta$, where δ is the difference of diagonals

Theorem: For any K with $\mathrm{P}_{\text {corr }} \subset \mathrm{K} \subset(\mathrm{C}+1) \mathrm{P}_{\text {corr }}$, the extension complexity of K is at least $\exp (\Omega(n / C))$

Can our framework be used to prove further lower bounds for extension complexity?

For average case instances?

Theorem: any protocol for UDISJ with adv. 1/C must reveal $\Omega(n / C)$ bits (because it can be symmetrized)

Similarly sampling a pair $\left(a_{j}, b_{j}\right)$ needs entropy $\log _{2} 3-\delta$, where δ is the difference of diagonals

Theorem: For any K with $\mathrm{P}_{\text {corr }} \subset \mathrm{K} \subset(\mathrm{C}+1) \mathrm{P}_{\text {corr }}$, the extension complexity of K is at least $\exp (\Omega(n / C))$

Can our framework be used to prove further lower bounds for extension complexity?

For average case instances? For SDPs?

Thanks!

Any Questions?

