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LetT=[1, 2, 3, ... n], P =conv{m(t)]is permutation}

[How many facets of P have? } exponentially many!

e.9. SN, S o x 21+ 2+ . +|S| = [S|(IS|+1)/2
Let Q = {A| Ais doubly-stochastic}

Then P is the projection of Q: P = {ATTAInQ }

[Yet Q has only O(n?) facets}
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Extended Formulations

The extension complexity (xc) of a polytope P is the
minimum number of facets of Q so that P = proj(Q)

e.g. xc(P) = ©(n logn)
for permutahedron

£ xc(P) = ©(logn) for a
: regular n-gon, but Q(\n)
for its perturbation

...................

....................

!_)

In general, P = {x |3y, (x,y) in Q}

...analogy with quantifiers in Boolean formulae
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Applications of EFs

In general, P = {x |3y, (x,y) in Q}

[Through EFs, we can reduce # facets exponentially! }

Hence, we can run standard LP solvers instead of
the ellipsoid algorithm

EFs often give, or are based on new combinatorial
Insights

e.g. Birkhoff-von Neumann Thm and permutahedron

e.g. prove there is low-cost object, through its polytope
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R
Explicit, Hard Polytopes?

Definition: TSP polytope:
P = conv{1,| F is the set of edges on a tour of K}

(If we could optimize over this polytope, then P = NP)

[Can we prove unconditionally there is no small EF? J

Caveat: this Is unrelated to proving complexity l.b.s

[Yannakakis ’90]: Yes, through the nonnegative rank
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Theorem [Yannakakis ’90]: Any symmetric LP for
TSP or matching has size 29"

Theorem [Fiorini et al ’12]: Any LP for TSP has size
220 (hased on a 220 |ower bd for clique)

Theorem [Braun et al ’12]: Any LP that approximates
cligue within nt2¢ps has size exp(ners)

Hastad’s proved an ni-°) hardness of approx. for
cligue, can we prove the analogue for EFs?

Theorem [Braverman, Moitra 13]: Any LP that
approximates cligue within nt-eps has size exp(ners)
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A
[ 1

S — M, | + -+ M,

Definition: rank*(S) is the smallest r s.t. S can be
written as the sum of r rank one, nonneg. matrices

Note: rank*(S) = rank(S), but can be much larger too!
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The Factorization Theorem

[How can we prove lower bounds on EFs? J

[Yannakakis ’90]: XC(P) = rank*(S(P))
Geometric ﬁ Algebraic
Parameter Parameter

Intuition: the factorization gives a change of variables
that preserves the slack matrix!

We will give a new way to lower bound nonnegative
rank via information theory...




Outline

Part I. Tools for Extended Formulations
e Yannakakis’s Factorization Theorem
* The Rectangle Bound
* A Sampling Argument

Part Il: Applications
e Correlation Polytope
* Approximating the Correlation Polytope
* A Better Lower Bound for Disjointness



Outline

Part I. Tools for Extended Formulations
e Yannakakis’s Factorization Theorem
* The Rectangle Bound
* A Sampling Argument

Part Il: Applications
e Correlation Polytope
* Approximating the Correlation Polytope
* A Better Lower Bound for Disjointness



R
The Rectangle Bound

rank one, nonnegative

A
[ 1

S — M, | + -+ M,




The Rectangle Bound

rank one, nonnegative

A
[ 1

Ml + + Ivlr




The Rectangle Bound

rank one, nonnegative
|

[ 1

-
:I +“_+ M,




The Rectangle Bound

rank one, nonnegative

A
[ 1

+ 4| M




The Rectangle Bound

rank one, nonnegative

A
[ |

L




The Rectangle Bound

rank one, nonnegative

A
[ |

B Tt EH

LThe support of each M, is a combinatorial rectangle }




The Rectangle Bound

rank one, nonnegative

A
[ |

B Tt EH

LThe support of each M. is a combinatorial rectangle }

rank*(S) Is at least # rectangles needed to cover supp of S



The Rectangle Bound

rank one, nonnegative

A
[ |

+  +

L

rank*(S) Is at least # rectangles needed to cover supp of S




The Rectangle Bound

rank one, nonnegative

A
[ |

+  +

[Non-deterministic Comm. Complexity }

L

rank*(S) Is at least # rectangles needed to cover supp of S
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A Sampling Argument

T ={} setof entries in S with same value

e ...t

Choose M. proportional to total value on T

Choose (a,b) in T proportional to relative value in M,

[If r is too small, this procedure uses too little entropy! }
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The Construction of [Fiorini et al]

correlation polytope: P, .= conv{aa'|a in {0,1}" }

corr

vertices: a in {0,1}"

@ h

UNIQUE DISJ.
Output YES' if a
and b as sets
are disjoint, and
‘NO’ifaand b
have one index

IN common
U /

constraints:
bin {0,1}" S

(1-a'b)?
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The Reconstruction Principle
Let T ={(a,b) | a™b = 0}, [T| = 3"

Recall: S, ,=(1-a'b)?, so S, ,=1 for all pairsin T

p
How does the sampling procedure specialize to
\this case? (Recall it generates (a,b) unif. from T)

Sampling Procedure:
* Let R, be the sum of M;(a,b) over (a,b) in T and
let R be the sum
* Choose I with probability R/R
e Choose (a,b) with probability M,(a,b)/R 7
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Sampling Procedure:
* Let R, be the sum of Mi(a,b) over (a,b) in T and
let R be the sum of R,
* Choose i with probability R/R
* Choose (a,b) with probability M.(a,b)/R;

Total Entropy: choose (a,b)

choose | conditioned on |
| |

nlog,3 < | Iogzr‘ —+ | (1-0)n IogZB‘ (?)
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If a=1, b=1then a'b =1, hence M;(a,b) = 0

But rank(M)=1, hence there must be another
zero in either the same row or column

H@bji 2, b) < 1<log;3 (.b=0...) (..b=1...

) (...b=1

(a.j1,2=0,a.1 1)

(@ 1,871,841 1)
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Approximate EFs [Braun et al]

L Is there a K (with small xc) s.t. P, Kc (C+1)P,,? }

vertices: a in {0,1}"

( A

New Goal:
Output the answer to
UDISJ with prob. at
least 2 + 1/2(C+1) Py

constraints:
bin {0,1}" S

&

(1-a'™b)? + C
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Is the correlation polytope hard to approximate for
large values of C?

Analogy: Is UDISJ hard to compute with prob.
5+1/2(C+1) for large values of C?

{There is a natural barrier at C = \n for proving |.b.s: }

Claim: If UDISJ can be computed with prob.
15+1/2(C+1) using o(n/C?) bits, then UDISJ can be
computed with prob. % using o(n) bits

Proof: Run the protocol O(C?) times and take the
majority vote
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Symmetrized Protocol T’:

e Generate a random patrtition (X, y, z) of n/2 and
fill in x (0,0), y (0,1) and z (1,0) pairs

* Permute the n bits uniformly at random

 Run T on the n bit string, return the output 7

Claim: The protocol T has bias 1/C for DISJ.

Claim: Yet flipping a pair (a,, b;) between (0,0), (0,1) or
(1,0) results in two distributions p,g (on inputs to T) with
[p-qly = 1/n

Proof:
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Theorem: any protocol for UDISJ with adv. 1/C must
reveal Q(n/C) bits (because it can be symmetrized)

Similarly sampling a pair (a;, b)) needs entropy log,3 — 0,
where 0 is the difference of diagonals

Theorem: For any K with P_,,c K < (C+1)P,,,,, the
extension complexity of K is at least exp(Q2(n/C))

Can our framework be used to prove further lower
bounds for extension complexity?

For average case instances? For SDPs?



Thanks!

o

Any Questions?



