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Let t = [1, 2, 3, … n], P = conv{π(t) | π is permutation}  

How many facets of P have?  

e.g. S    [n], Σi in S xi ≥ 1 + 2 + … + |S| = |S|(|S|+1)/2 

Let Q = {A| A is doubly-stochastic}  

Then P is the projection of Q: P = {A t | A in Q } 

Yet Q has only O(n2) facets 

exponentially many! 
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The extension complexity (xc) of a polytope P is the 

minimum number of facets of Q so that P = proj(Q)  

e.g. xc(P) = Θ(n logn)  

       for permutahedron 

xc(P) = Θ(logn) for a  

regular n-gon, but Ω(√n)  

for its perturbation 

In general, P = {x |   y, (x,y) in Q} E 

…analogy with quantifiers in Boolean formulae 
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Applications of EFs 

In general, P = {x |   y, (x,y) in Q} E 

Through EFs, we can reduce # facets exponentially! 

Hence, we can run standard LP solvers instead of 

the ellipsoid algorithm 

EFs often give, or are based on new combinatorial 

insights 

e.g. Birkhoff-von Neumann Thm and permutahedron 

e.g. prove there is low-cost object, through its polytope 
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Explicit, Hard Polytopes? 

Can we prove unconditionally there is no small EF?  

[Yannakakis ’90]: Yes, through the nonnegative rank 

Definition: TSP polytope: 

P = conv{1F| F is the set of edges on a tour of Kn}  

Caveat: this is unrelated to proving complexity l.b.s 

(If we could optimize over this polytope, then P = NP) 
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Hastad’s proved an n1-o(1) hardness of approx. for 

clique, can we prove the analogue for EFs? 

Theorem [Yannakakis ’90]: Any symmetric LP for  

TSP or matching has size 2Ω(n) 

  

Theorem [Fiorini et al ’12]: Any LP for TSP has size 

2Ω(√n) (based on a 2Ω(n) lower bd for clique) 

Theorem [Braun et al ’12]: Any LP that approximates 

clique within n1/2-eps has size exp(neps) 

Theorem [Braverman, Moitra ’13]: Any LP that  

approximates clique within n1-eps has size exp(neps) 
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Definition: rank+(S) is the smallest r s.t. S can be 

written as the sum of r rank one, nonneg. matrices 

rank one, nonnegative 

Note: rank+(S) ≥ rank(S), but can be much larger too! 
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The Factorization Theorem 

[Yannakakis ’90]: 

How can we prove lower bounds on EFs? 

Geometric 

Parameter 

Algebraic 

Parameter 

xc(P) = rank+(S(P)) 

Intuition: the factorization gives a change of variables  

that preserves the slack matrix! 

We will give a new way to lower bound nonnegative 

rank via information theory… 
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If r is too small, this procedure uses too little entropy! 

T = {    }, set of entries in S with same value 

Choose Mi proportional to total value on T 
 

Choose (a,b) in T proportional to relative value in Mi 
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The Construction of [Fiorini et al] 

S 

constraints: 

vertices: a in {0,1}n 

b in {0,1}n 

(1-aTb)2 

UNIQUE DISJ. 

Output ‘YES’ if a 

and b as sets 

are disjoint, and 

‘NO’ if a and b 

have one index 

in common 

correlation polytope: Pcorr= conv{aaT|a in {0,1}n } 
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Analogy: Is UDISJ hard to compute with prob.  

½+1/2(C+1) for large values of C? 

Claim: If UDISJ can be computed with prob.  

½+1/2(C+1) using o(n/C2) bits, then UDISJ can be 

computed with prob. ¾ using o(n) bits 

Proof: Run the protocol O(C2) times and take the  

majority vote 

There is a natural barrier at C = √n for proving l.b.s: 
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Similarly sampling a pair (aj, bj) needs entropy log23 – δ,  

where δ is the difference of diagonals 

Theorem: For any K with Pcorr   K     (C+1)Pcorr, the 

extension complexity of K is at least exp(Ω(n/C)) 

For average case instances? For SDPs?  



Thanks!  

 

 

 

Any Questions? 
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vj 


