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MARKOV DECISION PROCESSES

� Action Space

� State Space    , start at

� Horizon

R = 2

R = 0

R = -2

R = 1

R = 1

Goal: Find a policy                        that maximizes expected reward

� Rewards

� Transition Probabilities
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MARKOV DECISION PROCESSES

Main problems:

(1) Planning: Given a full description of the MDP, compute
an optimal policy

e.g. value iteration, policy iteration, linear programming

(2) Learning: Given budget of iterations with the environment
(e.g. simulator, episodic), learn an optimal policy

e.g. model based, q-learning, actor-critic, policy gradient
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Too many states to write down or visit?

Cannot directly observe the full state?

There is a rich understanding of how to augment the model,
and still be able to bound sample complexity

function approximation, block MDPs, etc

Partially observable MDPs (POMDPs)

And yet, for many applications tabular MDPs are insufficient
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WHAT ABOUT COMPUTATIONAL COMPLEXITY?

Returning to our earlier picture

Agent

Environment
ActionReward State

P

NP coNP
PSPACE

Modern RL is generally built on computationally intractable oracles

Are there computationally efficient algorithms with strong
end-to-end provable guarantees?
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PLANNING IS HARD

Theorem [Papadimitriou, Tsitsiklis]: Optimal planning in a POMDP 
is PSPACE hard

Classic lower bound:
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THE CURSE OF HISTORY

Can you succinctly represent an optimal policy?

MDPs POMDPs

Optimal action only
depends on current state

Optimal action depends on
action/observation history

Alternatively, it depends
on the current belief

Natural approaches use exponential space or
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PLANNING IS EVEN HARDER

Theorem [Golowich, Moitra, Rohatgi]: Unless the exponential
time hierarchy collapses, there is no polynomial sized description
of an approximately optimal policy

Even worse news:

Why should real-world POMDPs have succinct descriptions of
good policies?
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BEYOND WORST-CASE ANALYSIS

The hard instances have a curious feature:

“The observations don’t tell you anything about the state”

But what if they are at least somewhat informative?

“The observations leak some information about the state”

Could this enable tractable planning/learning?
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Definition: We say the POMDP is    -observable if for all     and all 
distributions    ,    on states we have

i.e. well-separated distributions on states lead to well-separated
distributions on observations

Introduced by [Even-Dar, Kakade, Mansour] for understanding
stability of beliefs in HMMs under misspecification

Key Point: No assumption on transition dynamics like e.g. 
deterministic transitions or mixing (under every possible policy)



Part I: Introduction

� Models and Problems

� Hardness and Beyond Worst-Case Analysis

� Our Results

Part II: Planning

OUTLINE

Part III: Learning

� Approximate MDPs via Barycentric Spanners



Part I: Introduction

� Models and Problems

� Hardness and Beyond Worst-Case Analysis

� Our Results

Part II: Planning

OUTLINE

Part III: Learning

� Approximate MDPs via Barycentric Spanners



MAIN RESULTS (PLANNING)

There is a quasi-polynomial time algorithm for planning under
observability:

Theorem [Golowich, Moitra, Rohatgi]: Given the description of
a    -observable POMDP there is an algorithm running in time

that outputs an   -suboptimal policy



MAIN RESULTS (PLANNING)

There is a quasi-polynomial time algorithm for planning under
observability:

Theorem [Golowich, Moitra, Rohatgi]: Given the description of
a    -observable POMDP there is an algorithm running in time

that outputs an   -suboptimal policy

Key Idea: The Bayes filter is exponentially stable

compute posterior on states, given actions/observations
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MAIN RESULTS (PLANNING), CONTINUED

Moreover these results are tight

Theorem [Golowich, Moitra, Rohatgi]: Under the Exponential
Time Hypothesis, there is no algorithm running in time

for finding an   -suboptimal policy in a    -observable POMDP

It’s hard even in the lossy case, where you observe the state with 
probability     independently at each step
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WHAT ABOUT LEARNING?

In observable POMDPs:

Agent

Environment
ActionReward Observation

P

NP coNP
PSPACE

Can we build a learning algorithm on top of this primitive?

Quasi-polynomial
time planning
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SAMPLE EFFICIENT LEARNING?

Assumption 1: The POMDP is undercomplete, i.e.
And moreover for all

Theorem [Jin, Kakade, Krishnamurthy, Liu]: Given access to an
optimistic planning oracle, there is an algorithm that uses

samples and finds an   -suboptimal policy under Assumption 1

i.e. given a constrained, non-convex set of POMDPs, find the
maximum value achievable by any policy in the set

But optimism is very hard!
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MAIN RESULTS (LEARNING)

We show how to solve learning by using barycentric spanners
to construct a policy cover. As a result:

Theorem [Golowich, Moitra, Rohatgi]: There is an algorithm with
running time and sample complexity

that outputs an   -suboptimal policy in a    -observable POMDP

These are the first end-to-end algorithmic guarantees for
learning POMDPs, without oracles or strong assumptions about
the model dynamics
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BELIEF CONTRACTION

Theorem: Fix any    -observable POMDP and policy     . Then

posterior, starting from 
arbitrary belief state 

posterior, starting from 
uniform belief state 

where     is the trajectory from the POMDP by playing

Parallels well-known stability results for Kalman filtering



BELLMAN UPDATES FOR POMDPS

Value(x) = Max
actions a

Reward(a) +E[ ]Value(x’)

current action/obs. sequence new action/obs. sequence

Can find an optimal policy through:

latent state sampled from current belief
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TRUNCATED BELLMAN UPDATES

Value(x) = Max
actions a

Reward(a) +E[ ]Value(x’)

latent state sampled from truncated belief, with uniform prior
length t window length t window

We only need a quasi-polynomial number of belief states

Belief contraction allows us to truncate
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APPROXIMATION BY MDPS

Corollary: Any   -observable POMDP P can be approximated by
an MDP M with a quasi-polynomial number of states

(1) P can be thought of as an MDP on belief states 

(2) Construct M as follows:

states = length L sequences of actions/observations

transitions = shift in/out the newest/oldest actions/obs.

(3) States in M can mapped to beliefs (using a uniform prior).

By belief contraction, M and P approximate each other
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APPROXIMATION BY MDPS

Corollary: Any   -observable POMDP P can be approximated by
an MDP M with a quasi-polynomial number of states

Can we learn M efficiently?

Simplification: For any latent state x in P, and any timestep h, there
is some policy      that visits x at h with nonnegligible probability

How can we find a mixture of policies that visits all latent states?
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BARYCENTRIC SPANNERS

Definition: Given a set                  , a    -approximate barycentric
spanner is a set                of size d such that every point in
can be expressed as a linear combination of points in     with
coefficients in the range 

Theorem [Awerbuch, Kleinberg ‘04]: Given an oracle for optimizing
linear functions over    , there is a polynomial time algorithm for
constructing a   -approximate barycentric spanner with

calls to the optimization oracle (assuming      is compact) 
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POLICY COVERS

Now let

set of all distributions on observations
at step h that can be obtained by a policy

Claim: By observability, if we can construct policies

whose induced distributions on observations at step h are an
approximate barycentric spanner, we must visit each latent
state with nonnegligible probability
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ITERATIVE EXPLORATION

Our approach is:

Mh+1
MDP that 

approximates
P up to step h+1

Barycentric spanner
for observation 

distributions at step h

Xh

Reaches all 
latent states

“explorability”

Estimate next
layer of transitions

Without explorability, need more complex measure of progress
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LOOKING FORWARD

To get end-to-end algorithmic guarantees, we need to explore
new assumptions and frameworks

In [Golowich, Moitra], we took a learning-augmented 
algorithms approach:

“Can you improve Q-learning with advice?”

Takeaway: Improved regret bounds, where you only need to 
explore state-action pairs with substantially inaccurate predictions,
even without knowing which ones are accurate in advance
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