Polynomial Methods in Learning and Statistics

Ankur Moitra, MIT

July 11, 2013

Ankur Moitra (MIT)

Polynomial Methods

July 11, 2013

Outline

- Mixtures of Gaussians
 - Highlights: method of moments and the heat equation
 - based on [Kalai, Moitra, Valiant] (see also [Belkin and Sinha])
- Topic Models
 - Highlights: tensor methods and Chang's Lemma
 - based on [Anandkumar, Foster, Hsu, Kakade and Liu]
- Nonnegative Matrix Factorization
 - Highlights: separability and more general topic models

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

• based on [Arora, Ge, Kannan, Moitra]

Outline

• Mixtures of Gaussians

- Highlights: method of moments and the heat equation
- based on [Kalai, Moitra, Valiant] (see also [Belkin and Sinha])
- Topic Models
 - Highlights: tensor methods and Chang's Lemma
 - based on [Anandkumar, Foster, Hsu, Kakade and Liu]
- Nonnegative Matrix Factorization
 - Highlights: separability and more general topic models

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

• based on [Arora, Ge, Kannan, Moitra]

Pearson (1894) and the Naples Crabs

(figure due to Peter Macdonald)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

$$F(x) = w_1 F_1(x) + (1 - w_1) F_2(x)$$
, where $F_i(x) = \mathcal{N}(\mu_i, \sigma_i^2, x)$

In particular, with probability w_1 output a sample from F_1 , otherwise output a sample from F_2

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

$$F(x) = w_1 F_1(x) + (1 - w_1) F_2(x)$$
, where $F_i(x) = \mathcal{N}(\mu_i, \sigma_i^2, x)$

In particular, with probability w_1 output a sample from F_1 , otherwise output a sample from F_2

five unknowns: $w_1, \mu_1, \sigma_1, \mu_2, \sigma_2$

$$F(x) = w_1 F_1(x) + (1 - w_1) F_2(x)$$
, where $F_i(x) = \mathcal{N}(\mu_i, \sigma_i^2, x)$

In particular, with probability w_1 output a sample from F_1 , otherwise output a sample from F_2

```
five unknowns: w_1, \mu_1, \sigma_1, \mu_2, \sigma_2
```

Question

Can we learn these parameters approximately, given enough random samples from F?

< □ > < (四 > < (回 >) < (u = 1) <

$$F(x) = w_1 F_1(x) + (1 - w_1) F_2(x)$$
, where $F_i(x) = \mathcal{N}(\mu_i, \sigma_i^2, x)$

In particular, with probability w_1 output a sample from F_1 , otherwise output a sample from F_2

```
five unknowns: w_1, \mu_1, \sigma_1, \mu_2, \sigma_2
```

Question

Can we learn these parameters approximately, given enough random samples from F?

Pearson invented the method of moments, to attack this problem...

◆□>
◆□>
●

Claim

 $E_{x \leftarrow F(x)}[x^r]$ is a polynomial in $\theta = (w_1, \mu_1, \sigma_1, \mu_2, \sigma_2)$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 臣 の�?

Claim

 $E_{x \leftarrow F(x)}[x^r]$ is a polynomial in $\theta = (w_1, \mu_1, \sigma_1, \mu_2, \sigma_2)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ のへで

Let $E_{x \leftarrow F(x)}[x^r] = M_r(\theta)$

Claim

 $E_{x \leftarrow F(x)}[x^r]$ is a polynomial in $\theta = (w_1, \mu_1, \sigma_1, \mu_2, \sigma_2)$

Let $E_{x \leftarrow F(x)}[x^r] = M_r(\theta)$

Claim

 $E_{x \leftarrow F(x)}[x^r]$ is a polynomial in $\theta = (w_1, \mu_1, \sigma_1, \mu_2, \sigma_2)$

(日) (문) (문) (문) (문)

Let $E_{x \leftarrow F(x)}[x^r] = M_r(\theta)$

• Gather samples S

Claim

 $E_{x \leftarrow F(x)}[x^r]$ is a polynomial in $\theta = (w_1, \mu_1, \sigma_1, \mu_2, \sigma_2)$

(日) (四) (코) (코) (코) (코)

Let
$$E_{x \leftarrow F(x)}[x^r] = M_r(\theta)$$

 \bullet Gather samples S

• Set
$$\widetilde{M}_r = rac{1}{|S|} \sum_{i \in S} x_i^r$$
 for $r = 1, 2, ...6$

Claim

 $E_{x \leftarrow F(x)}[x^r]$ is a polynomial in $\theta = (w_1, \mu_1, \sigma_1, \mu_2, \sigma_2)$

Let
$$E_{x \leftarrow F(x)}[x^r] = M_r(\theta)$$

• Gather samples S

• Set
$$\widetilde{M}_r = rac{1}{|S|} \sum_{i \in S} x_i^r$$
 for $r = 1, 2, ...6$

• Compute simultaneous roots of $\{M_r(\theta) = \widetilde{M}_r\}_{r=1,2,...5}$,

(日) (四) (문) (문) (문) (문)

Claim

 $E_{x \leftarrow F(x)}[x^r]$ is a polynomial in $\theta = (w_1, \mu_1, \sigma_1, \mu_2, \sigma_2)$

Let
$$E_{x \leftarrow F(x)}[x^r] = M_r(\theta)$$

• Gather samples S

• Set
$$\widetilde{M}_r = rac{1}{|S|} \sum_{i \in S} x_i^r$$
 for $r = 1, 2, ...6$

• Compute simultaneous roots of $\{M_r(\theta) = \widetilde{M}_r\}_{r=1,2,\dots 5}$, select root θ that is closest in **sixth** moment

• Pearson (1894): Method of Moments (no guarantees)

- Pearson (1894): Method of Moments (no guarantees)
- Fisher (1912-1922): Maximum Likelihood Estimator (MLE)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- Pearson (1894): Method of Moments (no guarantees)
- Fisher (1912-1922): Maximum Likelihood Estimator (MLE) consistent and efficient in the limit, computationally hard

◆□> ◆□> ◆三> ◆三> ● 三 のへで

- Pearson (1894): Method of Moments (no guarantees)
- Fisher (1912-1922): Maximum Likelihood Estimator (MLE) consistent and efficient in the limit, computationally hard

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

• Teicher (1961): Identifiability through tails

- Pearson (1894): Method of Moments (no guarantees)
- Fisher (1912-1922): Maximum Likelihood Estimator (MLE) consistent and efficient in the limit, computationally hard

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

• Teicher (1961): Identifiability through tails requires many samples

- Pearson (1894): Method of Moments (no guarantees)
- Fisher (1912-1922): Maximum Likelihood Estimator (MLE) consistent and efficient in the limit, computationally hard
- Teicher (1961): Identifiability through tails requires many samples
- Dempster, Laird, Rubin (1977): Expectation-Maximization (EM)

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

- Pearson (1894): Method of Moments (no guarantees)
- Fisher (1912-1922): Maximum Likelihood Estimator (MLE) consistent and efficient in the limit, computationally hard
- Teicher (1961): Identifiability through tails requires many samples
- Dempster, Laird, Rubin (1977): Expectation-Maximization (EM) stuck in local minima

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

- Pearson (1894): Method of Moments (no guarantees)
- Fisher (1912-1922): Maximum Likelihood Estimator (MLE) consistent and efficient in the limit, computationally hard
- Teicher (1961): Identifiability through tails requires many samples
- Dempster, Laird, Rubin (1977): Expectation-Maximization (EM) stuck in local minima

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

• Dasgupta (1999) and many others: Clustering

- Pearson (1894): Method of Moments (no guarantees)
- Fisher (1912-1922): Maximum Likelihood Estimator (MLE) consistent and efficient in the limit, computationally hard
- Teicher (1961): Identifiability through tails requires many samples
- Dempster, Laird, Rubin (1977): Expectation-Maximization (EM) stuck in local minima
- Dasgupta (1999) and many others: Clustering assumes almost **non-overlapping** components

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 臣 の�?

Question

To learn the parameters to within an additive ϵ , is there an algorithm whose sample complexity and running time are bounded by $(1/\epsilon)^C$?

▲□▶ ▲舂▶ ▲≧▶ ▲≧▶ ― 湟

Question

To learn the parameters to within an additive ϵ , is there an algorithm whose sample complexity and running time are bounded by $(1/\epsilon)^C$?

(Kalai, Moitra, Valiant):

Given an *n*-dimensional mixture of two Gaussians, our algorithm requires poly(n, ¹/_ε) samples and running time to output a mixture that is ε-close to the true parameters

< □ > < (四 > < (回 >) < (u >

Question

To learn the parameters to within an additive ϵ , is there an algorithm whose sample complexity and running time are bounded by $(1/\epsilon)^C$?

(Kalai, Moitra, Valiant):

Given an *n*-dimensional mixture of two Gaussians, our algorithm requires poly(n, ¹/_ε) samples and running time to output a mixture that is ε-close to the true parameters

< □ > < (四 > < (回 >) < (u >

• Reduce to the one-dimensional case

Question

To learn the parameters to within an additive ϵ , is there an algorithm whose sample complexity and running time are bounded by $(1/\epsilon)^C$?

(Kalai, Moitra, Valiant):

- Given an *n*-dimensional mixture of two Gaussians, our algorithm requires poly(n, ¹/_ε) samples and running time to output a mixture that is ε-close to the true parameters
- Reduce to the one-dimensional case
- Analyze Pearson's sixth moment test (with noisy moments)

Start with an easier question:

Start with an easier question:

Question

What if we are given the first six moments of the mixture, exactly?

(中) (문) (문) (문) (문)

Start with an easier question:

Question

What if we are given the first six moments of the mixture, exactly?

< □ > < (四 > < (回 >) < (u = 1) <

Does this uniquely determine the parameters of the mixture? (up to a relabeling of the components)

Start with an easier question:

Question

What if we are given the first six moments of the mixture, exactly?

Does this uniquely determine the parameters of the mixture? (up to a relabeling of the components)

Question

Do any two different mixtures F and \hat{F} differ on at least one of the first six moments?

< □ > < (四 > < (回 >) < (u = 1) <

Method of Moments

◆□▶ ◆舂▶ ◆吾▶ ◆吾▶ 善吾 めへぐ

Method of Moments

▲ロト ▲御ト ▲ヨト ▲ヨト 三目 - のへで

Method of Moments

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで
One of the first six moment of F, \hat{F} is different!

One of the first six moment of F, \hat{F} is different!

Proof:

$$0 < \left| \int_{x} p(x)f(x)dx \right| = \left| \int_{x} \sum_{r=1}^{6} p_{r}x^{r}f(x)dx \right|$$

One of the first six moment of F, \hat{F} is different!

Proof:

$$0 < \left| \int_{x} p(x)f(x)dx \right| = \left| \int_{x} \sum_{r=1}^{6} p_{r}x^{r}f(x)dx \right|$$
$$\leq \sum_{r=1}^{6} |p_{r}| \left| \int_{x} x^{r}f(x)dx \right|$$

◆□▶ ◆圖▶ ◆理≯ ◆理≯ 三臣

One of the first six moment of F, \hat{F} is different!

Proof:

$$0 < \left| \int_{x} p(x)f(x)dx \right| = \left| \int_{x} \sum_{r=1}^{6} p_{r}x^{r}f(x)dx \right|$$
$$\leq \sum_{r=1}^{6} |p_{r}| \left| \int_{x} x^{r}f(x)dx \right|$$
$$= \sum_{r=1}^{6} |p_{r}| |M_{r}(F) - M_{r}(\hat{F})$$

◆□▶ ◆舂▶ ◆吾▶ ◆吾▶ 善吾 めへぐ

One of the first six moment of F, \hat{F} is different!

Proof:

$$0 < \left| \int_{x} p(x)f(x)dx \right| = \left| \int_{x} \sum_{r=1}^{6} p_{r}x^{r}f(x)dx \right|$$
$$\leq \sum_{r=1}^{6} |p_{r}| \left| \int_{x} x^{r}f(x)dx \right|$$
$$= \sum_{r=1}^{6} |p_{r}| |M_{r}(F) - M_{r}(\hat{F})$$

(ロ) (個) (E) (E) (E) (E)

So $\exists_{r\in\{1,2,...,6\}}$ such that $|M_r(F) - M_r(\hat{F})| > 0$

If $f(x) = \sum_{i=1}^{k} \alpha_i \mathcal{N}(\mu_i, \sigma_i^2, x)$ is not identically zero, f(x) has at most 2k - 2 zero crossings (α_i can be negative).

<ロ> (四) (四) (三) (三) (三) (三)

If $f(x) = \sum_{i=1}^{k} \alpha_i \mathcal{N}(\mu_i, \sigma_i^2, x)$ is not identically zero, f(x) has at most 2k - 2 zero crossings (α_i can be negative).

< □ > < (四 > < (回 >) < (u = 1) <

Theorem (Hummel, Gidas)

Suppose $f(x) : \mathbb{R} \to \mathbb{R}$ is analytic and has n zeros. Then $f(x) \circ \mathcal{N}(0, \sigma^2, x)$ has at most n zeros (for any $\sigma^2 > 0$).

If $f(x) = \sum_{i=1}^{k} \alpha_i \mathcal{N}(\mu_i, \sigma_i^2, x)$ is not identically zero, f(x) has at most 2k - 2 zero crossings (α_i can be negative).

Theorem (Hummel, Gidas)

Suppose $f(x) : \mathbb{R} \to \mathbb{R}$ is analytic and has n zeros. Then $f(x) \circ \mathcal{N}(0, \sigma^2, x)$ has at most n zeros (for any $\sigma^2 > 0$).

Convolving by a Gaussian does not increase # of zero crossings

< □ > < (四 > < (回 >) < (u = 1) <

If $f(x) = \sum_{i=1}^{k} \alpha_i \mathcal{N}(\mu_i, \sigma_i^2, x)$ is not identically zero, f(x) has at most 2k - 2 zero crossings (α_i can be negative).

Theorem (Hummel, Gidas)

Suppose $f(x) : \mathbb{R} \to \mathbb{R}$ is analytic and has n zeros. Then $f(x) \circ \mathcal{N}(0, \sigma^2, x)$ has at most n zeros (for any $\sigma^2 > 0$).

Convolving by a Gaussian does not increase # of zero crossings

・ロト ・四ト ・日ト ・日

Fact

$$\mathcal{N}(\mathbf{0}, \sigma_1^2, \mathbf{x}) \circ \mathcal{N}(\mathbf{0}, \sigma_2^2, \mathbf{x}) = \mathcal{N}(\mathbf{0}, \sigma_1^2 + \sigma_2^2, \mathbf{x})$$

・ロト ・四ト ・ヨト ・

≣⇒

훈

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ⊙∧⊙

▲ロト ▲御ト ▲注ト ▲注ト 三注 - のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

An algebraic restatement:

Let $\Gamma = \{$ **valid** parameters $\}$ (in particular $w_i \in [0, 1], \sigma_i \geq 0$)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

An algebraic restatement:

Let $\Gamma = \{$ **valid** parameters $\}$ (in particular $w_i \in [0, 1], \sigma_i \geq 0$)

Claim

Let θ be the true parameters; then the variety

$$\{ heta'\in \Gamma|M_r(heta')=M_r(heta) ext{ for } r=1,2,...6\}$$

(日) (문) (문) (문) (문)

contains only $(w_1, \mu_1, \sigma_1, \mu_2, \sigma_2)$ and $(1 - w_1, \mu_2, \sigma_2, \mu_1, \sigma_1)$

An algebraic restatement:

Let $\Gamma = \{$ **valid** parameters $\}$ (in particular $w_i \in [0, 1], \sigma_i \geq 0$)

Claim

Let θ be the true parameters; then the variety

$$\{ heta' \in \Gamma | M_r(heta') = M_r(heta) ext{ for } r = 1, 2, ...6\}$$

《曰》 《聞》 《臣》 《臣》 三臣 …

contains only $(w_1, \mu_1, \sigma_1, \mu_2, \sigma_2)$ and $(1 - w_1, \mu_2, \sigma_2, \mu_1, \sigma_1)$

Are these equations stable, when we are given noisy estimates?

Using deconvolution to isolate components, we show:

Using deconvolution to isolate components, we show:

There are constants c, C such that if $\epsilon < c$, the means and variances are bounded by $\frac{1}{\epsilon}$, the mixing weights are in $[\epsilon, 1 - \epsilon]$ and

$$|M_r(\theta) - M_r(\theta')| \le \epsilon^C$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

for r = 1, 2, ...6

Using deconvolution to isolate components, we show:

There are constants c, C such that if $\epsilon < c$, the means and variances are bounded by $\frac{1}{\epsilon}$, the mixing weights are in $[\epsilon, 1 - \epsilon]$ and

$$|M_r(\theta) - M_r(\theta')| \le \epsilon^C$$

for r = 1, 2, ...6 then there is a permutation π such that

$$\sum_{i=1}^{2} |w_{i} - w_{\pi(i)}'| + |\mu_{i} - \mu_{\pi(i)}'| + |\sigma_{i}^{2} - \sigma_{\pi(i)}'^{2}| \le \epsilon$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

Using deconvolution to isolate components, we show:

There are constants c, C such that if $\epsilon < c$, the means and variances are bounded by $\frac{1}{\epsilon}$, the mixing weights are in $[\epsilon, 1 - \epsilon]$ and

$$|M_r(\theta) - M_r(\theta')| \le \epsilon^C$$

for r = 1, 2, ...6 then there is a permutation π such that

$$\sum_{i=1}^{2} |w_{i} - w_{\pi(i)}'| + |\mu_{i} - \mu_{\pi(i)}'| + |\sigma_{i}^{2} - \sigma_{\pi(i)}'^{2}| \le \epsilon$$

Hence, close enough estimates for the first six moments guarantee that the parameters are close too!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Our algorithm:

Our algorithm:

• Take enough samples S so that $\widetilde{M}_r = \frac{1}{|S|} \sum_{i \in S} x_i^r$ is w.h.p. close to $M_r(\theta)$ for r = 1, 2...6

◆□> ◆□> ◆三> ◆三> ● 三 のへで

Our algorithm:

• Take enough samples S so that $M_r = \frac{1}{|S|} \sum_{i \in S} x_i^r$ is w.h.p. close to $M_r(\theta)$ for r = 1, 2...6

<ロ> (四) (四) (三) (三) (三)

(within an additive $\frac{\epsilon^{C}}{2}$)

Our algorithm:

Take enough samples S so that M
r = 1/|S| ∑{i∈S} x_i^r is w.h.p. close to M_r(θ) for r = 1, 2...6 (within an additive ^{ε^C}/₂)

(日) (四) (문) (문) (문)

• Compute θ' such that $M_r(\theta')$ is close to \widetilde{M}_r for r = 1, 2...6

Our algorithm:

• Take enough samples S so that $M_r = \frac{1}{|S|} \sum_{i \in S} x_i^r$ is w.h.p. close to $M_r(\theta)$ for r = 1, 2...6(within an additive $\frac{\epsilon^c}{2}$)

(日) (四) (문) (문) (문)

• Compute θ' such that $M_r(\theta')$ is close to M_r for r = 1, 2...6(within an additive $\frac{\epsilon^c}{2}$)

Our algorithm:

Take enough samples S so that M
r = 1/|S| ∑{i∈S} x_i^r is w.h.p. close to M_r(θ) for r = 1, 2...6 (within an additive ^{ϵ^C}/₂)

< □ > < (四 > < (回 >) < (u >

• Compute θ' such that $M_r(\theta')$ is close to M_r for r = 1, 2...6(within an additive $\frac{\epsilon^c}{2}$)

And θ' must be close to θ , because solutions to this system of polynomial equations are **stable**

(Belkin, Sinha)

(Belkin, Sinha): Consider a family of distributions $F(\theta)$

Fact

If the moment generating function converges in a neighborhood around zero, then $M_r(\theta) = M_r(\theta')$ for all r implies $F(\theta) = F(\theta')$.

< □ > < (四 > < (回 >) < (u = 1) <

(Belkin, Sinha): Consider a family of distributions $F(\theta)$

Fact

If the moment generating function converges in a neighborhood around zero, then $M_r(\theta) = M_r(\theta')$ for all r implies $F(\theta) = F(\theta')$.

Definition

A family of distributions is a **polynomial family** if the above condition holds and furthermore $M_r(\theta)$ is a polynomial (for any r).

<ロ> (四) (四) (三) (三) (三) (三)

(Belkin, Sinha): Consider a family of distributions $F(\theta)$

Fact

If the moment generating function converges in a neighborhood around zero, then $M_r(\theta) = M_r(\theta')$ for all r implies $F(\theta) = F(\theta')$.

Definition

A family of distributions is a **polynomial family** if the above condition holds and furthermore $M_r(\theta)$ is a polynomial (for any r).

(日) (문) (문) (문) (문)

e.g. a mixture of Gaussians

Definition $Q_r(\theta, \theta') = M_r(\theta) - M_r(\theta')$

Definition $Q_r(\theta, \theta') = M_r(\theta) - M_r(\theta')$

Consider the ideals $I_1 = \langle Q_1 \rangle \subseteq I_2 = \langle Q_1, Q_2 \rangle ... \subseteq \mathbb{R}[\theta, \theta']$

Definition $Q_r(\theta, \theta') = M_r(\theta) - M_r(\theta')$

Consider the ideals $I_1 = \langle Q_1 \rangle \subseteq I_2 = \langle Q_1, Q_2 \rangle ... \subseteq \mathbb{R}[\theta, \theta']$

Fact

 $\mathbb{R}[\theta, \theta']$ is a Noetherian Ring (Hilbert's Basis Theorem)

Definition $Q_r(\theta, \theta') = M_r(\theta) - M_r(\theta')$

Consider the ideals $I_1 = \langle Q_1 \rangle \subseteq I_2 = \langle Q_1, Q_2 \rangle ... \subseteq \mathbb{R}[\theta, \theta']$

Fact

 $\mathbb{R}[\theta, \theta']$ is a Noetherian Ring (Hilbert's Basis Theorem)

《曰》 《聞》 《臣》 《臣》 三臣

Hence for some N, $I_N = I_{N+1} = ...;$

Definition $Q_r(\theta, \theta') = M_r(\theta) - M_r(\theta')$

Consider the ideals $I_1 = \langle Q_1 \rangle \subseteq I_2 = \langle Q_1, Q_2 \rangle ... \subseteq \mathbb{R}[\theta, \theta']$

Fact

 $\mathbb{R}[\theta, \theta']$ is a Noetherian Ring (Hilbert's Basis Theorem)

Hence for some N, $I_N = I_{N+1} = ...$; i.e.

$$Q_{N+j}(\theta, \theta') = \sum_{r=1}^{N} \alpha(\theta, \theta') Q_r(\theta, \theta')$$

《曰》 《聞》 《臣》 《臣》 三臣

Definition $Q_r(\theta, \theta') = M_r(\theta) - M_r(\theta')$

Consider the ideals $I_1 = \langle Q_1 \rangle \subseteq I_2 = \langle Q_1, Q_2 \rangle ... \subseteq \mathbb{R}[\theta, \theta']$

Fact

 $\mathbb{R}[\theta, \theta']$ is a Noetherian Ring (Hilbert's Basis Theorem)

Hence for some N, $I_N = I_{N+1} = ...$; i.e.

$$Q_{N+j}(\theta, \theta') = \sum_{r=1}^{N} \alpha(\theta, \theta') Q_r(\theta, \theta')$$

 $\sum_{i=1}^{N} |M_i(\theta) - M_i(\theta')| = 0 \Rightarrow$ all moments are equal $\Rightarrow F(\theta) = F(\theta')$

If $\sum_{r=1}^{N} |M_r(\theta) - M_r(\theta')| < \delta$, for what $\epsilon(\delta)$ is $|\theta - \theta'| < \epsilon$?

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 臣 の�?

If
$$\sum_{r=1}^{N} |M_r(\theta) - M_r(\theta')| < \delta$$
, for what $\epsilon(\delta)$ is $|\theta - \theta'| < \epsilon$?

There is a notion of **condition number** for systems of polynomial equations:

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 臣 の�?

If
$$\sum_{r=1}^{N} |M_r(\theta) - M_r(\theta')| < \delta$$
, for what $\epsilon(\delta)$ is $|\theta - \theta'| < \epsilon$?

There is a notion of **condition number** for systems of polynomial equations:

Claim

We can take ϵ to be fixed a polynomial in δ (e.g. via quantifier elimination)

《曰》 《聞》 《臣》 《臣》 三臣

If
$$\sum_{r=1}^{N} |M_r(\theta) - M_r(\theta')| < \delta$$
, for what $\epsilon(\delta)$ is $|\theta - \theta'| < \epsilon$?

There is a notion of **condition number** for systems of polynomial equations:

Claim

We can take ϵ to be fixed a polynomial in δ (e.g. via quantifier elimination)

(Belkin, Sinha): The method of moments learns the parameters of a polynomial family $F(\theta)$ to within ϵ in $(1/\epsilon)^{C}$ samples and time

(中) (문) (문) (문) (문)

If
$$\sum_{r=1}^{N} |M_r(\theta) - M_r(\theta')| < \delta$$
, for what $\epsilon(\delta)$ is $|\theta - \theta'| < \epsilon$?

There is a notion of **condition number** for systems of polynomial equations:

Claim

We can take ϵ to be fixed a polynomial in δ (e.g. via quantifier elimination)

(Belkin, Sinha): The method of moments learns the parameters of a polynomial family $F(\theta)$ to within ϵ in $(1/\epsilon)^{C}$ samples and time

Caveat: This uses Hilbert's Basis Theorem, hence no **effective** bound for number of moments (or *C*)

Outline

- Mixtures of Gaussians
 - Highlights: method of moments and the heat equation
 - based on [Kalai, Moitra, Valiant] (see also [Belkin and Sinha])
- Topic Models
 - Highlights: tensor methods and Chang's Lemma
 - based on [Anandkumar, Foster, Hsu, Kakade and Liu]
- Nonnegative Matrix Factorization
 - Highlights: separability and more general topic models

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

• based on [Arora, Ge, Kannan, Moitra]

Outline

Mixtures of Gaussians

- Highlights: method of moments and the heat equation
- based on [Kalai, Moitra, Valiant] (see also [Belkin and Sinha])

• Topic Models

- Highlights: tensor methods and Chang's Lemma
- based on [Anandkumar, Foster, Hsu, Kakade and Liu]
- Nonnegative Matrix Factorization
 - Highlights: separability and more general topic models

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

• based on [Arora, Ge, Kannan, Moitra]

Topic Models

Large collection of articles, say from the New York Times:

newspaper articles

< □ > < (□ > < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >

Topic Models

Large collection of articles, say from the New York Times:

newspaper articles

<ロ> (四) (四) (三) (三) (三) (三)

Question

How can we automatically organize them by topic? (unsupervised learning)

Topic Models

Large collection of articles, say from the New York Times:

newspaper articles

< □ > < (四 > < (回 >) < (u = 1) <

Question

How can we automatically organize them by topic? (unsupervised learning)

Challenge: Develop tools for automatic comprehension of data - e.g. newspaper articles, webpages, images, genetic sequences, user ratings...

Parceling Out a Nest Egg, Without Emptying It

What clients often forget are fixed costs — homes, cars, insurance — that must come down but take time to reduce, she said. Beyond that is her clients' skittish approach to risk; putting all of their money in cash may make them feel safe, she said, but it probably will not support the lifestyle they want for decades.

A generational disconnect is at work here: most people plan to retire at 65, the retirement age established for <u>Social Security</u> in 1935, when the average <u>life expectancy</u> was 61. Today the average is over 80 for men and women with a college degree.

So the \$5.12 million gift exemption — created in a compromise between President Obama and Congress in 2010 — presents the well-off with a decision laden with short- and long-term consequences. How much should they give heirs now — and thus avoid giving the government in <u>estate taxes</u> later — while maintaining their lifestyle over a probably longer but still unpredictable remaining life span?

(日) (部) (注) (注) (注) (注)

Parceling Out a Nest Egg, Without Emptying It

What clients often forget are fixed costs — homes, cars, insurance — that must come down but take time to reduce, she said. Beyond that is her clients' skittish approach to risk; putting all of their money in cash may make them feel safe, she said, but it probably will not support the lifestyle they want for decades.

A generational disconnect is at work here: most people plan to retire at 65, the retirement age established for <u>Social Security</u> in 1935, when the average <u>life expectancy</u> was 61. Today the average is over 80 for men and women with a college degree.

So the \$5.12 million gift exemption — created in a compromise between President Obama and Congress in 2010 — presents the well-off with a decision laden with short- and long-term consequences. How much should they give heirs now — and thus avoid giving the government in <u>estate taxes</u> later — while maintaining their lifestyle over a probably longer but still unpredictable remaining life span?

Politics: (President Obama, 0.10), (congress, 0.08), (government, 0.07), ...

Parceling Out a Nest Egg, Without Emptying It

What clients often forget are fixed costs — homes, cars, insurance — that must come down but take time to reduce, she said. Beyond that is her clients' skittish approach to risk; putting all of their money in cash may make them feel safe, she said, but it probably will not support the lifestyle they want for decades.

A generational disconnect is at work here: most people plan to retire at 65, the retirement age established for <u>Social Security</u> in 1935, when the average <u>life expectancy</u> was 61. Today the average is over 80 for men and women with a college degree.

So the \$5.12 million gift exemption — created in a compromise between President Obama and Congress in 2010 — presents the well-off with a decision laden with short- and longterm consequences. How much should they give heirs now — and thus avoid giving the government in estate taxes later — while maintaining their lifestyle over a probably longer but still unpredictable remaining life span?

Politics: (President Obama, 0.10), (congress, 0.08), (government, 0.07), ...

Parceling Out a Nest Egg, Without Emptying It

What clients often forget are fixed costs — homes, cars, insurance — that must come down but take time to reduce, she said. Beyond that is her clients' skittish approach to risk; putting all of their money in cash may make them feel safe, she said, but it probably will not support the lifestyle they want for decades.

A generational disconnect is at work here: most people plan to retire at 65, the retirement age established for <u>Social Security</u> in 1935, when the average <u>life expectancy</u> was 61. Today the average is over 80 for men and women with a college degree.

So the \$5.12 million gift exemption — created in a compromise between President Obama and Congress in 2010 — presents the well-off with a decision laden with short- and longterm consequences. How much should they give heirs now — and thus avoid giving the government in estate taxes later — while maintaining their lifestyle over a probably longer but still unpredictable remaining life span?

Each document is a distribution on topics

Politics: (President Obama, 0.10), (congress, 0.08), (government, 0.07), ...

Parceling Out a Nest Egg, Without Emptying It

What clients often forget are fixed costs — homes, cars, insurance — that must come down but take time to reduce, she said. Beyond that is her clients' skittish approach to risk; putting all of their money in cash may make them feel safe, she said, but it probably will not support the lifestyle they want for decades.

A generational disconnect is at work here: most people plan to retire at 65, the retirement age established for <u>Social Security</u> in 1935, when the average <u>life expectancy</u> was 61. Today the average is over 80 for men and women with a college degree.

So the \$5.12 million gift exemption — created in a compromise between President Obama and Congress in 2010 — presents the well-off with a decision laden with short- and longterm consequences. How much should they give heirs now — and thus avoid giving the government in estate taxes later — while maintaining their lifestyle over a probably longer but still unpredictable remaining life span?

- Each document is a distribution on topics
- Each topic is a distribution on words

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

document #1: (1.0, personal finance)

document #1: (1.0, personal finance)

< □ > < (□ > < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >

◆□▶ ◆舂▶ ◆差▶ ◆差▶ … 差… のへで

<ロ> (四) (四) (三) (三) (三)

- E

<ロ> (四) (四) (三) (三) (三)

- 2

Latent Dirichlet Allocation (Blei, Ng, Jordan)

document #2: (0.5, baseball); (0.5, movie review)

<ロ> (四) (四) (三) (三) (三)

- E

Correlated Topic Model (Blei, Lafferty)

document #2: (0.5, baseball); (0.5, movie review)

<ロ> (四)、(四)、(三)、(三)、

- E

Pachinko Allocation Model (Li, McCallum)

document #2: (0.5, baseball); (0.5, movie review)

・ロト ・四ト ・ヨト ・ヨト

- E

Pachinko Allocation Model (Li, McCallum)

document #2: (0.5, baseball); (0.5, movie review)

These models differ only in how W is generated

• **Maximum Likelihood:** Find the parameters that maximize the likelihood of generating the observed data.

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 臣 の�?

• **Maximum Likelihood:** Find the parameters that maximize the likelihood of generating the observed data.

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 臣 のへで

Hard to compute!

- Maximum Likelihood: Find the parameters that maximize the likelihood of generating the observed data.
 Hard to compute!
- **Spectral:** Compute the singular value decomposition of \widehat{M} . [Papadimitriou et al], [Azar et al], ...

• Maximum Likelihood: Find the parameters that maximize the likelihood of generating the observed data.

Hard to compute!

Spectral: Compute the singular value decomposition of *M*.
 [Papadimitriou et al], [Azar et al], ...
 But this only recovers the span of A

• Maximum Likelihood: Find the parameters that maximize the likelihood of generating the observed data.

Hard to compute!

- Spectral: Compute the singular value decomposition of *M*.
 [Papadimitriou et al], [Azar et al], ...
 But this only recovers the span of A
- **Tensors:** Use powerful tensor decompositions to recover *A*, when the topic model can be "diagonalized". [Anandkumar et al]
Algorithms

• Maximum Likelihood: Find the parameters that maximize the likelihood of generating the observed data.

Hard to compute!

- Spectral: Compute the singular value decomposition of *M*.
 [Papadimitriou et al], [Azar et al], ...
 But this only recovers the span of A
- **Tensors:** Use powerful tensor decompositions to recover *A*, when the topic model can be "diagonalized". [Anandkumar et al]
- **Nonnegative Matrix Factorization:** When *A* is separable, works for any topic model [Arora et al]

Given
$$T = \sum_i u_i \otimes v_i \otimes w_i$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Given $T = \sum_{i} u_i \otimes v_i \otimes w_i$

• Suppose that $\{u_i\}, \{v_i\}$ and $\{w_i\}$ are linearly independent

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 臣 の�?

Given $T = \sum_{i} u_i \otimes v_i \otimes w_i$

 Suppose that {u_i}, {v_i} and {w_i} are linearly independent (even better: well-conditioned)

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - わへで

Given $T = \sum_{i} u_i \otimes v_i \otimes w_i$

 Suppose that {u_i}, {v_i} and {w_i} are linearly independent (even better: well-conditioned)

◆□> ◆□> ◆三> ◆三> ● 三 のへで

• Choose random unit vectors *a*, *b*

Given $T = \sum_i u_i \otimes v_i \otimes w_i$

- Suppose that {u_i}, {v_i} and {w_i} are linearly independent (even better: well-conditioned)
- Choose random unit vectors a, b

• Set
$$T(\cdot, \cdot, a) = \sum_i (w_i^T a) u_i v_i^T = U D_a V^T$$
, similarly for $T(\cdot, \cdot, b)$

◆□> ◆□> ◆三> ◆三> ● 三 のへで

Given $T = \sum_{i} u_i \otimes v_i \otimes w_i$

- Suppose that {u_i}, {v_i} and {w_i} are linearly independent (even better: well-conditioned)
- Choose random unit vectors a, b

• Set
$$T(\cdot, \cdot, a) = \sum_i (w_i^T a) u_i v_i^T = U D_a V^T$$
, similarly for $T(\cdot, \cdot, b)$

◆□> ◆□> ◆三> ◆三> ● 三 のへで

• Then $T(\cdot, \cdot, a)(T(\cdot, \cdot, b))^{-1} = UD_a D_b^{-1} U^{-1}$, similarly for V

Given $T = \sum_i u_i \otimes v_i \otimes w_i$

- Suppose that {u_i}, {v_i} and {w_i} are linearly independent (even better: well-conditioned)
- Choose random unit vectors a, b

• Set
$$T(\cdot, \cdot, a) = \sum_i (w_i^T a) u_i v_i^T = U D_a V^T$$
, similarly for $T(\cdot, \cdot, b)$

• Then $T(\cdot, \cdot, a)(T(\cdot, \cdot, b))^{-1} = UD_a D_b^{-1} U^{-1}$, similarly for V

Hence we compute find U and V through eigen-decomposition (can also recover W) if diagonals of $D_a D_b^{-1}$ are distinct

(Mossel, Roch): Applications to phylogenetic reconstruction and HMMs, when transition matrices are full-rank

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

(Mossel, Roch): Applications to phylogenetic reconstruction and HMMs, when transition matrices are full-rank

(Anandkumar, Hsu, Kakade): Applications to pure topic models

◆□> ◆舂> ◆注> ◆注> 注

(Mossel, Roch): Applications to phylogenetic reconstruction and HMMs, when transition matrices are full-rank

(Anandkumar, Hsu, Kakade): Applications to pure topic models

《曰》 《聞》 《臣》 《臣》 三臣

Definition

Let $T = Pr[word_1 = \alpha, word_2 = \beta, word_3 = \gamma]$ in a random document of length ≥ 3 .

(Mossel, Roch): Applications to phylogenetic reconstruction and HMMs, when transition matrices are full-rank

(Anandkumar, Hsu, Kakade): Applications to pure topic models

Definition

Let $T = Pr[word_1 = \alpha, word_2 = \beta, word_3 = \gamma]$ in a random document of length ≥ 3 .

 $T = \sum_{i} Pr[topic = i]A_i \otimes A_i \otimes A_i$, where $A_i = Pr[word|topic = i]$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

(Mossel, Roch): Applications to phylogenetic reconstruction and HMMs, when transition matrices are full-rank

(Anandkumar, Hsu, Kakade): Applications to pure topic models

Definition

Let $T = Pr[word_1 = \alpha, word_2 = \beta, word_3 = \gamma]$ in a random document of length ≥ 3 .

 $T = \sum_{i} Pr[topic = i]A_i \otimes A_i \otimes A_i$, where $A_i = Pr[word|topic = i]$

Hence we can recover A if it is full rank and each document is about only one topic

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 臣 の�?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The challenge is T has a more complicated form: (D is not necessarily diagonal)

The challenge is T has a more complicated form: (D is not necessarily diagonal)

Definition

A Tucker decomposition of T is a set of $n \times r$ matrices U, V, W and an $r \times r$ matrix D, such that

$$T = \sum_{i,j,k \in [r]} D_{i,j,k} U_i \otimes V_j \otimes W_k$$

(中) (문) (문) (문) (문)

The challenge is T has a more complicated form: (D is not necessarily diagonal)

Definition

A Tucker decomposition of T is a set of $n \times r$ matrices U, V, W and an $r \times r$ matrix D, such that

$$T = \sum_{i,j,k\in[r]} D_{i,j,k} U_i \otimes V_j \otimes W_k$$

In our setting, U = V = W = A, but *D* corresponds to **moments** of the Dirichlet distribution

Let
$$\mu = \Pr[word_1 = \alpha]$$
 and $M = \Pr[word_1 = \alpha, word_2 = \beta]$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Let
$$\mu = \Pr[word_1 = \alpha]$$
 and $M = \Pr[word_1 = \alpha, word_2 = \beta]$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Observation

We can form new tensors, e.g. $\mu \otimes \mu \otimes \mu$ or $M \otimes \mu$

Let
$$\mu = \Pr[word_1 = \alpha]$$
 and $M = \Pr[word_1 = \alpha, word_2 = \beta]$

Observation

We can form new tensors, e.g. $\mu \otimes \mu \otimes \mu$ or $M \otimes \mu$

Claim

Given Tucker decompositions T and T' with same U, V, W

$$T - T' = \sum_{i,j,k \in [r]} (D_{i,j,k} - D'_{i,j,k}) U_i \otimes V_j \otimes W_k$$

《曰》 《聞》 《臣》 《臣》 三臣

Let
$$\mu = \Pr[word_1 = \alpha]$$
 and $M = \Pr[word_1 = \alpha, word_2 = \beta]$

Observation

We can form new tensors, e.g. $\mu \otimes \mu \otimes \mu$ or $M \otimes \mu$

Claim

Given Tucker decompositions T and T' with same U, V, W

$$T - T' = \sum_{i,j,k \in [r]} (D_{i,j,k} - D'_{i,j,k}) U_i \otimes V_j \otimes W_k$$

(Anandkumar, Foster, Hsu, Kakade, Liu): The formula

$$T+2\mu\otimes\mu\otimes\mu-M\otimes\mu$$
 (all three ways)

《曰》 《圖》 《圖》 《圖》

æ

diagonalizes the decomposition

Let
$$\mu = \Pr[word_1 = \alpha]$$
 and $M = \Pr[word_1 = \alpha, word_2 = \beta]$

Observation

We can form new tensors, e.g. $\mu \otimes \mu \otimes \mu$ or $M \otimes \mu$

Claim

Given Tucker decompositions T and T' with same U, V, W

$$T - T' = \sum_{i,j,k \in [r]} (D_{i,j,k} - D'_{i,j,k}) U_i \otimes V_j \otimes W_k$$

(Anandkumar, Foster, Hsu, Kakade, Liu): The formula

$$T + 2\mu \otimes \mu \otimes \mu - M \otimes \mu$$
 (all three ways)

diagonalizes the decomposition, and hence we can recover *A* if it is full rank for LDA topic models!

Outline

- Mixtures of Gaussians
 - Highlights: method of moments and the heat equation
 - based on [Kalai, Moitra, Valiant] (see also [Belkin and Sinha])
- Topic Models
 - Highlights: tensor methods and Chang's Lemma
 - based on [Anandkumar, Foster, Hsu, Kakade and Liu]
- Nonnegative Matrix Factorization
 - Highlights: separability and more general topic models

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

• based on [Arora, Ge, Kannan, Moitra]

Outline

- Mixtures of Gaussians
 - Highlights: method of moments and the heat equation
 - based on [Kalai, Moitra, Valiant] (see also [Belkin and Sinha])
- Topic Models
 - Highlights: tensor methods and Chang's Lemma
 - based on [Anandkumar, Foster, Hsu, Kakade and Liu]
- Nonnegative Matrix Factorization
 - Highlights: separability and more general topic models

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

• based on [Arora, Ge, Kannan, Moitra]

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

rank

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - わへで

▲口▶ ▲□▶ ▲目▶ ▲目▶ ▲□▶ ▲□▶

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

• Known to fail on worst-case inputs (stuck in local minima)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• Known to fail on worst-case inputs (stuck in local minima)

◆□> ◆舂> ◆注> ◆注> 注

• Highly sensitive to cost function, regularization, update procedure

• Known to fail on worst-case inputs (stuck in local minima)

(ロ) (四) (E) (E) (E) (E)

• Highly sensitive to cost function, regularization, update procedure

Question (theoretical)

Is there an algorithm that (provably) works on all inputs?

- Known to fail on worst-case inputs (stuck in local minima)
- Highly sensitive to cost function, regularization, update procedure

Question (theoretical)

Is there an algorithm that (provably) works on all inputs?

[Arora, Ge, Kannan, Moitra]: There is an $(nm)^{O(r^2)}$ time algorithm but improving this to $(nm)^{o(r)}$ would imply a subexponential time algorithm for 3-SAT

(日) (四) (문) (문) (문) (문)

- Known to fail on worst-case inputs (stuck in local minima)
- Highly sensitive to cost function, regularization, update procedure

Question (theoretical)

Is there an algorithm that (provably) works on all inputs?

[Arora, Ge, Kannan, Moitra]: There is an $(nm)^{O(r^2)}$ time algorithm but improving this to $(nm)^{o(r)}$ would imply a subexponential time algorithm for 3-SAT

Question

Can we do better for natural instances?

topics (r)

topics (r)

If an **anchor word** occurs then the document is at least partially about the topic

<ロ> (四)、(四)、(三)、(三)、

topics (r) personal finance

If an **anchor word** occurs then the document is at least partially about the topic

<ロ> (四) (四) (三) (三)

topics (r) personal finance

If an **anchor word** occurs then the document is at least partially about the topic

<ロ> (四)、(四)、(三)、(三)、

topics (r)

If an **anchor word** occurs then the document is at least partially about the topic

<ロ> (四)、(四)、(三)、(三)、

If an **anchor word** occurs then the document is at least partially about the topic

<ロ> (四)、(四)、(三)、(三)、

topics (r) baseball

If an **anchor word** occurs then the document is at least partially about the topic

<ロ> (四)、(四)、(三)、(三)、

topics (r)

If an **anchor word** occurs then the document is at least partially about the topic

<ロ> (四)、(四)、(三)、(三)、

臣

If an **anchor word** occurs then the document is at least partially about the topic

<ロ> (四) (四) (三) (三)

If an **anchor word** occurs then the document is at least partially about the topic

《曰》 《圖》 《言》 《言》 言

50

If an anchor word occurs then the document is at least partially about the topic

・ロト ・ 日本・ ・ 日本・

- 2

oscar-winning

If an anchor word occurs then the document is at least partially about the topic

A is **p-separable** if each topic has an anchor word that occurs with probability ≥ p

(日) (四) (三) (三) (三)

- 2

Question How do anchor words help?

Question How do anchor words help?

Question

How do anchor words help?

Observation

If A is separable, then rows of W appear as (scaled) rows of M, we just need to find the anchor words!

《曰》 《聞》 《臣》 《臣》

Question

How do anchor words help?

Observation

If A is separable, then rows of W appear as (scaled) rows of M, we just need to find the anchor words!

《曰》 《聞》 《臣》 《臣》

æ

Question How can we find the anchor words?

◆□▶
◆□▶
●■▶
●■▶
●■▶
●■▶

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 目 のへで

Question

How do anchor words help?

Observation

If A is separable, then rows of W appear as (scaled) rows of M, we just need to find the anchor words!

《曰》 《聞》 《臣》 《臣》

æ

Question How can we find the anchor words?

Question

How do anchor words help?

Observation

If A is separable, then rows of W appear as (scaled) rows of M, we just need to find the anchor words!

Question

How can we find the anchor words?

Anchor words are extreme points; can be found by linear programming (or a combinatorial distance-based algorithm)

(Arora, Ge, Kannan, Moitra):

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 臣 の�?

(Arora, Ge, Kannan, Moitra):

• Find the anchor words (linear programming):

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

(Arora, Ge, Kannan, Moitra):

• Find the anchor words (linear programming):

If a word cannot be written as a convex combination of the other words, it is an anchor word

(日) (四) (코) (코) (코) (코)

(Arora, Ge, Kannan, Moitra):

• Find the anchor words (linear programming):

If a word cannot be written as a convex combination of the other words, it is an anchor word

(日) (四) (코) (코) (코) (코)

• Paste these vectors in as rows of W

(Arora, Ge, Kannan, Moitra):

• Find the anchor words (linear programming):

If a word cannot be written as a convex combination of the other words, it is an anchor word

- Paste these vectors in as rows of W
- Find the nonnegative A so that $AW \approx M$ (convex programming)

(Arora, Ge, Kannan, Moitra):

• Find the anchor words (linear programming):

If a word cannot be written as a convex combination of the other words, it is an anchor word

- Paste these vectors in as rows of W
- Find the nonnegative A so that $AW \approx M$ (convex programming)

Claim

The following greedy algorithm works too: repeatedly find the word furthest from the span of the ones we have found so far!

Back to Topic Models

Question What if documents are **short**; can we still find A?

(日) (圖) (돈) (돈) [E]

Back to Topic Models

Question

What if documents are **short**; can we still find A?

Crucial observation: We can work with the Gram matrix (define next) to find the anchor words

(日) (四) (코) (코) (코) (코)

			-

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

А

w w^T

(日) (월) (문) (문) (문)

 A^{T}

 $W W^{\mathsf{T}}$

(日) (四) (王) (王) (王)

《曰》 《圖》 《理》 《理》 三世

Anchor words are extreme rows of the Gram matrix!

Question

What if documents are **short**; can we still find A?

Crucial observation: We can work with the Gram matrix (define next) to find the anchor words

《曰》 《圖》 《唐》 《唐》 三百

Question

What if documents are **short**; can we still find A?

Crucial observation: We can work with the Gram matrix (define next) to find the anchor words

《曰》 《聞》 《臣》 《臣》 三臣

Question

How can we use the anchor words to find the rest of A?

Question

What if documents are **short**; can we still find A?

Crucial observation: We can work with the Gram matrix (define next) to find the anchor words

Question

How can we use the anchor words to find the rest of A?

The posterior distribution Pr[topic|word] is supported on just one topic, for an anchor word

(中) (문) (문) (문) (문)

Question

What if documents are **short**; can we still find A?

Crucial observation: We can work with the Gram matrix (define next) to find the anchor words

Question

How can we use the anchor words to find the rest of A?

The posterior distribution Pr[topic|word] is supported on just one topic, for an anchor word

《曰》 《聞》 《臣》 《臣》 三臣

We will find *Pr*[*topic*|*word*] for all the other words...

points are now (normalized) rows of $\widehat{M} \widehat{M}^{T}$

points are now (normalized) rows of $\widehat{M} \widehat{M}^{T}$

points are now (normalized) rows of $\widehat{M} \widehat{M}^{T}$

word #3: (0.5, anchor #2); (0.5, anchor #3)

<ロ> (四)、(四)、(三)、(三)、

æ

points are now (normalized) rows of $\widehat{\mathbf{M}} \, \widehat{\mathbf{M}}^{\mathsf{T}}$

А

word #3: (0.5, anchor #2); (0.5, anchor #3) Pr[topic|word #3]: (0.5, topic #2); (0.5, topic #3)

<ロ> (四) (四) (三) (三)

훈

А

what we have:

Pr[topic|word]

word #3: (0.5, anchor #2); (0.5, anchor #3) Pr[topic|word #3]: (0.5, topic #2); (0.5, topic #3)

word #3: (0.5, anchor #2); (0.5, anchor #3) Pr[topic|word #3]: (0.5, topic #2); (0.5, topic #3)

<ロ> (四) (四) (三) (三) (三) (三)

word #3: (0.5, anchor #2); (0.5, anchor #3) Pr[topic|word #3]: (0.5, topic #2); (0.5, topic #3)

《曰》 《聞》 《臣》 《臣》 三臣

(Arora, Ge, Halpern, Mimno, Moitra, Sontag, Wu, Zhu):

(Arora, Ge, Halpern, Mimno, Moitra, Sontag, Wu, Zhu):

• Form the Gram matrix and find the anchor words

《曰》 《聞》 《臣》 《臣》 三臣

(Arora, Ge, Halpern, Mimno, Moitra, Sontag, Wu, Zhu):

- Form the Gram matrix and find the anchor words
- Write each word as a convex combination of the anchor words to find *Pr*[*topic*|*word*]

< □ > < (四 > < (回 >) < (u >

(Arora, Ge, Halpern, Mimno, Moitra, Sontag, Wu, Zhu):

- Form the Gram matrix and find the anchor words
- Write each word as a convex combination of the anchor words to find Pr[topic|word]
- Compute A from Bayes' Rule:

 $Pr[word|topic] = \frac{Pr[topic|word]Pr[word]}{\sum_{word'} Pr[topic|word']Pr[word']}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

(Arora, Ge, Halpern, Mimno, Moitra, Sontag, Wu, Zhu):

- Form the Gram matrix and find the anchor words
- Write each word as a convex combination of the anchor words to find Pr[topic|word]
- Compute A from Bayes' Rule:

$$Pr[word|topic] = rac{Pr[topic|word]Pr[word]}{\sum_{word'} Pr[topic|word']Pr[word']}$$

This algorithm provably works for **any** topic model (LDA, CTM, PAM, ...) provided A is separable and R is non-singular!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

(Hsu, Kakade): Improved algorithm for spherical GMMs

(Hsu, Kakade): Improved algorithm for $\ensuremath{\mathsf{spherical}}$ GMMs

Open Question

Are there better algorithm for general GMMs?

(Hsu, Kakade): Improved algorithm for spherical GMMs

Open Question

Are there better algorithm for general GMMs?

There are powerful uniqueness theorems for tensors (beyond Chang's Lemma):

《曰》 《聞》 《臣》 《臣》 三臣

(Hsu, Kakade): Improved algorithm for spherical GMMs

Open Question

Are there better algorithm for general GMMs?

There are powerful uniqueness theorems for tensors (beyond Chang's Lemma):

《曰》 《聞》 《臣》 《臣》

æ

Open Question

Is there an algorithmic proof of Kruskal's Theorem?

(Hsu, Kakade): Improved algorithm for spherical GMMs

Open Question

Are there better algorithm for general GMMs?

There are powerful uniqueness theorems for tensors (beyond Chang's Lemma):

æ

Open Question

Is there an algorithmic proof of Kruskal's Theorem?

Other uses of the polynomial method?

(Hsu, Kakade): Improved algorithm for spherical GMMs

Open Question

Are there better algorithm for general GMMs?

There are powerful uniqueness theorems for tensors (beyond Chang's Lemma):

Open Question

Is there an algorithmic proof of Kruskal's Theorem?

Other uses of the polynomial method? (Moitra, Saks): Applications to inverse problems, population recovery

Thanks!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで