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based on [Arora, Ge, Kannan, Moitra]
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Pearson (1894) and the Naples Crabs

(figure due to Peter Macdonald)
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Gaussian Mixture Models

F (x) = w1F1(x) + (1− w1)F2(x), where Fi(x) = N (µi , σ
2
i , x)

In particular, with probability w1 output a sample from F1, otherwise
output a sample from F2

five unknowns: w1, µ1, σ1, µ2, σ2

Question

Can we learn these parameters approximately, given enough random
samples from F?

Pearson invented the method of moments, to attack this problem...



Gaussian Mixture Models

F (x) = w1F1(x) + (1− w1)F2(x), where Fi(x) = N (µi , σ
2
i , x)

In particular, with probability w1 output a sample from F1, otherwise
output a sample from F2

five unknowns: w1, µ1, σ1, µ2, σ2

Question

Can we learn these parameters approximately, given enough random
samples from F?

Pearson invented the method of moments, to attack this problem...



Gaussian Mixture Models

F (x) = w1F1(x) + (1− w1)F2(x), where Fi(x) = N (µi , σ
2
i , x)

In particular, with probability w1 output a sample from F1, otherwise
output a sample from F2

five unknowns: w1, µ1, σ1, µ2, σ2

Question

Can we learn these parameters approximately, given enough random
samples from F?

Pearson invented the method of moments, to attack this problem...



Gaussian Mixture Models

F (x) = w1F1(x) + (1− w1)F2(x), where Fi(x) = N (µi , σ
2
i , x)

In particular, with probability w1 output a sample from F1, otherwise
output a sample from F2

five unknowns: w1, µ1, σ1, µ2, σ2

Question

Can we learn these parameters approximately, given enough random
samples from F?

Pearson invented the method of moments, to attack this problem...



Pearson’s Sixth Moment Test

Claim

Ex←F (x)[x
r ] is a polynomial in θ = (w1, µ1, σ1, µ2, σ2)

Let Ex←F (x)[x
r ] = Mr (θ)

Gather samples S

Set M̃r = 1
|S |
∑

i∈S x
r
i for r = 1, 2, ...6

Compute simultaneous roots of {Mr (θ) = M̃r}r=1,2,...5, select
root θ that is closest in sixth moment
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A Conceptual History

Pearson (1894): Method of Moments (no guarantees)

Fisher (1912-1922): Maximum Likelihood Estimator (MLE)

consistent and efficient in the limit, computationally hard

Teicher (1961): Identifiability through tails

requires many samples

Dempster, Laird, Rubin (1977): Expectation-Maximization (EM)

stuck in local minima

Dasgupta (1999) and many others: Clustering

assumes almost non-overlapping components
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In summary, these approaches are heuristic, computationally
intractable or make an assumption about the mixture

Question

To learn the parameters to within an additive ε, is there an algorithm
whose sample complexity and running time are bounded by (1/ε)C?

(Kalai, Moitra, Valiant):

Given an n-dimensional mixture of two Gaussians, our algorithm
requires poly(n, 1

ε
) samples and running time to output a

mixture that is ε-close to the true parameters

Reduce to the one-dimensional case

Analyze Pearson’s sixth moment test (with noisy moments)
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Analyzing the Method of Moments

Start with an easier question:

Question

What if we are given the first six moments of the mixture, exactly?

Does this uniquely determine the parameters of the mixture?

(up to a relabeling of the components)

Question

Do any two different mixtures F and F̂ differ on at least one of the
first six moments?
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Method of Moments
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Claim

One of the first six moment of F , F̂ is different!

Proof:

0 <
∣∣∣ ∫

x

p(x)f (x)dx
∣∣∣ =

∣∣∣ ∫
x

6∑
r=1

prx
r f (x)dx

∣∣∣
≤

6∑
r=1

|pr |
∣∣∣ ∫

x

x r f (x)dx
∣∣∣

=
6∑

r=1

|pr ||Mr (F )−Mr (F̂ )|

So ∃r∈{1,2,...,6} such that |Mr (F )−Mr (F̂ )| > 0
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Proposition

If f (x) =
∑k

i=1 αiN (µi , σ
2
i , x) is not identically zero, f (x) has at

most 2k − 2 zero crossings (αi can be negative).

Theorem (Hummel, Gidas)

Suppose f (x) : R→ R is analytic and has n zeros. Then
f (x) ◦ N (0, σ2, x) has at most n zeros (for any σ2 > 0).

Convolving by a Gaussian does not increase # of zero crossings

Fact

N (0, σ2
1, x) ◦ N (0, σ2

2, x) = N (0, σ2
1 + σ2

2, x)
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Hence, the exact values of the first six moments determine the
mixture parameters

An algebraic restatement:

Let Γ = {valid parameters} (in particular wi ∈ [0, 1], σi ≥ 0)

Claim

Let θ be the true parameters; then the variety

{θ′ ∈ Γ|Mr (θ
′) = Mr (θ) for r = 1, 2, ...6}

contains only (w1, µ1, σ1, µ2, σ2) and (1− w1, µ2, σ2, µ1, σ1)

Are these equations stable, when we are given noisy estimates?
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A Type of Condition Number

Using deconvolution to isolate components, we show:

There are constants c ,C such that if ε < c , the means and variances
are bounded by 1

ε
, the mixing weights are in [ε, 1− ε] and

|Mr (θ)−Mr (θ
′)| ≤ εC

for r = 1, 2, ...6 then there is a permutation π such that

2∑
i=1

|wi − w ′π(i)|+ |µi − µ′π(i)|+ |σ2
i − σ

′2
π(i)| ≤ ε

Hence, close enough estimates for the first six moments guarantee
that the parameters are close too!
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A Univariate Learning Algorithm

Our algorithm:

Take enough samples S so that M̃r = 1
|S |
∑

i∈S x
r
i is w.h.p. close

to Mr (θ) for r = 1, 2...6

(within an additive εC

2
)

Compute θ′ such that Mr (θ
′) is close to M̃r for r = 1, 2...6

(within an additive εC

2
)

And θ′ must be close to θ, because solutions to this system of
polynomial equations are stable
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A More General Approach

(Belkin, Sinha)

: Consider a family of distributions F (θ)

Fact

If the moment generating function converges in a neighborhood
around zero, then Mr (θ) = Mr (θ

′) for all r implies F (θ) = F (θ′).

Definition

A family of distributions is a polynomial family if the above
condition holds and furthermore Mr (θ) is a polynomial (for any r).

e.g. a mixture of Gaussians
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Definition

Qr (θ, θ
′) = Mr (θ)−Mr (θ

′)

Consider the ideals I1 = 〈Q1〉 ⊆ I2 = 〈Q1,Q2〉... ⊆ R[θ, θ′]

Fact

R[θ, θ′] is a Noetherian Ring (Hilbert’s Basis Theorem)

Hence for some N , IN = IN+1 = ...; i.e.

QN+j(θ, θ
′) =

N∑
r=1

α(θ, θ′)Qr (θ, θ
′)

∑N
i=1 |Mi(θ)−Mi(θ

′)| = 0 ⇒ all moments are equal ⇒ F (θ) = F (θ′)
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Question

If
∑N

r=1 |Mr (θ)−Mr (θ
′)| < δ, for what ε(δ) is |θ − θ′| < ε?

There is a notion of condition number for systems of polynomial
equations:

Claim

We can take ε to be fixed a polynomial in δ (e.g. via quantifier
elimination)

(Belkin, Sinha): The method of moments learns the parameters of a
polynomial family F (θ) to within ε in (1/ε)C samples and time

Caveat: This uses Hilbert’s Basis Theorem, hence no effective
bound for number of moments (or C )
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Highlights: tensor methods and Chang’s Lemma

based on [Anandkumar, Foster, Hsu, Kakade and Liu]

Nonnegative Matrix Factorization

Highlights: separability and more general topic models

based on [Arora, Ge, Kannan, Moitra]
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Topic Models

Large collection of articles, say from the New York Times:

newspaper articles

Question

How can we automatically organize them by topic? (unsupervised
learning)

Challenge: Develop tools for automatic comprehension of data - e.g.
newspaper articles, webpages, images, genetic sequences, user
ratings...
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Algorithms

Maximum Likelihood: Find the parameters that maximize the
likelihood of generating the observed data.

Hard to compute!

Spectral: Compute the singular value decomposition of M̂ .
[Papadimitriou et al], [Azar et al], ...

But this only recovers the span of A

Tensors: Use powerful tensor decompositions to recover A,
when the topic model can be “diagonalized”. [Anandkumar et al]

Nonnegative Matrix Factorization: When A is separable,
works for any topic model [Arora et al]
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Chang’s Lemma

Given T =
∑

i ui ⊗ vi ⊗ wi

Suppose that {ui}, {vi} and {wi} are linearly independent

(even better: well-conditioned)

Choose random unit vectors a, b

Set T (·, ·, a) =
∑

i(w
T
i a)uiv

T
i = UDaV

T , similarly for T (·, ·, b)

Then T (·, ·, a)(T (·, ·, b))−1 = UDaD
−1
b U−1, similarly for V

Hence we compute find U and V through eigen-decomposition (can
also recover W ) if diagonals of DaD

−1
b are distinct
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Applications

(Mossel, Roch): Applications to phylogenetic reconstruction and
HMMs, when transition matrices are full-rank

(Anandkumar, Hsu, Kakade): Applications to pure topic models

Definition

Let T = Pr [word1 = α,word2 = β,word3 = γ] in a random
document of length ≥ 3.

T =
∑

i Pr [topic = i ]Ai ⊗ Ai ⊗ Ai , where Ai = Pr [word |topic = i ]

Hence we can recover A if it is full rank and each document is about
only one topic
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(Anandkumar, Foster, Hsu, Kakade, Liu): What about more general
topic models? (e.g. LDA)

The challenge is T has a more complicated form: (D is not
necessarily diagonal)

Definition

A Tucker decomposition of T is a set of n × r matrices U ,V ,W and
an r × r matrix D, such that

T =
∑

i ,j ,k∈[r ]

Di ,j ,kUi ⊗ Vj ⊗Wk

In our setting, U = V = W = A, but D corresponds to moments of
the Dirichlet distribution
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Let µ = Pr [word1 = α] and M = Pr [word1 = α,word2 = β]

Observation

We can form new tensors, e.g. µ⊗ µ⊗ µ or M ⊗ µ

Claim

Given Tucker decompositions T and T ′ with same U ,V ,W

T − T ′ =
∑

i ,j ,k∈[r ]

(Di ,j ,k − D ′i ,j ,k)Ui ⊗ Vj ⊗Wk

(Anandkumar, Foster, Hsu, Kakade, Liu): The formula

T + 2µ⊗ µ⊗ µ−M ⊗ µ (all three ways)

diagonalizes the decomposition, and hence we can recover A if it is
full rank for LDA topic models!
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Local Search: Given A, compute W , compute A, ....

Known to fail on worst-case inputs (stuck in local minima)

Highly sensitive to cost function, regularization, update
procedure

Question (theoretical)

Is there an algorithm that (provably) works on all inputs?

[Arora, Ge, Kannan, Moitra]: There is an (nm)O(r2) time algorithm
but improving this to (nm)o(r) would imply a subexponential time
algorithm for 3-SAT

Question

Can we do better for natural instances?
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Using Anchor Words

Question

How do anchor words help?

Observation

If A is separable, then rows of W appear as (scaled) rows of M , we
just need to find the anchor words!

Question

How can we find the anchor words?

Anchor words are extreme points; can be found by linear
programming (or a combinatorial distance-based algorithm)
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An Algorithm for NMF

(Arora, Ge, Kannan, Moitra):

Find the anchor words (linear programming):

If a word cannot be written as a convex combination of the
other words, it is an anchor word

Paste these vectors in as rows of W

Find the nonnegative A so that AW ≈ M (convex programming)

Claim

The following greedy algorithm works too: repeatedly find the word
furthest from the span of the ones we have found so far!



An Algorithm for NMF

(Arora, Ge, Kannan, Moitra):

Find the anchor words (linear programming):

If a word cannot be written as a convex combination of the
other words, it is an anchor word

Paste these vectors in as rows of W

Find the nonnegative A so that AW ≈ M (convex programming)

Claim

The following greedy algorithm works too: repeatedly find the word
furthest from the span of the ones we have found so far!



An Algorithm for NMF

(Arora, Ge, Kannan, Moitra):

Find the anchor words (linear programming):

If a word cannot be written as a convex combination of the
other words, it is an anchor word

Paste these vectors in as rows of W

Find the nonnegative A so that AW ≈ M (convex programming)

Claim

The following greedy algorithm works too: repeatedly find the word
furthest from the span of the ones we have found so far!



An Algorithm for NMF

(Arora, Ge, Kannan, Moitra):

Find the anchor words (linear programming):

If a word cannot be written as a convex combination of the
other words, it is an anchor word

Paste these vectors in as rows of W

Find the nonnegative A so that AW ≈ M (convex programming)

Claim

The following greedy algorithm works too: repeatedly find the word
furthest from the span of the ones we have found so far!



An Algorithm for NMF

(Arora, Ge, Kannan, Moitra):

Find the anchor words (linear programming):

If a word cannot be written as a convex combination of the
other words, it is an anchor word

Paste these vectors in as rows of W

Find the nonnegative A so that AW ≈ M (convex programming)

Claim

The following greedy algorithm works too: repeatedly find the word
furthest from the span of the ones we have found so far!



An Algorithm for NMF

(Arora, Ge, Kannan, Moitra):

Find the anchor words (linear programming):

If a word cannot be written as a convex combination of the
other words, it is an anchor word

Paste these vectors in as rows of W

Find the nonnegative A so that AW ≈ M (convex programming)

Claim

The following greedy algorithm works too: repeatedly find the word
furthest from the span of the ones we have found so far!



Back to Topic Models

Question

What if documents are short; can we still find A?

Crucial observation: We can work with the Gram matrix (define next)
to find the anchor words

Question

How can we use the anchor words to find the rest of A?

The posterior distribution Pr [topic |word ] is supported on just one
topic, for an anchor word

We will find Pr [topic |word ] for all the other words...
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An Algorithm for Topic Models

(Arora, Ge, Halpern, Mimno, Moitra, Sontag, Wu, Zhu):

Form the Gram matrix and find the anchor words

Write each word as a convex combination of the anchor words to
find Pr [topic |word ]

Compute A from Bayes’ Rule:

Pr [word |topic] =
1

1

This algorithm provably works for any topic model (LDA, CTM,
PAM, ...) provided A is separable and R is non-singular!
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Are there better algorithm for general GMMs?

There are powerful uniqueness theorems for tensors (beyond Chang’s
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Is there an algorithmic proof of Kruskal’s Theorem?

Other uses of the polynomial method? (Moitra, Saks): Applications
to inverse problems, population recovery
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