Nearly Complete Graphs Decomposable Into Large Induced Matchings

Ankur Moitra, IAS

joint with Noga Alon (IAS, TAU) and Benny Sudakov (UCLA)

May 22, 2012

Rusza-Szemeredi Graphs

Induced Matching: an induced subgraph whose edges form a matching

Rusza-Szemeredi Graphs

Induced Matching: an induced subgraph whose edges form a matching

Rusza－Szemeredi Graphs

Induced Matching：an induced subgraph whose edges form a matching

Rusza-Szemeredi Graphs

Induced Matching: an induced subgraph whose edges form a matching

$$
\text { matching size }=3 \text { (edges) }
$$

Rusza-Szemeredi Graphs

Induced Matching: an induced subgraph whose edges form a matching

Definition

An (r, t)-Rusza-Szemeredi graph G is a union of t pairwise disjoint induced matchings, each of size r (hence $r t$ total edges)

Rusza-Szemeredi Graphs

Induced Matching: an induced subgraph whose edges form a matching

Definition

An (r, t)-Rusza-Szemeredi graph G is a union of t pairwise disjoint induced matchings, each of size r (hence $r t$ total edges)

Note: An induced matching of size $r \Rightarrow$ missing $r(r-1)$ edges

Applications of Induced Matchings

Graph Test: [Blum, Luby, Rubinfeld]
[Samarodnitsky, Trevisan] [Hastad, Wigderson]
f(w)

Applications of Induced Matchings

Graph Test: [Blum, Luby, Rubinfeld]
[Samarodnitsky, Trevisan] [Hastad, Wigderson]
f(x+y) $\stackrel{?}{=}(x)+f(y)$

Applications of Induced Matchings

Graph Test: [Blum, Luby, Rubinfeld]
[Samarodnitsky, Trevisan] [Hastad, Wigderson]

parallel linearity tests

Applications of Induced Matchings

Graph Test: [Blum, Luby, Rubinfeld]
[Samarodnitsky, Trevisan] [Hastad, Wigderson]

Broadcast Network:

[Birk, Linial, Meshulam]

parallel linearity tests

Applications of Induced Matchings

Graph Test: [Blum, Luby, Rubinfeld]
[Samarodnitsky, Trevisan] [Hastad, Wigderson]

Broadcast Network:

[Birk, Linial, Meshulam]
Collision!

parallel linearity tests

Applications of Induced Matchings

Graph Test: [Blum, Luby, Rubinfeld]
[Samarodnitsky, Trevisan] [Hastad, Wigderson]

Broadcast Network:

[Birk, Linial, Meshulam]

parallel linearity tests

Applications of Induced Matchings

Graph Test: [Blum, Luby, Rubinfeld]
[Samarodnitsky, Trevisan] [Hastad, Wigderson]

Broadcast Network:

[Birk, Linial, Meshulam]
Collision!

parallel linearity tests

Applications of Induced Matchings

Graph Test: [Blum, Luby, Rubinfeld]
[Samarodnitsky, Trevisan] [Hastad, Wigderson]

Broadcast Network:

[Birk, Linial, Meshulam]

parallel linearity tests

Applications of Induced Matchings

Graph Test: [Blum, Luby, Rubinfeld]
[Samarodnitsky, Trevisan] [Hastad, Wigderson]

parallel linearity tests

Broadcast Network:

[Birk, Linial, Meshulam]

collisionless broadcast

Applications of Induced Matchings

Graph Test: [Blum, Luby, Rubinfeld]
[Samarodnitsky, Trevisan] [Hastad, Wigderson]

parallel linearity tests

Broadcast Network:

[Birk, Linial, Meshulam]

collisionless broadcast

Property Testing: triangle-free, monotonicity, ...

Applications of Induced Matchings

Additive Combinatorics: arithmetic progressions

Graph Test: [Blum, Luby, Rubinfeld]
[Samarodnitsky, Trevisan] [Hastad, Wigderson]

parallel linearity tests

Broadcast Network:
[Birk, Linial, Meshulam]

collisionless broadcast

Property Testing: triangle-free, monotonicity, ...

Known Constructions

Known Constructions

- [Rusza, Szemeredi, 1978] $r=\frac{N}{e^{\sqrt{\log N}}}, t=\frac{N}{3}$ (using a construction of Behrend)

Known Constructions

- [Rusza, Szemeredi, 1978] $r=\frac{N}{e^{\sqrt{\log N}}}, t=\frac{N}{3}$ (using a construction of Behrend)
- [Frankl, Furedi, 1987], for any $r=O(1), r t=(1-o(1))\binom{N}{2}$

Known Constructions

- [Rusza, Szemeredi, 1978] $r=\frac{N}{e^{\sqrt{\log N}}}, t=\frac{N}{3}$ (using a construction of Behrend)
- [Frankl, Furedi, 1987], for any $r=O(1), r t=(1-o(1))\binom{N}{2}$
- [Fischer et al, 2002] $r=\frac{N}{3}-o(N), t=N^{1 / \log \log N}$

Known Constructions

- [Rusza, Szemeredi, 1978] $r=\frac{N}{e^{\sqrt{\log N}}}, t=\frac{N}{3}$
(using a construction of Behrend)
- [Frankl, Furedi, 1987], for any $r=O(1), r t=(1-o(1))\binom{N}{2}$
- [Fischer et al, 2002] $r=\frac{N}{3}-o(N), t=N^{1 / \log \log N}$
- [Birk, Linial, Meshulam, 1993] and [Meshulam, 2011]
$r=(\log N)^{\log \log N /(\log \log \log N)^{2}}, r t=\frac{N^{2}}{24}$

Known Constructions

- [Rusza, Szemeredi, 1978] $r=\frac{N}{e^{\sqrt{\log N}}}, t=\frac{N}{3}$ (using a construction of Behrend)
- [Frankl, Furedi, 1987], for any $r=O(1), r t=(1-o(1))\binom{N}{2}$
- [Fischer et al, 2002] $r=\frac{N}{3}-o(N), t=N^{1 / \log \log N}$
- [Birk, Linial, Meshulam, 1993] and [Meshulam, 2011] $r=(\log N)^{\log \log N /(\log \log \log N)^{2}}, r t=\frac{N^{2}}{24}$

Question

Can Rusza-Szemeredi graphs be dense (for $r=N^{\Omega(1)}$)?

Our Results

There are very dense graphs with nearly linear induced matchings！

Our Results

There are very dense graphs with nearly linear induced matchings！
Theorem
There are (r, t)－Rusza－Szemeredi graphs with：
－$r t=\binom{N}{2}-N^{2-\delta(\epsilon)}$ ，yet $r=N^{1-\epsilon}$ for any $\epsilon>0 \quad\left(\delta(\epsilon) \sim \epsilon^{4}\right)$

Our Results

There are very dense graphs with nearly linear induced matchings!
Theorem
There are (r, t)-Rusza-Szemeredi graphs with:

- $r t=\binom{N}{2}-N^{2-\delta(\epsilon)}$, yet $r=N^{1-\epsilon}$ for any $\epsilon>0 \quad\left(\delta(\epsilon) \sim \epsilon^{4}\right)$
- $r t=\binom{N}{2}-N^{3 / 2+\epsilon}$, yet $r=N^{\delta(\epsilon)}$ for any $\epsilon>0 \quad\left(\delta(\epsilon) \sim \epsilon^{2}\right)$
and if $r t=\binom{N}{2}-N^{3 / 2}$, then $r=O(1)$.

Our Results

There are very dense graphs with nearly linear induced matchings!
Theorem
There are (r, t)-Rusza-Szemeredi graphs with:

$$
\begin{aligned}
& \text { - } r t=\binom{N}{2}-N^{2-\delta(\epsilon)}, \text { yet } r=N^{1-\epsilon} \text { for any } \epsilon>0 \\
& \text { ort }=\binom{N}{2}-N^{3 / 2+\epsilon}, \text { yet } r=N^{\delta(\epsilon)} \text { for any } \epsilon>0 \\
& \text { and if } r t=\binom{N}{2}-N^{3 / 2}, \text { then } r=O(1) \text {. }
\end{aligned}
$$

Corollary: $K_{N}=G_{1}+G_{2} \ldots G_{f(\epsilon)}$, where each G_{i} can be covered by $N^{1+\epsilon}$ induced matchings

Our Results

There are very dense graphs with nearly linear induced matchings!
Theorem
There are (r, t)-Rusza-Szemeredi graphs with:

$$
\begin{aligned}
& \text { - } r t=\binom{N}{2}-N^{2-\delta(\epsilon)}, \text { yet } r=N^{1-\epsilon} \text { for any } \epsilon>0 \\
& \text { - } r t=\binom{N}{2}-N^{3 / 2+\epsilon}, \text { yet } r=N^{\delta(\epsilon)} \text { for any } \epsilon>0 \\
& \text { and if } r t=\binom{N}{2}-N^{3 / 2}, \text { then } r=O(1) .
\end{aligned}
$$

Corollary: $K_{N}=G_{1}+G_{2} \ldots G_{f(\epsilon)}$, where each G_{i} can be covered by $N^{1+\epsilon}$ induced matchings

We give applications to linearity testing, routing in broadcast networks, and disprove conjectures of Meshulam and Vempala

Our Constructions

Our Constructions

- Our first construction is geometric, and uses only basic volume arguments
(inspired by a construction of Fox and Loh)

Our Constructions

－Our first construction is geometric，and uses only basic volume arguments
（inspired by a construction of Fox and Loh）
－Our second construction is based on error correcting codes

A Geometric Construction

A Geometric Construction

The Graph
Let C be a large constant, $V=\{1,2, \ldots, C\}^{d}$ (nodes) $(|V|=N)$

A Geometric Construction

The Graph
Let C be a large constant, $V=\{1,2, \ldots, C\}^{d}$ (nodes) $(|V|=N)$
Let $\mu=E_{x, y \in V}\left[\|x-y\|_{2}^{2}\right]$,

A Geometric Construction

The Graph
Let C be a large constant, $V=\{1,2, \ldots, C\}^{d}$ (nodes) $(|V|=N)$
Let $\mu=E_{x, y \in V}\left[\|x-y\|_{2}^{2}\right], E=\left\{(x, y)| |\|x-y\|_{2}^{2}-\mu \mid \leq d\right\}$ (edges)

A Geometric Construction

The Graph
Let C be a large constant, $V=\{1,2, \ldots, C\}^{d}$ (nodes) $(|V|=N)$
Let $\mu=E_{x, y \in V}\left[\|x-y\|_{2}^{2}\right], E=\left\{(x, y)| |\|x-y\|_{2}^{2}-\mu \mid \leq d\right\}$ (edges)

Claim (easy): $\binom{N}{2}-|E| \leq\binom{ N}{2} e^{-d / 2 C^{4}}=N^{2-\delta}$ via Hoeffding Bound

A Geometric Construction

The Graph
Let C be a large constant, $V=\{1,2, \ldots, C\}^{d}$ (nodes) $(|V|=N)$
Let $\mu=E_{x, y \in V}\left[\|x-y\|_{2}^{2}\right], E=\left\{(x, y)| |\|x-y\|_{2}^{2}-\mu \mid \leq d\right\}$ (edges)

Claim (easy): $\binom{N}{2}-|E| \leq\binom{ N}{2} e^{-d / 2 C^{4}}=N^{2-\delta}$ via Hoeffding Bound Plan

1. Cover G with N induced subgraphs each of max degree Δ

A Geometric Construction

The Graph
Let C be a large constant, $V=\{1,2, \ldots, C\}^{d}$ (nodes) $(|V|=N)$
Let $\mu=E_{x, y \in V}\left[\|x-y\|_{2}^{2}\right], E=\left\{(x, y)| |\|x-y\|_{2}^{2}-\mu \mid \leq d\right\}$ (edges)

Claim (easy): $\binom{N}{2}-|E| \leq\binom{ N}{2} e^{-d / 2 C^{4}}=N^{2-\delta}$ via Hoeffding Bound Plan

1. Cover G with N induced subgraphs each of max degree Δ
2. Decompose each induced subgraph into $O\left(\Delta^{2}\right)$ induced matchings

Goal: Cover G by N Induced Subgraphs

What induced subgraphs should we use?

Goal: Cover G by N Induced Subgraphs

What induced subgraphs should we use?
Definition
$G_{z} \equiv$ induced subgraph on $V_{z}=\left\{x| |\|x-z\|_{2}^{2}-\mu / 4 \mid \leq 3 / 4 d\right\}$

Goal: Cover G by N Induced Subgraphs

What induced subgraphs should we use?
Definition
$G_{z} \equiv$ induced subgraph on $V_{z}=\left\{x| |\|x-z\|_{2}^{2}-\mu / 4 \mid \leq 3 / 4 d\right\}$

Do $\cup_{z} G_{z}$ cover the edges of G ?

Goal: Cover G by N Induced Subgraphs

What induced subgraphs should we use?
Definition
$G_{z} \equiv$ induced subgraph on $V_{z}=\left\{x| |\|x-z\|_{2}^{2}-\mu / 4 \mid \leq 3 / 4 d\right\}$

Do $\cup_{z} G_{z}$ cover the edges of G ?

Goal: Cover G by N Induced Subgraphs

What induced subgraphs should we use?
Definition
$G_{z} \equiv$ induced subgraph on $V_{z}=\left\{x| |\|x-z\|_{2}^{2}-\mu / 4 \mid \leq 3 / 4 d\right\}$

Do $\cup_{z} G_{z}$ cover the edges of G ?

Goal: Cover G by N Induced Subgraphs

What induced subgraphs should we use?
Definition
$G_{z} \equiv$ induced subgraph on $V_{z}=\left\{x| |\|x-z\|_{2}^{2}-\mu / 4 \mid \leq 3 / 4 d\right\}$

Do $\cup_{z} G_{z}$ cover the edges of G ? Yes, choose $z \approx$ the midpoint of x, y

Goal：Bound the Max Degree

Claim：$(x, y) \in E_{z}$ implies y is close to x^{\prime}

Goal: Bound the Max Degree

Claim: $(x, y) \in E_{z}$ implies y is close to x^{\prime}

(anti-podal) $x^{\prime}=2 \mathrm{z}-\mathrm{x}$

Goal: Bound the Max Degree

Claim: $(x, y) \in E_{z}$ implies y is close to x^{\prime}

$($ anti-podal $) x^{\prime}=2 z-x$

Goal: Bound the Max Degree

Claim: $(x, y) \in E_{z}$ implies y is close to x^{\prime}

Goal: Bound the Max Degree

Claim: $(x, y) \in E_{z}$ implies y is close to x^{\prime}

Goal: Bound the Max Degree

Claim: $(x, y) \in E_{z}$ implies y is close to x^{\prime}

$($ anti-podal $) x^{\prime}=2 z-x$

Parallelogram Law: sum of squared sides

11
sum of squared diags

Goal: Bound the Max Degree

Claim: $(x, y) \in E_{z}$ implies y is close to x^{\prime}

$($ anti-podal $) x^{\prime}=2 z-x$

Parallelogram Law: sum of squared sides

11
sum of squared diags

Goal: Bound the Max Degree

Degree of x (in G_{z}) is bounded by number of y close to x^{\prime} :

Goal：Bound the Max Degree

Degree of x（in G_{z} ）is bounded by number of y close to x^{\prime} ：

Goal: Bound the Max Degree

Degree of x (in G_{z}) is bounded by number of y close to x^{\prime} :

Goal：Bound the Max Degree

Degree of x（in G_{z} ）is bounded by number of y close to x^{\prime} ：

Partitioning G_{z} into Induced Matchings

Intialize: empty matchings

$$
\mathrm{M}_{1} \quad \mathrm{M}_{2} \quad \cdots \cdot \mathrm{M}_{\mathrm{O}\left(\Delta^{2}\right)}
$$

Partitioning G_{z} into Induced Matchings

Intialize: empty matchings

$$
\mathrm{M}_{1} \quad \mathrm{M}_{2} \quad \cdots \cdot \mathrm{M}_{\mathrm{O}\left(\Delta^{2}\right)}
$$

Place each edge in first matching w/o conflicts

Our Constructions

－Our first construction is geometric，and uses only basic volume arguments
（inspired by a construction of Fox and Loh）
－Our second construction is based on error correcting codes

Our Constructions

- Our first construction is geometric, and uses only basic volume arguments
(inspired by a construction of Fox and Loh)
- Our second construction is based on error correcting codes
- We use an entropy argument to show that if $r t=\binom{N}{2}-N^{3 / 2}$, then $r=O(1)$

Our Constructions

- Our first construction is geometric, and uses only basic volume arguments
(inspired by a construction of Fox and Loh)
- Our second construction is based on error correcting codes
- We use an entropy argument to show that if $r t=\binom{N}{2}-N^{3 / 2}$, then $r=O(1)$
- Known: The triangle removal lemma is equivalent to no (r, t)-RS graphs in certain ranges (e.g. no dense graphs with $t=N \log ^{*} N$)

Implications and Open Questions

We apply our constructions to:

Implications and Open Questions

We apply our constructions to:

- extend the analysis of Hastad and Wigderson of the Graph Test (modestly better parameters)

Implications and Open Questions

We apply our constructions to:

- extend the analysis of Hastad and Wigderson of the Graph Test (modestly better parameters)
- give a broadcast protocol for a problem of Birk, Linial and Meshulam that runs in $N^{1+\epsilon}$ rounds (previous best was $\left.N^{2} /(\log N)^{\log \log N}\right)$

Implications and Open Questions

We apply our constructions to:

- extend the analysis of Hastad and Wigderson of the Graph Test (modestly better parameters)
- give a broadcast protocol for a problem of Birk, Linial and Meshulam that runs in $N^{1+\epsilon}$ rounds (previous best was $\left.N^{2} /(\log N)^{\log \log N}\right)$

Are there RS graphs when $r=\Omega(N), t=N^{\Omega(1)}$? (applications to monotonicity testing)

Implications and Open Questions

We apply our constructions to:

- extend the analysis of Hastad and Wigderson of the Graph Test (modestly better parameters)
- give a broadcast protocol for a problem of Birk, Linial and Meshulam that runs in $N^{1+\epsilon}$ rounds (previous best was $\left.N^{2} /(\log N)^{\log \log N}\right)$

Are there RS graphs when $r=\Omega(N), t=N^{\Omega(1)}$? (applications to monotonicity testing)

Can our graphs be used to give an integrality gap for Directed Steiner Tree that is polynomial in the number of nodes?
(best so far is poly-logarithmic)

Questions？

Thanks!

