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Rusza-Szemeredi Graphs

Induced Matching: an induced subgraph whose edges form a
matching

Definition

An (r , t)-Rusza-Szemeredi graph G is a union of t pairwise disjoint
induced matchings, each of size r (hence rt total edges)

Note: An induced matching of size r ⇒ missing r(r − 1) edges
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Applications of Induced Matchings

arithmetic progressions

Broadcast Network:
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Known Constructions

[Rusza, Szemeredi, 1978] r = N
e
√

log N , t = N
3

(using a construction of Behrend)

[Frankl, Furedi, 1987], for any r = O(1), rt = (1− o(1))
(
N
2

)
[Fischer et al, 2002] r = N

3
− o(N), t = N1/ log log N

[Birk, Linial, Meshulam, 1993] and [Meshulam, 2011]
r = (logN)log log N/(log log log N)2

, rt = N2

24

Question

Can Rusza-Szemeredi graphs be dense (for r = NΩ(1))?
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Our Results

There are very dense graphs with nearly linear induced matchings!

Theorem

There are (r , t)-Rusza-Szemeredi graphs with:

rt =
(
N
2

)
− N2−δ(ε), yet r = N1−ε for any ε > 0 (δ(ε) ∼ ε4)

rt =
(
N
2

)
− N3/2+ε, yet r = Nδ(ε) for any ε > 0 (δ(ε) ∼ ε2)

and if rt =
(
N
2

)
− N3/2, then r = O(1).

Corollary: KN = G1 + G2...Gf (ε), where each Gi can be covered by
N1+ε induced matchings

We give applications to linearity testing, routing in broadcast
networks, and disprove conjectures of Meshulam and Vempala
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Our Constructions

Our first construction is geometric, and uses only basic volume
arguments

(inspired by a construction of Fox and Loh)

Our second construction is based on error correcting codes

We use an entropy argument to show that if rt =
(
N
2

)
− N3/2,

then r = O(1)

Known: The triangle removal lemma is equivalent to no
(r , t)-RS graphs in certain ranges (e.g. no dense graphs with
t = N log∗ N)
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A Geometric Construction

The Graph

Let C be a large constant, V = {1, 2, ...,C}d (nodes) (|V | = N)

Let µ = Ex ,y∈V [‖x − y‖2
2], E =

{
(x , y)|

∣∣∣‖x − y‖2
2−µ

∣∣∣ ≤ d
}
(edges)

Claim (easy):
(
N
2

)
− |E | ≤

(
N
2

)
e−d/2C4

= N2−δ via Hoeffding Bound

Plan

1. Cover G with N induced subgraphs each of max degree ∆

2. Decompose each induced subgraph into O(∆2) induced matchings
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Goal: Cover G by N Induced Subgraphs

What induced subgraphs should we use?

Definition

Gz ≡ induced subgraph on Vz =
{
x |
∣∣∣‖x − z‖2

2 − µ/4
∣∣∣ ≤ 3/4d

}
Do ∪zGz cover the edges of G?

Yes, choose z ≈ the midpoint of x , y

(approx squared distances)

y

x
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Goal: Bound the Max Degree

Degree of x (in Gz) is bounded by number of y close to x ′:

d

y
Volume: b

x’
#y: O(b)

O(d)

d



Partitioning Gz into Induced Matchings



Partitioning Gz into Induced Matchings

conflict



Partitioning Gz into Induced Matchings

conflict

conflict



Partitioning Gz into Induced Matchings

conflict
O(     )

2# conflicts:

conflict



Partitioning Gz into Induced Matchings

Intialize: empty matchings

O(     )2MM M 1 2

O(     )
2# conflicts:

conflict

conflict



Partitioning Gz into Induced Matchings

Place each edge in first matching w/o conflicts

O(     )2MM M 1 2

O(     )
2# conflicts:

conflict
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Intialize: empty matchings



Our Constructions

Our first construction is geometric, and uses only basic volume
arguments

(inspired by a construction of Fox and Loh)

Our second construction is based on error correcting codes

We use an entropy argument to show that if rt =
(
N
2

)
− N3/2,

then r = O(1)

Known: The triangle removal lemma is equivalent to no
(r , t)-RS graphs in certain ranges (e.g. no dense graphs with
t = N log∗ N)



Our Constructions

Our first construction is geometric, and uses only basic volume
arguments

(inspired by a construction of Fox and Loh)

Our second construction is based on error correcting codes

We use an entropy argument to show that if rt =
(
N
2

)
− N3/2,

then r = O(1)

Known: The triangle removal lemma is equivalent to no
(r , t)-RS graphs in certain ranges (e.g. no dense graphs with
t = N log∗ N)



Our Constructions

Our first construction is geometric, and uses only basic volume
arguments

(inspired by a construction of Fox and Loh)

Our second construction is based on error correcting codes

We use an entropy argument to show that if rt =
(
N
2

)
− N3/2,

then r = O(1)

Known: The triangle removal lemma is equivalent to no
(r , t)-RS graphs in certain ranges (e.g. no dense graphs with
t = N log∗ N)



Implications and Open Questions

We apply our constructions to:

extend the analysis of Hastad and Wigderson of the Graph Test
(modestly better parameters)

give a broadcast protocol for a problem of Birk, Linial and
Meshulam that runs in N1+ε rounds (previous best was
N2/(logN)log log N)

Are there RS graphs when r = Ω(N), t = NΩ(1)?
(applications to monotonicity testing)

Can our graphs be used to give an integrality gap for Directed Steiner
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